14

Широкополосная диэлектрическая спектроскопия раствора альбумина человека при физиологических температурах

© Ж.А. Сальникова, А.А. Кононов, А.П. Смирнов, Р.А. Кастро

Российский государственный педагогический университет им. А.И. Герцена, Институт физики, 191186 Санкт-Петербург, Россия e-mail: jannete90@mail.ru

Поступило в Редакцию 22 ноября 2024 г. В окончательной редакции 20 февраля 2025 г. Принято к публикации 24 февраля 2025 г.

Определены и проанализированы параметры релаксационных процессов в растворе альбумина человека методом диэлектрической спектроскопии через анализ поведения комплексного электрического модуля в широком диапазоне частот 1 Hz - 2 GHz и в области физиологических температур $33 \,^{\circ}\text{C} - 42 \,^{\circ}\text{C}$. Обнаружено три релаксационных процесса и на основе их аппроксимации уравнением Гаврильяка–Негами для комплексного электрического модуля определены их релаксационные параметры α , β , τ_0 , построены функции распределения времен релаксаторов $G(\tau)$, а также вычислены их энергии активации E_a . Сделаны предположения касательно идентификации возможных кинетических единиц, ответственных за данные процессы.

Ключевые слова: комплексный электрический модуль, релаксационные параметры, уравнение Гаврильяка-Негами, функция распределения времен релаксаторов.

DOI: 10.61011/JTF.2025.06.60474.427-24

Введение

В физике диэлектриков широко используется метод диэлектрической спектроскопии, т.е. исследования частотных зависимостей удельной электропроводности, диэлектрической проницаемости и фактора диэлектрических потерь [1-3] при различных температурах. Этим методом исследуются как синтетические полимеры разного типа [4-6], так и биополимеры [7-9]. Метод диэлектрической спектроскопии позволяет связать диэлектрические свойства исследуемого образца с электрическими свойствами молекул его образующих, в частности, с их дипольными моментами, а также сделать некоторые выводы о потенциалах внутримолекулярных вращений и межмолекулярных взаимодействий [10-14]. Анализ максимумов на частотной зависимости фактора диэлектрических потерь позволяет определять релаксационные параметры диэлектриков, при этом часто используется эмпирическое уравнение Гаврильяка-Негами. Однако при высокой электропроводности на частотных зависимостях фактора диэлектрических потерь не удается обнаружить релаксационные максимумы. Для их обнаружения целесообразно применять метод комплексного электрического модуля [15].

Альбумин человека — один из основных белковых компонентов крови, содержащийся в ее сыворотке и выполняющий функции транспорта различных веществ, а также поддерживающий осмотическое давление крови. Он составляет около 55% от всех содержащихся в сыворотке крови белков. За сутки в организме человека вырабатывается 10–15 g альбумина. Молекула альбумина — глобулярный белок с массой порядка 67 kDa, состоящий

из одной полипептидной цепи и 585 аминокислотных остатков, расположение которых представлено, например, в [16]. Альбумин относится к классу альфа-белков. Его вторичная структура состоит из альфа-спиралей (50%-68%) и бета-складок (16%-18%), а также неупорядоченной части макромолекулы [17]. Благодаря 17 дисульфидным мостикам образуется третичная структура, состоящая из трех доменов, каждый из которых состоит из двух поддоменов, содержащих 6 и 4 альфаспирали соответственно. При этом гидрофобные взаимодействия между доменами формируют глобулярную структуру молекулы альбумина. Гидродинамический радиус молекул альбумина в водном растворе составляет 4.2 nm [18], а конформация может быть представлена в виде несимметричного сплющенного эллипсоида [19]. Молекула альбумина содержит порядка сотни пар положительных и отрицательных аминокислотных остатков (99 положительных и 126 отрицательных [20]). При этом дипольный момент молекулы альбумина составляет порядка 500 D [21], что и определяет ее электрические свойства в растворе. Обобщенная информация об альбумине представлена в [22].

Цель настоящей работы — исследование диэлектрических свойств раствора сывороточного альбумина человека при физиологических температурах в широком диапазоне частот. Путем анализа поведения частотных зависимостей вещественной и мнимой компонент комплексного электрического модуля удалось обнаружить релаксационные максимумы, исследование которых позволило определить релаксационные параметры α , β , τ_0 и на их основе построить функцию распределения времен релаксаторов и рассчитать энергию активации обнаруженных процессов. Поскольку альбумин человека является одним из основных белков его сыворотки крови, то при анализе значений релаксационных параметров α , β , τ_0 образцов сыворотки крови можно выделить вклад соответствующих релаксационных параметров альбумина. Это может быть актуально при анализе релаксационных параметров сыворотки крови здоровых доноров и больных пациентов и представлять интерес при анализе развития заболеваний, а также при разработке лекарств для лечения больных пациентов.

1. Анализ диэлектрических спектров

1.1. Релаксационные уравнения

Для анализа релаксационных свойств диэлектриков используется понятие комплексной диэлектрической проницаемости $\varepsilon^*(f)$, которая определяется выражением: $\varepsilon^*(f) = \varepsilon'(f) - i\varepsilon''(f)$, где f — частота приложенного электрического поля, $\varepsilon'(f)$ — вещественная часть комплексной диэлектрической проницаемости, которая называется диэлектрической проницаемостью среды и характеризует степень экранирования внешнего электрического поля, $\varepsilon''(f)$ — мнимая часть комплексной диэлектрически, которая называется фактор диэлектрических потерь и характеризует поглощение энергии с превращением ее в тепловую форму. Значения $\varepsilon'(f)$ и $\varepsilon''(f)$ определяются экспериментально с помощью диэлектрических спектрометров.

Процессы диэлектрической релаксации в общем виде описываются уравнением Гаврильяка–Негами (ГН) [23]:

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{\left(1 + (i\omega\tau_0)^{1-\alpha}\right)^{1-\beta}},\tag{1}$$

где $\varepsilon_s, \varepsilon_\infty$ — статическая и высокочастотная диэлектрическая проницаемость $\varepsilon'(f)$ (ε_s — при $f \to 0, \varepsilon_\infty$ — при $f \to \infty$), $\omega = 2\pi f$ — циклическая частота, τ_0 — наиболее вероятное время релаксации кинетических единиц образца (молекул, их отдельных частей, а также молекулярных комплексов), α — ширина релаксационного спектра, β — диссимметрия этого спектра. Данные параметры изменяются в следующих пределах: $0 \le \alpha < 1$, $0 \leq \beta < 1$. Чем больше величина α , тем больше частотная дисперсия численных значений времен релаксации кинетических единиц образца au относительно au_0 , т. е. шире релаксационный спектр, поэтому в формуле целесообразно использовать величину $1-\alpha$; чем больше β , тем больше его диссимметрия, т.е. степень отклонения спектра от симметричного вида, поэтому в формуле целесообразно использовать величину 1-*β*. Для случая дебаевского спектра $\alpha = 0, \beta = 0.$

Параметры *α*, *β*, *τ*₀ являются основными релаксационными параметрами объекта исследования.

Из теоретического описания диэлектрической релаксации кинетических единиц образца, рассматриваемых в виде независимых диполей с несколькими дискретными состояниями ориентации, следует наличие диполей с различными временами релаксации τ [24]. Кооперативный характер переориентации молекулы, рассматриваемой в виде диполя, заключается в ее одиночных скачкообразных поворотах под действием внешнего поля, при которых вероятность ее переориентации и энергия активации зависят от ориентации соседей, что, в свою очередь, приводит к возникновению спектра времен релаксации [25], характеризуемой функцией $G(\tau)$ распределения времен релаксации кинетических единиц образца τ относительно τ_0 . Аналитическое выражение для функции $G(\tau)$ может быть представлено в виде [26]:

$$G(\tau) = \frac{(\tau/\tau_0)^{(1-\alpha)(1-\beta)} \sin((1-\beta)\theta)}{\pi\tau \left[(\tau/\tau_0)^{2(1-\alpha)} + 2(\tau/\tau_0)^{(1-\alpha)} \cos(\pi(1-\alpha)) + 1 \right]^{\frac{1-\beta}{2}}},$$
(2)

где

$$heta=rctgigg[rac{\sinig(\pi(1-lpha)ig)}{(au/ au_0)^{(1-lpha)}+\cosig(\pi(1-lpha)ig)}igg], \ \ 0\leq heta\leq\pi.$$

Полуширина функции $G(\tau)$ определяется параметром α , а ее диссимметрия параметром β . Чем больше эти параметры, тем более широкой и диссимметричной является функция $G(\tau)$.

При $\alpha = 0$ и $\beta = 0$ уравнение ГН переходит в уравнение Дебая [27]:

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + i\omega\tau_0}.$$
(3)

В этом случае $G(\tau)$ является дельта-функцией $\delta(\tau_0)$ [3], что соответствует состоянию, при котором все кинетические единицы образца обладают одинаковым временем релаксации τ_0 .

При $\alpha \neq 0$ и $\beta = 0$ уравнение ГН переходит в уравнение Коула–Коула [28]:

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + (i\omega\tau_0)^{1-\alpha}}.$$
 (4)

В этом случае $G(\tau)$ является симметричной функцией относительно τ_0 [3] и ее олуширина определяется параметром α .

При $\alpha = 0$ и $\beta \neq 0$ уравнение ГН переходит в уравнение Дэвидсона-Коула [29]:

$$\varepsilon^*(\omega) = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{(1 + i\omega\tau_0)^{1-\beta}}.$$
 (5)

В этом случае $G(\tau)$ является диссимметричной функцией относительно τ_0 [3] и степень ее диссимметрии определяется параметром β .

Параметры α, β, τ_0 и функцию $G(\tau)$ можно определить, если имеются релаксационные максимумы на полученной экспериментально зависимости $\varepsilon''(f)$. Если же эти релаксационные максимумы не удается обнаружить (как в нашем случае), то определение данных параметров этим методом становится невозможным. Ввиду

этого, нами был применен метод анализа вещественной и мнимой компонент комплексного электрического модуля, который ранее использовался для диэлектрических исследований сыворотки крови при различных онкологических заболеваниях [30], хроническом лимфолейкозе [31,32], карциноме Эрлиха [33], онкогематологических заболеваниях [34], а также для синтетического полимера на основе амидных (в биофизике — пептидных) групп полиамида СПА-3 [35], являющегося хорошей моделью внутримолекулярных движений в пептидных группах биополимеров.

1.2. Метод комплексного электрического модуля

Комплексным электрическим модулем $M^*(\omega)$ называется величина обратной комплексной диэлектрической проницаемости, определяемая выражением

$$M^*(\omega) = M'(\omega) + iM''(\omega).$$

Величины $M'(\omega)$, $M''(\omega)$ называются соответственно вещественной и мнимой компонентами комплексного электрического модуля. Они равны

$$M'(\omega) = \frac{\varepsilon'(\omega)}{\varepsilon'^2(\omega) + \varepsilon''^2(\omega)},\tag{6}$$

$$M''(\omega) = \frac{\varepsilon''(\omega)}{\varepsilon'^2(\omega) + \varepsilon''^2(\omega)}.$$
(7)

Из уравнения ГН (1) математически можно вывести теоретические уравнения для $M'(\omega)$ и $M''(\omega)$ [36]:

$$M'(\omega) = \frac{A^{1-\beta}M_{\infty}M_{s}[A^{1-\beta}M_{s} + (M_{\infty} - M_{s})\cos(1-\beta)\varphi]}{A^{2(1-\beta)}M_{s}^{2} + 2A^{1-\beta}M_{s}(M_{\infty} - M_{s})\cos(1-\beta)\varphi + (M_{\infty} - M_{s})^{2}},$$
(8)
$$M''(\omega) =$$

$$\frac{A^{1-\beta}M_{\infty}M_{s}(M_{\infty}-M_{s})\sin(1-\beta)\varphi}{A^{2(1-\beta)}M_{s}^{2}+2A^{1-\beta}(M_{\infty}-M_{s})M_{s}\cos(1-\beta)\varphi+(M_{\infty}-M_{s})^{2}},$$
(9)

где

. . .

$$M_{\infty} = \frac{1}{\varepsilon_{\infty}}, \quad M_s = \frac{1}{\varepsilon_s},$$
$$A = \left[1 + 2(\omega\tau_0)^{1-\alpha} \sin\frac{\pi\alpha}{2} + (\omega\tau_0)^{2(1-\alpha)}\right]^{1/2},$$
$$\varphi = \arctan\left[\frac{(\omega\tau_0)^{1-\alpha} \cos\frac{\pi\alpha}{2}}{1 + (\omega\tau_0)^{1-\alpha} \sin\frac{\pi\alpha}{2}}\right].$$

Стоит отметить, что параметры ε_s , $\varepsilon_{\infty}\omega$, а также α , β , τ_0 — имеют такой же физический смысл, что и в уравнении (1).

Экспериментально измеряемыми величинами, как правило, являются $\varepsilon'(f)$ и $\varepsilon''(f)$. Согласно формулам (6), (7), осуществляется построение зависимостей

 $M'(\omega), M''(\omega)$ и их последующая аппроксимация по формулам (8) и (9). При построении аппроксимирующих кривых используется метод наименьших квадратов. Релаксационные параметры α, β, τ_0 определяют эмпирически из принципа наилучшей одновременной аппроксимации графиков $M''(\omega), M'(\omega), M''(M')$.

2. Методика эксперимента

2.1. Образцы

Образцы для экспериментов представляли собой реализуемый в сети аптек РФ альбумин человеческий 20 % производства Бакстер АГ, Австрия. Состав образцов: альбумин человека — 200 g/L; натрия хлорид — 3 g/L; натрия каприлат — 2.7 g/L; натрия ацетилтриптофан — 4.3 g/L; вода для инъекций — до 11. Общее содержание натрия 100–130 mmol/L.

2.2. Используемое оборудование и методика измерений

Измерения диэлектрических спектров были проведены на спектрометре Novocontrol Concept 81 центра коллективного использования РГПУ им. А.И. Герцена [37] в диапазоне частот $f = 1 - 2 \cdot 10^9$ Hz, и диапазоне температур 33 °C-42 °C. В области низких частот $f = 1 - 3 \cdot 10^6$ Hz измерения производились методом "вольтметра-амперметра", а в области высоких частот $f = 3 \cdot 10^6 - 2 \cdot 10^9$ Hz микроволновым методом с использованием коаксиальной системы.

В методе "вольтметра—амперметра" на измеряемый образец с генератора подается переменное напряжение $U_0(\omega)$ и измеряется проходящий через него ток:

$$I^*(\omega) = I_a(\omega) + i I_p(\omega),$$

где $I_a(\omega)$ и $I_p(\omega)$ — активная и реактивная компоненты тока. Комплексный импеданс $Z^*(\omega)$ вычисляется по формуле

$$Z^*(\omega) = Z'(\omega) + i Z''(\omega) = rac{U_0(\omega)}{I^*(\omega)}$$

Емкость $C(\omega)$ и электропроводность $\sigma'(\omega)$ образца вычисляются по формуле

$$Z'(\omega) + i \, Z''(\omega) = \frac{1}{\sigma'(\omega)} + \frac{1}{i\omega C(\omega)}$$

Диэлектрическая проницаемость $\varepsilon'(\omega)$ вычисляется по формуле плоского конденсатора

$$C(\omega) = \frac{\varepsilon'(\omega)\varepsilon_0 S}{d}.$$

Фактор потерь $\varepsilon''(\omega)$ вычисляется по формуле

$$\varepsilon''(\omega) = \varepsilon'(\omega) \operatorname{tg} \delta(\omega),$$

T, °C	Первый релаксационный процесс: $f = 10^1 - 10^2 \text{Hz}$			Второй релаксационный процесс: $f = 10^4 - 10^5 {\rm Hz}$			Третий релаксационный процесс: $f = 10^8 - 10^9 \text{Hz}$		
	α_1	β_1	$ au_{0_1}(s)$	α_2	β_2	$ au_{0_2}(s)$	α3	β_3	$ au_{0_{3}}(s)$
33	0.09	0.62	$3.7\cdot10^{-2}$	0.35	0.02	$5.7\cdot 10^{-6}$	0.00	0.37	$9.80\cdot 10^{-10}$
34	0.05	0.73	$4.5 \cdot 10^{-2}$	0.32	0.00	$5.7\cdot 10^{-6}$	0.00	0.35	$9.81\cdot 10^{-10}$
35	0.03	0.74	$3.4 \cdot 10^{-2}$	0.31	0.01	$5.6\cdot 10^{-6}$	0.00	0.38	$9.77\cdot 10^{-10}$
36	0.02	0.74	$2.6\cdot 10^{-2}$	0.30	0.03	$5.3 \cdot 10^{-6}$	0.00	0.38	$9.73\cdot 10^{-10}$
37	0.00	0.74	$2.1 \cdot 10^{-2}$	0.30	0.02	$5.1 \cdot 10^{-6}$	0.00	0.30	$9.74 \cdot 10^{-10}$
38	0.04	0.72	$1.6 \cdot 10^{-2}$	0.29	0.05	$5.1 \cdot 10^{-6}$	0.00	0.34	$9.65 \cdot 10^{-10}$
39	0.09	0.70	$1.6 \cdot 10^{-2}$	0.29	0.07	$5.1\cdot 10^{-6}$	0.00	0.35	$9.65 \cdot 10^{-10}$
40	0.30	0.43	$9.1 \cdot 10^{-3}$	0.32	0.07	$5.2 \cdot 10^{-6}$	0.00	0.35	$9.60 \cdot 10^{-10}$
41	0.28	0.41	$7 \cdot 9.10^{-3}$	0.33	0.09	$5.2\cdot 10^{-6}$	0.00	0.32	$9.59 \cdot 10^{-10}$
42	0.28	0.40	$6.9 \cdot 10^{-3}$	0.34	0.08	$5.2\cdot 10^{-6}$	0.00	0.31	$9.56 \cdot 10^{-10}$

Значения релаксационных параметров α , β , τ_0 (в соответствии с уравнением (1))*

Примечание. * — погрешность аппроксимации для параметров *α*, *β* не превышала 0.02; для параметра *τ*₀ не превышала 10%. При значениях *α*, *β* около 0.0 их погрешность не превышала 0.01.

где

$$\operatorname{tg} \delta(\omega) = \frac{I_a(\omega)}{I_p(\omega)}$$

— тангенс угла диэлектрических потерь.

В микроволновом методе на измеряемый образец подается электромагнитная волна, и измеряется комплексный коэффициент отражения $r^*(l)$. Комплексный импеданс $Z^*_s(\omega)$ вычисляется по формуле

$$Z_s^*(\omega) = Z_0 \frac{1 + r^*(l)}{1 - r^*(l)},$$

где Z_0 — входное сопротивление волновода длиной l. На основе $Z_s^*(\omega)$ вычисляются все необходимые параметры: $C(\omega)$, tg $\delta(\omega)$, $\varepsilon'(\omega)$, $\varepsilon''(\omega)$, $\sigma'(\omega)$. Точность определения импеданса составляла 0.1 %.

Измерения производились с использованием ячейки BDS 1308 (Novocontrol Technologies GmbH & Co), предназначенной для работы с жидкостями.

Для сбора и отображения результатов измерений использовалось программное обеспечение WinDeta (Novocontrol Technologies GmbH, Германия).

Значения релаксационных параметров α , β , τ_0 , а также функцию распределения времен релаксации $G(\tau)$ кинетических единиц определяли путем аппроксимации экспериментальных кривых $M'(\omega)$ (6), $M''(\omega)$ (7), M''(M') по уравнению ГН для электрического модуля с использованием программного обеспечения WinFit (Novocontrol Technologies GmbH & Co), осуществляющего аппроксимацию $M'(\omega)$ и $M''(\omega)$ по уравнениям (8) и (9) методом наименьших квадратов.

Погрешность аппроксимации для параметров α , β не превышала 0.02; для параметра τ_0 не превышала 10 %. При значениях α , β около 0.0 их погрешность не превышала 0.01.

Рис. 1. Частотная зависимость мнимой части электрического модуля M''(f) при температурах 33 °C-42 °C.

3. Результаты и обсуждение

На рис. 1 представлены частотные зависимости M''(f) при температурах 33 °С-42 °С. На данных зависимостях наблюдаются три максимума: первый при $f = 10^1 - 10^2$ Hz, второй при $f = 10^4 - 10^5$ Hz, третий при $f = 10^8 - 10^9$ Hz. Для всех максимумов параметры α , β , τ_0 определялись с помощью уравнения ГН для электрического модуля с использованием программы WinFit, согласно методике, изложенной в разд. 2.2. Результаты вычислений данных релаксационных параметров представлены в таблице.

Сдвиг максимумов M''(f) в область высоких частот с увеличением температуры указывает на наличие трех релаксационных процессов. При этом первый и второй

Рис. 2. Функция распределения времен релаксаторов $G(\tau)$ для первого (I) и второго (II) релаксационных процессов при разной температуре: $1 - 33 \degree$ C, $2 - 37 \degree$ C, $3 - 42 \degree$ C.

процессы частично перекрываются. Первый процесс заканчивается при частоте $f \sim 10^3$ Hz (рис. 1), однако при этом $M''(f) \neq 0$, т. е. начинается второй релаксационный процесс. На рис. 2 представлена функция распределения времен релаксаторов $G(\tau)$ для первого и второго релаксационных процессов, построенная по уравнению (2) с использованием программы WinFit.

Видно, что первый и второй релаксационные процессы действительно частично накладываются. Следует отметить, что степень диссимметрии $G(\tau)$ первого релаксационного процесса определяется большим значением параметра β_1 ($\beta_1 \approx 0.7$), а полуширина $G(\tau)$ второго релаксационного процесса определяется большим значением параметра α_2 ($\alpha_2 \approx 0.3$). Рассмотрим подробнее каждый релаксационный процесс.

3.1. Первый релаксационный процесс

Первый релаксационный процесс, соответствующий максимуму $M''(f) \approx 1.5 \cdot 10^{-3}$, наблюдается при температурах T = 33 °C - 42 °C в частотном диапазоне $f = 10^1 - 10^2 \text{ Hz}$ (рис. 1). В диапазоне температур T = 33 °C - 9 °C этот процесс хорошо описывается уравнением Дэвидсона–Коула (5), так как $\alpha_1 \approx 0$ и $\beta_1 \approx 0.7$.

На рис. З представлены температурные зависимости релаксационных параметров $\alpha_1(T)$, $\beta_1(T)$ для этого процесса.

На графике рис. 3 при температуре 37 °С отчетливо виден минимум α_1 , а также в диапазоне температур 35 °С-37 °С — максимум β_1 . Уменьшение параметра α_1 , возможно, связано с тем, что уменьшаются различия в размерах кинетических единиц. Данный вывод можно сделать исходя из того, что для дебаевского спектра $\alpha = 0$ и в этом случае кинетические единицы в системе имеют практически одинаковый размер. Увеличение параметра β означает, что спектр становится менее симметричным, так как для дебаевского спектра $\beta = 0$

Рис. 3. Температурные зависимости релаксационных параметров $\alpha_1(T)$ и $\beta_1(T)$ первого релаксационного процесса.

и в этом случае кинетические единицы в системе обладают идентичной формой. Очень большое значение, в частности, $\beta \sim 0.7$ означает, что формы кинетических единиц являются существенно разными. Таким образом, одновременное уменьшение параметров α и увеличение β может быть связано с изменением конформации кинетических единиц первого релаксационного процесса.

В диапазоне температур $39 \,^{\circ}\text{C} - 40 \,^{\circ}\text{C}$ происходит одновременно сильное изменение параметров α_1 и β_1 : параметр α_1 увеличивается в 3 раза от 0.1 до 0.3, а параметр β_1 уменьшается почти в 2 раза от 0.7 до 0.42. Данные изменения могут также быть объяснены изменением конформации кинетических единиц первого релаксационного процесса. При дальнейшем росте температур $40 \,^{\circ}\text{C} - 42 \,^{\circ}\text{C}$ данные параметры остаются практически постоянными.

Для расчета энергии активации процесса дипольной поляризации было использовано уравнение [38]:

$$\tau_0 = A e^{E_a/kT},\tag{10}$$

где A — постоянная для данной жидкости, E_a — энергия активации, k — постоянная Больцмана, T — температура, [°K].

После логарифмирования уравнения (10) получается следующее уравнение:

$$\ln \tau_0 = \ln A + \frac{E_a}{kT}$$

В свою очередь, после ввода обозначений: $y = \ln \tau_0$, x = 1000/T, $\ln A = C$, получается уравнение прямой:

$$y = C + \frac{E_a}{1000k}x.$$
 (11)

После построения данной прямой в декартовой системе координат на основе данных τ_{0_1} , *T* из таблицы, нами была определена энергия активации E_a по следующей

формуле:

$$tg \,\alpha = \frac{E_a}{1000k},\tag{12}$$

где α — угол наклона прямой (11).

На рис. 4 представлен график зависимости $\ln \tau_{0.1}$ от (1000/T) для первого процесса. Энергия активации первого релаксационного процесса оказалась равной $E_{0.1} = (1.8 \pm 0.1)$ eV, т.е. (173 ± 13) kJ/mol.

Поскольку и время релаксации И энергия активации оказались достаточно большими $(\tau_{0_{-1}} = 6.9 \cdot 10^{-3} - 3.7 \cdot 10^{-2} \text{ s}, E_a = 173 \text{ kJ/mol})$ cootbetctвенно, то возможные кинетические единицы первого процесса — целые молекулы альбуминов, либо крупные сегменты, например, домены, составляющие их третичную структуру. В обоих случаях первый релаксационный процесс — это дипольно-сегментальное движение, или α-процесс [6], связанный с ориентационными поворотами крупных сегментов макромолекул альбумина, либо с изменением конформации молекулы альбумина, как целого.

Об изменении конформации молекулы альбумина при физиологических температурах как о фазовом переходе первого рода типа "глобула-клубок" было показано в работе группы Е.Б. Шадрина [39]. В этой работе отмечено, что температура фазового перехода зависит от концентрации водного раствора альбумина и при концентрации 5% составляет 38°С. Согласно этим данным, при увеличении концентрации температура фазового перехода уменьшается. В нашем случае (концентрация альбумина в воде 20%) при температуре 37 °C мы наблюдаем минимум $\alpha_1 = 0$ и максимум $\beta_1 = 0.74$. Таким образом, минимум параметра α_1 , равный нулю, с одновременным максимумом параметра β_1 , возможно, являются индикатором фазового перехода первого рода. Стоит отметить, что в диапазоне температур 39°C-40°C наблюдается одновременное резкое изменение параметров α_1 и β_1 ; α_1 увеличивается в 3 раза, а β_1 уменьшается почти в 2 раза (рис. 3). При более высоких температурах параметры α_1 и β_1 изменяются незначительно.

Рис. 4. Температурная зависимость времени релаксации $\tau_{0_{-1}}$ для первого релаксационного процесса: $\ln \tau_{0_{-1}} (1000/T)$.

Рис. 5. Функция распределения времен релаксаторов $G(\tau)$ для первого релаксационного процесса при разной температуре: $1 - 33 \degree$ C, $2 - 35 \degree$ C, $3 - 37 \degree$ C, $4 - 39 \degree$ C, $5 - 42 \degree$ C.

Разделение функции $G(\tau)$ (рис. 2) на первый и второй процессы представлено на рис. 5 и в разд. 3.2 соответственно.

Изображенная на рис. 5 функция $G(\tau)$ для первого релаксационного процесса в диапазоне температур $T = 33 \,^{\circ}\text{C} - 39 \,^{\circ}\text{C}$ явно диссимметричная, что подтверждается значением параметра $\beta_1 = 0.61 - 0.74$ и при этом очень широкая (7 частотных порядков $10^{-8} - 10^{-1}$ s). При более высоких температурах $G(\tau)$ становится более симметричной, что подтверждается значением параметра $\beta_1 = 0.4$ и менее широкой (5 частотных порядков $10^{-6} - 10^{-1}$ s). Функция $G(\tau)$ достигает своего максимума при $T = 37 \,^{\circ}\text{C}$, являясь при этом наиболее диссимметричной. Максимум $G(\tau)$ при $T = 37 \,^{\circ}\text{C}$ приходится на $\tau_{0,1} = 2.1 \cdot 10^{-2}$ s, при этом присутствуют релаксаторы с au вплоть до 10^{-8} s (6 частотных порядков относительно τ_{0_1}), но отсутствуют релаксаторы с $\tau > 6 \cdot 10^{-2} \, \mathrm{s}$ (менее 1/2 частотного порядка относительно т_{0 1}). Такое распределение релаксаторов можно объяснить тем, что наблюдается суперпозиция движений скелета основной цепи молекулы альбумина и внутренних вращений в боковых полярных группах, сильно сцепленных с основной цепью молекулы. При таких движениях может наблюдаться единый процесс [40], а функция $G(\tau)$ становится существенно диссимметричной [40].

3.2. Второй релаксационный процесс

Второй релаксационный процесс, соответствующий максимуму $M''(f) \approx 2 \cdot 10^{-3}$, наблюдается при температурах T = 33 °C - 42 °C в частотном диапазоне $f = (10^4 - 10^5)$ Hz (рис. 1). С увеличением температуры наблюдается сдвиг максимума M'' в область высоких частот, что указывает на релаксационный процесс, связанный с ориентационными поворотами кинетических единиц макромолекул альбуминов. Однако данный сдвиг существенно меньше, чем в первом процессе. В диапазоне температур T = 33 °C - 42 °C этот процесс хорошо описывается уравнением Коул–Коула (4), так как в данном случае $\alpha_2 \approx 0.3$ и $\beta_2 \approx 0.$

На рис. 6 представлены температурные зависимости релаксационных параметров $\alpha_2(T)$, $\beta_2(T)$ для второго процесса.

В отличие от первого процесса, второй процесс обладает весьма широким ($\alpha_2 \sim 0.3$), но симметричным ($\beta_2 < 0.1$) релаксационным спектром. При температурах 38 °C-39 °C параметр α_2 минимален, параметр β_2 монотонно возрастает в диапазоне температур 34 °C-41 °C. Среднее время релаксации для второго процесса почти на четыре порядка меньше, чем для первого ($\tau_{0,2} \sim 5 \cdot 10^{-6}$ s и $\tau_{0,1} \sim 2 \cdot 10^{-2}$ s соответственно), что говорит о разных размерах и массах соответствующих кинетических единиц данных процессов.

Для расчета энергии активации второго процесса также были использованы уравнения (10)-(12). На рис. 7 представлен график зависимости $\ln \tau_{0_2}$ от (1000/*T*).

Энергия активации второго релаксационного процесса оказалась равной $E_{a_2} = (0.10 \pm 0.02)$ eV, т. е. (9 ± 2) kJ/mol.

Рис. 6. Температурные зависимости релаксационных параметров $\alpha_2(T)$ и $\beta_2(T)$ второго релаксационного процесса.

Рис. 7. Температурная зависимость времени релаксации $\tau_{0,2}$ для второго релаксационного процесса: $\ln \tau_{0,2}$ (1000/*T*).

Рис. 8. Функция распределения времен релаксаторов $G(\tau)$ для второго релаксационного процесса при разной температуре: 1 - 33 °C, 2 - 37 °C, 3 - 42 °C.

Поскольку энергия активации второго процесса существенно меньше, чем первого и времена релаксации второго процесса также существенно меньше первого, то возможными кинетическими единицами второго процесса могут быть альфа-спирали молекул альбуминов (дипольно-групповое движение, или β -процесс) [6]. При этом из-за тепловых флуктуаций углы внутреннего вращения в главной (φ_i , ψ_i , ω_i) и боковой (χ_i) цепях могут варьироваться [41]. Наличие трех углов вращения расширяет релаксационный спектр, т.е. увеличивает параметр α_2 . Однако при этом релаксационный спектр является симметричным ($\beta_2 < 0.1$). Это говорит о том, что углы внутреннего вращения в равной степени могут как увеличиваться, так и уменьшаться.

Функция $G(\tau)$ для второго процесса представлена на рис. 8.

Для второго процесса функция $G(\tau)$ также является очень широкой 6 частотных порядков $(10^{-8}-10^{-2} \text{ s})$, но при этом симметричной, что подтверждается значением параметра $\beta_2 < 0.1$. По сравнению с первым релаксационным процессом (рис. 5) полуширина $G(\tau)$ для второго процесса существенно больше. Поскольку для второго релаксационного процесса параметр $\alpha_2 \approx 0.3$ и функция $G(\tau)$ широкая, то в молекуле альбумина может осуществляться широкий набор разномасштабных движений с различными активационными барьерами и различными характерными временами, что является общим свойством белков и может быть описано как набор диэлектрических проницаемостей, каждая из которых соответствует своему временному интервалу [42].

3.3. Третий релаксационный процесс

Третий релаксационный процесс, соответствующий максимуму $M''(f) \approx 8 \cdot 10^{-3}$, наблюдается при температурах T = 33 °C - 42 °C в частотном диапазоне $f = (10^8 - 10^9)$ Hz. Этот процесс хорошо описывается уравнением Дэвидсона–Коула (5), так как в данном случае $\alpha_3 = 0$ и $\beta_3 \neq 0$ во всем температурном диапазоне.

На рис. 9 представлены температурные зависимости релаксационных параметров $\alpha_3(T)$, $\beta_3(T)$ для третьего процесса.

Видно, что с ростом температуры параметр β_3 уменьшается, при этом наблюдается минимум при 37 °С. Это означает, что система проявляет слабую тенденцию к симметрии, хотя и остается достаточно несимметричной ($\beta_3 > 0.3$). В свою очередь, параметр $\alpha_3 = 0$ во всем температурном диапазоне 33 °С-42 °С. Это означает, что система обладает минимально широким релаксационным спектром (для дебаевского спектра $\alpha_3 = 0$).

На рис. 10 представлена функция $G(\tau)$ для третьего релаксационного процесса, построенная с помощью уравнения (2) с использованием программы WinFit при T = 38 °C. Для случаев других температур она выглядит аналогично.

Рис. 9. Температурные зависимости релаксационных параметров $\alpha_3(T)$ и $\beta_3(T)$ третьего релаксационного процесса.

Рис. 10. Функция распределения времен релаксаторов $G(\tau)$ для третьего релаксационного процесса при температуре 38 °C.

Рис. 11. Температурная зависимость времени релаксации τ_{0_3} для третьего релаксационного процесса: $\ln \tau_{0_3} (1000/T)$.

У данной функции практически отсутствует полуширина, но наблюдается диссимметрия, что подтверждается параметром β_3 ($\beta_3 \approx 0.3$).

Для расчета энергии активации третьего процесса также были использованы уравнения (10)–(12). На рис. 11 представлен график зависимости $\ln \tau_{0_3}$ от (1000/*T*). Энергия активации третьего релаксационного процесса оказалась равной $E_{a_3} = (0.025 \pm 0.002)$ eV, т.е. (2.4 ± 0.2) kJ/mol.

Полученное нами среднее время релаксации кинетических единиц третьего процесса составляет $\tau_{0_3} \sim 1 \cdot 10^{-9}$ s. С увеличением температуры наблюдается слабый сдвиг максимума M'' в область высоких частот, существенно меньший, чем в первом и втором процессах. Данный сдвиг связан с ориентационными поворотами различных по форме ($\beta \sim 0.3$) кинетических единиц. Вероятнее всего, такими единицами являются полярные аминокислотные остатки основной цепи молекулы альбумина. Как отмечалось во введении, их около двухсот (99 положительных и 126 отрицательных).

3.4. Сравнение энергии активации трех процессов

Сравним энергии активации трех релаксационных процессов: $E_{a_1} = 173 \text{ kJ/mol};$ $E_{a_2} = 9 \text{ kJ/mol};$ $E_{a_3} = 2.4 \text{ kJ/mol}.$

Максимальная энергия активации $E_{a_{-1}}$ и наибольшее время релаксации ($\tau_{0_{-1}} \sim 10^{-2}$ s) наблюдается у первого релаксационного процесса. Вероятно, это связано с размерами (радиус порядка 4.2 nm) и формой молекул альбуминов (несимметричный сплющенный эллипсоид), поскольку они определяют величину ее дипольного момента (порядка 500 D) и, как следствие, величину энергии диполь-дипольного взаимодействия как между молекулами альбумина. Отметим, что энергия ван-дер-ваальсового диполь-дипольного взаимодействия между молекулами

пропорциональна произведению квадратов их дипольных моментов [12]. Поскольку размеры и дипольный момент молекулы альбумина большие, то она будет взаимодействовать с большим количеством молекул воды. Соответственно будет большая энергия диполь-дипольного взаимодействия молекул альбумина и воды, а также молекул альбумина между собой. Для преодоления этих энергетических барьеров и требуется большая энергия активации $E_{a \ 1}$.

Энергия активации второго процесса E_{a_2} в 20 раз меньше, чем первого, т.е. энергетические барьеры дипольных поворотов альфа-спиралей внутри молекулы альбумина в 20 раз меньше, чем при повороте молекулы альбумина как целого в водном окружении. Как отмечено в работе [43], белки характеризуются низкой диэлектрической проницаемостью, наличием постоянного внутрибелкового электрического поля и широким набором времен диэлектрической релаксации. Именно широкий релаксационный спектр второго процесса ($\alpha_2 \approx 0.32$) мы и наблюдали.

Энергия активации третьего процесса E_{a_3} в 4 раза меньше, чем второго и в 72 раза меньше, чем первого. Это означает, что энергетические барьеры процесса дипольной ориентации полярных аминокислотных остатков существенно ниже, чем барьеры дипольных поворотов альфа-спиралей и гораздо ниже барьеров дипольных поворотов целых молекул альбумина. Для третьего процесса $\alpha = 0$, $\beta \approx 0.35$, что делает его похожим на первый процесс ($\alpha \approx 0$, $\beta \approx 0.7$) и отличным от второго ($\alpha \approx 0.30$, $\beta \approx 0.0$). Вероятно, это связано с различной формой аминокислотных остатков и различными величинами (и направлением относительно оси) их дипольных моментов.

Заключение

В процессе исследования 20% водного раствора человеческого сывороточного альбумина при физиологических температурах были обнаружены три релаксационных процесса и определены их параметры. Вероятнее всего, первый из них (низкочастотный), хорошо описываемый при $T = 33 \,^{\circ}\text{C} - 39 \,^{\circ}\text{C}$ уравнением Дэвидсона-Коула (5), связан с поворотами целых молекул альбумина под действием переменного электрического поля, а также, возможно, с изменением конформации молекул альбумина с глобулярной в клубковую при 37 °C. Кооперативный характер поворота целых молекул альбумина характеризуется высокими значениями параметра β_1 и энергии активации $E_{a,1}$, а также формой функции $G(\tau)$ (рис. 5). Второй процесс (среднечастотный), хорошо описываемый уравнением Коул-Коула (4), вероятно, связан с вращением альфа-спиралей молекул альбумина. Третий (высокочастотный) процесс, хорошо описываемый уравнением Дэвидсона-Коула (5), вероятно, связан с поворотами полярных аминокислотных остатков основной цепи альбумина.

Анализ графиков $\alpha(T)$, $\beta(T)$ может дать новую информацию об изменении конформации кинетических единиц данного релаксационного процесса, в том числе и о фазовых переходах в них. Минимум параметра α , равный нулю, с одновременным максимумом параметра β , возможно, является индикатором фазового перехода.

Метод диэлектрической спектроскопии может стать хорошим дополнением к другим различным методам исследования альбумина сыворотки крови в клинической медицине [16], поскольку данный метод способен эффективно выявлять изменения конформаций релаксаторов (структурных единиц) биополимеров, следовательно, и вариации межмолекулярных взаимодействий в их водных растворах. Диэлектрическая спектроскопия позволяет глубже понять природу релаксационных процессов в широком классе сложносоставных жидкостей, в том числе биологических, что пока еще не достаточно разработано.

В заключение отметим, что метод комплексного электрического модуля является эффективным методом исследования релаксационных процессов в водных растворах полимеров, в том числе водорастворимых глобулярных белков, основных молекул живой природы.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Г.И. Сканави. Физика диэлектриков (область слабых полей) (ГИТТЛ, М.-Л., 1949), 500 с.
- [2] Н.П. Богородицкий, Ю.М. Волокобинский, А.А. Воробьев, Б.М. Тареев. *Теория диэлектриков* (Энергия, М.-Л., 1965), 344 с.
- [3] F. Kremer, A. Schonhals. *Broadband Dielectric Spectroscopy* (Springer–Verlag, Berlin Heidelberg, 2003), 730 p.
- [4] Б.И. Сажин. Электрические свойства полимеров (Химия, Л., 1986), 3-е изд., 224 с.
- [5] Э.Р. Блайт, Д. Блур. Электрические свойства полимеров (Физматлит, М., 2008), 368 с.
- [6] Ю.А. Гороховатский, Е.А. Карулина, Д.Э. Темнов. Физика полимерных диэлектриков (Изд-во РГПУ им. А.И. Герцена, СПб., 2013), 124 с.
- [7] O. Schanne, P. Ruiz, E. Ceretti. *Impedance measurements in biological cell* (John Willey & Sons, 1978), 430 p.
- [8] Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications, ed. V. Raicu, Y. Feldman (Scholarship, Published to Oxford, 2015), 430 p.
- [9] А.Н. Романов, Е.Ю. Винокурова, А.О. Ковригин, А.Ф. Лазарев, В.А. Лубенников, Н.А. Романова, С.А. Комаров. Диэлектрические характеристики биологических жидкостей человека при развитии онкологических заболеваний (микроволновый диапазон) (Барнаул, 2008), 70 с.
- [10] С. Мидзусима. Строение молекул и внутреннее вращение (Изд-во ИЛ, М., 1957), 264 с.

- [11] Внутреннее вращение молекул, под ред. В.Дж. Орвилл-Томаса, пер. с англ. под ред. Ю.А. Пентина (Мир, М., 1977), 510 с.
- [12] И.Г. Каплан. Введение в теорию межмолекулярных взаимодействий (Наука, М., 1982), 312 с.
- [13] Межмолекулярные взаимодействия: от двухатомных молекул до биополимеров, под ред. Б. Пульмана (Мир, М., 1981), 592 с.
- [14] И.Г. Каплан. Межмолекулярные взаимодействия. Физическая интерпретация, компьютерные расчеты и модельные потенциалы, пер. с англ. (БИНОМ, Лаборатория знаний, М., 2017), 394 с.
- [15] Ж.А. Сальникова, А.А. Кононов, А.П. Смирнов, Р.А. Кастро Арата. Phys. Complex Systems, 3 (1), 11 (2022). DOI: 10.33910/2687-153X-2022-3-1-11-20
- [16] Альбумин сыворотки крови в клинической медицине, под ред. Ю.А. Грызунова, Г.Е. Добрецова (Ириус, М., 1994), 226 с.
- [17] Jr.T. Peters. All About Albumin: Biochemistry, Genetics, and Medical Applications (Academic Press, 1996), 432 p.
- [18] Н.П. Маломуж, А.В. Хорольский. Журн. физ. хим., 95 (2), 231 (2021).
- [19] М.А. Киселев, Ю.А. Грызунов, Г.Е. Добрецов, М.Н. Комарова. Биофизика, 46 (3), 423 (2001).
- [20] А. Ленинджер. Биохимия (Мир, М., 1974, 958 с.)
- [21] В.В. Гибизова, И.А. Сергеева, Г.П. Петрова, А.В. Приезжев, Н.Г. Хлебцов. Вестник Московского ун-та. Серия 3. Физика. Астрономия. № 5 (Биофизика и медицинская физика), 39 (2011).
- [22] Albumin. Электронный ресурс. URL: www.albumin.org (дата обращения: 01.11.2024)
- [23] S. Havriliak, S. Negami. J. Polymer Sci. Part C, 14 (1), 99 (1966).
- [24] Г. Фрелих. *Теория диэлектриков* (Изд-во ИЛ, М., 1960), 252 с.
- [25] Релаксационные явления в полимерах, под ред. Г.М. Бартенева, Ю.В. Зеленева (Химия, Л., 1972), 373 с.
- [26] S. Havriliak, S. Negami. Polymer, 8, 161 (1967).
- [27] П. Дебай. Полярные молекулы (ГНТИ, М.-Л., 1931), 248 с.
- [28] K.S. Cole, R.H. Cole. J. Chem. Phys., 9, 341 (1941).
- [29] D.W. Davidson, R.H. Cole. J. Chem. Phys., 18, 1417 (1950);
 DOI: 10.1063/1.1747496
- [30] Ж.А. Сальникова, Р.А. Кастро. VI Петербургский международный онкологический форум "Белые Ночи 2020" (Тез. докл., 2020), с. 309.
- [31] Zh.A. Salnikova, L.V. Plotnikova, A.P. Smirnov
 A.D. Garifullin, A.Yu. Kuvshinov, S.V. Voloshin,
 A.M. Polyanichko. AIP Conf. Proceed. 2308, 030018 (2020). DOI: 10.1063/5.0035270
- [32] Ж.А. Сальникова, Л.В. Плотникова, А.П. Смирнов Р.А. Кастро, А.Д. Гарифуллин, А.Ю. Кувшинов, С.В. Волошин, А.М. Поляничко. Материалы 54-й школы ПИЯФ по физике конденсированного состояния (СПб., 16-20.03.2020, http:// fks2020.pnpi.spb.ru/media/Sbornik_tez_ FKS_2020_v_3.pdf c. 157 (2020).
- [33] Ж.А. Сальникова, А.П. Смирнов, А.А. Богданов, Н.А. Верлов, Р.А. Кастро. ЖТФ, 92 (1), 147 (2022).
- [34] Р.А. Кастро Арата, Л.В. Плотникова, Ж.А. Сальникова, А.П. Смирнов, А.А. Кононов, О.С. Везо, А.Д. Гарифуллин, А.Ю. Кувшинов, С.В. Волошин, А.М. Поляничко. Опт. спектр., **130** (6), 918 (2022).
- 28 Журнал технической физики, 2025, том 95, вып. 6

- [35] V.T. Avanesyan, Zh.A. Salnikova. AIP Conf. Proceed., 2308, 030013 (2020). DOI: 10.1063/5.0035258
- [36] Zh.A. Salnikova, A.A. Kononov. AIP Conf. Proceed., 2308, 030017 (2020). DOI: 10.1063/5.0034028
- [37] Onucatue npu6opa "Novocontrol Concept-81" https://ckpo.herzen.spb.ru/?page=dielectrici-oborudovanie& ID=5566
- [38] Я.И. Френкель. Кинетическая теория жидкостей (Издво Наука ЛО, Л., 1975), 592 с.
- [39] А.О. Вонти, А.В. Ильинский, В.М. Капралова, Е.Ю. Шадрин. ЖТФ, 88 (6), 934 (2018).
- [40] Ю.Я Готлиб, А.А. Даринский, Ю.Е. Светлов. Физическая кинетика макромолекул (Химия, Л., 1986), 272 с.
- [41] А.В. Финкельштейн. Физика белковых молекул (Ин-т компьютерных исследований, М.-Ижевск, 2014), 424 с.
- [42] L.I. Krishtalik. Biochim. Biophis. Acta (BBA) Bioenerg., 1273, 139 (1996).
- [43] Л.И. Кришталик. УФН, 183 (12), 1275 (2012).