13

Оптические свойства пористого кремния, облученного наносекундным иттербиевым лазером

© Н.В. Рыбина,¹ Н.Б. Рыбин,¹ В.С. Хилов,² В.В. Трегулов,² А.И. Иванов,² К.О. Айыыжы,³ Н.Н. Мельник⁴

 ¹Рязанский государственный радиотехнический университет им. В.Ф. Уткина, 390005 Рязань, Россия
 ²Рязанский государственный университет им. С.А. Есенина, 390000 Рязань, Россия
 ³Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия
 ⁴Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия
 е-mail: nikolay.rybin@yandex.ru

Поступило в Редакцию 27 декабря 2024 г. В окончательной редакции 7 февраля 2025 г. Принято к публикации 14 февраля 2025 г.

> Показано, что с помощью изменения параметров облучения импульсным наносекундным иттербиевым волоконным лазером можно влиять на информационно-корреляционные, фрактальные и оптические свойства поверхности пленок пористого кремния. С помощью анализа спектров отражения и комбинационного рассеяния света установлена взаимосвязь между параметрами лазерного облучения пористых пленок и их оптическими характеристиками. Исследуемые полупроводниковые структуры могут быть актуальны для создания антиотражающих слоев кремниевых солнечных элементов, а также химических датчиков.

> Ключевые слова: пористый кремний, наносекундные лазерные импульсы, морфология, взаимная информация, фрактальный анализ, комбинационное рассеяние света, спектры отражения поверхности.

DOI: 10.61011/JTF.2025.06.60472.472-24

Введение

В настоящее время актуальной остается задача применения пленок пористого кремния (por-Si) для создания полупроводниковых приборов. Одним из важнейших свойств por-Si является сильно развитая поверхность, что делает его привлекательным для создания антиотражающих слоев солнечных элементов, чувствительных областей датчиков влажности и химических газовых датчиков [1]. С практической стороны очень важно, что для выращивания пленок por-Si не требуется применять сложное технологическое оборудование и дорогие химические реактивы. В целях обеспечения повышения КПД солнечных элементов, гибкого управления функциональными характеристиками датчиков, актуальна задача создания новых технологических способов модификации поверхности por-Si. Одним из вариантов решения данной задачи является обработка пленок por-Si наносекундными лазерными импульсами [2-4]. В работе [2] показано, что наносекундные лазерные импульсы длительностью 70 ns при длине волны 694 nm, в диапазоне плотностей энергии 0.73–1.8 J/cm² приводят к существенному изменению морфологии поверхности пленок por-Si, причем характер воздействия пороговый. В работе[3] показано, что облучение лазером с длительностью импульсов 80-100 ns в диапазоне плотности энергии 5-7 J/cm² приводит к окислению por-Si, в результате чего в приповерхностном слое образуется

композит Si:SiO₂. В работе [4] изучалось воздействие на поверхность *por*-Si импульсного иттербиевого волоконного лазера с длиной волны 1064 nm, при длительностях импульса 4-30 ns и мощности 4-12 W. В результате исследований показано, что режимы облучения влияют на информационно-корреляционные характеристики поверхности *por*-Si. Импульсное лазерное облучение пленок *por*-Si позволяет формировать кремниевые наночастицы, применяемые в биофотонике [5].

Облучение пленки *por*-Si, предварительно легированной бором, лазерными импульсами с длиной волны 1064 nm, длительностью 200 ns, формирует на ее поверхности слой аморфного кремния с резонансом Фано [6]. Метаповерхности аморфного кремния с резонансом Фано актуальны для задач нелинейной голографической визуализации, управления лазерным лучом, генерации запутанных фотонов спонтанным параметрическим преобразованием с понижением частоты [7]. Таким образом, задача изучения влияния импульсного лазерного излучения на физические свойства пленок *por*-Si является актуальной.

Целью настоящей работы является изучение влияния режимов облучения наносекундными лазерными импульсами пленок *por*-Si, предварительно выращенных на кремниевых монокристаллических подложках методом металл-стимулированного травления, на особенности их морфологии и оптические свойства.

1. Технология изготовления образцов

Для изготовления исследуемых образцов применялись кремниевые монокристаллические пластины *p*-типа проводимости, с удельным сопротивлением 1 Ω ст и ориентацией поверхности (100). Пленки *por*-Si выращивались методом двухэтапного металл-стимулированного травления.

В ходе первого этапа на поверхности кремниевой пластины осаждались частицы серебра из раствора: Ag_2SO_4 (0.01 M), HF (46%), C_2H_5OH (92%) при соотношении компонентов 1:0.1:0.3, в течение 20 s. Затем пластина отмывалась в дистиллированной воде.

На втором этапе пластина с частицами серебра погружалась в раствор: H_2O_2 (1.24 M), HF (46%), C_2H_5OH (92%) при соотношении компонентов 1:0.5:0.25 и выдерживалась в течение 60 min. В результате формировалась пористая структура. Далее образцы отмывались в дистиллированной воде, а затем в концентрированной HNO₃ в течение 60 min для удаления из пор серебряных частиц. В заключении образцы промывались дистиллированной водой для удаления следов реактивов и продуктов реакции, и высушивались в сушильном шкафу.

Важно отметить, что структурные свойства пленок *por*-Si в значительной степени зависят от метода их выращивания [8]. В настоящей работе исследуются пленки *por*-Si, сформированные методом металлстимулированного травления. Такие пленки принято классифицировать как ансамбль кремниевых нанонитей [9,10].

Облучение пленок *por*-Si проводилось импульсным иттербиевым волоконным лазером YLPM-1-4x200-20-20 (IPG Photonics, Россия) с длиной волны излучения 1064 nm. Лазерный луч сканировал поверхность пленки *por*-Si со скоростью 150 mm/s и частотой повторения импульсов 20 kHz. Обрабатываемая площадь пленки *por*-Si составляла 10×10 mm. Облучение проводилось импульсами длительностью (τ) 4–30 ns, при значениях средней мощности импульса (P) 0.2–5.6 W.

Следует отметить, что для применяемого лазера величина средней мощности зависит от длительности импульса. При облучении пластина с пленкой *por*-Si находилась в кювете, заполненной изопропанолом. Толщина слоя изопропанола над поверхностью образца составляла 5 mm. Применение изопропанола обусловлено минимизацией интенсивности окисления поверхности кремниевых кристаллитов пленки *por*-Si. Режимы облучения образцов Р и τ , указаны в таблице.

2. Методика исследования экспериментальных образцов

Изображения фронтальных поверхностей пленок por-Si экспериментальных образцов получены с помощью растрового электронного микроскопа JSM-6610LV (JEOL, Япония). Изучение морфологии образцов проводили в режиме вторичной электронной визуализации (SEI) с ускоряющим напряжением 30 kV. С целью выяснения особенностей морфологии *por*-Si полученные изображения анализировались с помощью метода средней взаимной информации и метода фрактального анализа.

Метод средней взаимной информации (СВИ [11,12]) основан на теории информации и позволяет определять несовершенства, искажения рельефа поверхности. Количественный показатель СВИ характеризует степень упорядоченности. Показатель максимальной взаимной информация (МВИ) характеризует информационную емкость поверхности.

Термин "фрактал" сформулирован Б. Мандельбротом и описывает множество с дробной размерностью [13]. Основным параметром описания морфологии фрактальных поверхностей является фрактальная размерность (D), представляющая собой степень масштабируемости совокупности элементов, составляющих полное изображение поверхности [13]. Фрактальный анализ поверхности образцов проводился с помощью программы ImageJ с библиотекой FracLac [14].

Для уточнения особенностей микроструктуры пленок *por*-Si использовался метод спектроскопии комбинационного рассеяния света (КРС). Спектры КРС измерялись спектрометром in-Via (Renishaw, Великобритания). Возбуждение КРС осуществлялось твердотельным лазером на длине волны 785 nm, мощность излучения составляла 0.22 mW, время накопления — 20 s, число накоплений — 2, увеличение объектива 50х. При измерениях спектров КРС эффект лазерно-индуцированного нагрева образца отсутствовал. Возбуждение и регистрация КРС осуществлялись в стандартной геометрии, когда лазерный луч и рассеянный свет направлены вдоль нормали к фронтальной поверхности пленки образца. Спектры КРС измерялись в режиме микрозонда в геометрии "отражение назад".

В целях характеризации оптических свойств пленок *por*-Si исследовались спектры диффузного отражения в диапазоне длин волн 300–1100 nm с помощью спектрофотометра СФ-56 (ЛОМО, Россия).

3. Результаты исследования

Физические величины, характеризующие режимы облучения, особенности морфологии и результаты исследования спектров КРС экспериментальных образцов представлены в таблице.

Из таблицы видно, что с увеличением P при фиксированном значении τ показатель СВИ возрастает. Одновременно при этом наблюдается тенденция к снижению показателя фрактальности D. Рост показателя СВИ объясняется увеличением степени упорядоченности структурных элементов поверхности [11,12]. Снижение Dсвидетельствует о повышении корреляций в системе

№ образца	Облучение		Морфология				КРС	
	<i>P</i> , W	τ , ns	СВИ ·10 ⁻³	МВИ	D	№ группы	d, nm	σ ,MPa
1	_	_	0.7	0.511	1.80	1	32	—
2	0.2	4	0.9	0.544	1.80	1	32	—
3	0.4	4	3.0	0.630	1.75	2	28	_
4	0.7	4	3.2	0.604	1.75	2	12.4	_
5	0.9	4	4.0	0.595	1.74	2	12.4	_
6	0.6	8	1.4	0.651	1.80	1	32	_
7	1.2	8	4.1	0.602	1.75	2	28	_
8	2.4	8	4.6	0.633	1.74	2	28	_
9	1.1	20	1.2	0.624	1.80	1	38	_
10	2.2	20	1.3	0.578	1.80	1	38	—
11	3.4	20	3.7	0.581	1.77	2	36	-
12	1.4	30	2.	0.562	1.77	2	36	_
13	2.4	30	7.0	0.527	1.69	3	_	10.5
14	5.6	30	8.7	0.621	1.69	3	_	26.4

Физические величины, характеризующие режимы облучения, особенности морфологии и результаты исследования спектров КРС экспериментальных образцов

Рис. 1. Зависимость величины фрактальной размерности *D* от показателя СВИ.

кремниевых кристаллитов [13,14]. Корреляция между величинами МВИ и P при фиксированном значении τ отсутствует (см. таблицу). Величина показателя МВИ для всех образцов лежит в диапазоне 0.5–0.7, это свидетельствует о том, что поверхность образцов имеет среднюю информационную емкость [11,12].

На рис. 1 представлена зависимость величины фрактальной размерности *D* от параметра СВИ. Здесь можно

выделить три обособленные области, которые выделены сплошными контурами (рис. 1). В связи с указанным обстоятельством можно разделить исследуемые образцы на 3 группы (рис. 1, см. таблицу).

На рис. 2 показаны СЭМ изображения поверхности пленки por-Si типичных образцов групп 1-3. Видно, что морфология поверхности образцов разных групп существенно различается. При облучении лазером пленки por-Si наблюдается интенсивный вынос частиц с поверхности (при всех режимах облучения). За счет выноса частиц происходит уменьшение толщины пленки por-Si, это видно на вставках СЭМ изображений. Исследования методом СЭМ пленки por-Si облученных образцов показывают, что поверхность кремниевых кристаллитов скруглена. Так обычно наблюдается при плавлении. В глубине пленки por-Si кристаллиты плавлению не подвергаются. Поверхность образцов группы №1 (рис. 2, *b*) однородна с наличием однотипных частиц порядка 2 µm в диаметре. Поверхность образцов группы №2 имеет более развитый рельеф, с фракталоподобной структурой, четко прослеживаются впадины рельефа (рис. 2, c). Поверхность образцов группы №3 (рис. 2, d) представляет собой уже не фракталоподобную структуру, а более сглаженную, с наличием на ней крупных (5-8 µm в диаметре) шаровидных частиц. Вероятно, для 3-й группы образцов более сильное воздействие лазерного излучения (как по длительности импульсов, так и по мощности излучения) привело к возникновению процессов плавле-

Рис. 2. Изображения поверхности образцов, полученные растровым электронным микроскопом: a — образец №1 без облучения лазером, b — образец №2 группы 1, c — образец №3 группы 2, d — образец №13 группы 3. На вкладках изображены структуры образцов в разрезе со значением средней толщины пористого слоя.

ния и формированию крупных частиц из жидкой фазы. Таким образом, увеличение длительности импульсов от 4 до 30 ns и средней мощности импульса лазерного излучения от 0.2 до 5.6 W приводит к значительной трансформации морфологии поверхности пленок *por-Si*.

С целью изучения особенностей структуры пленок *por*-Si на наноразмерном уровне проводилось исследование спектров КРС экспериментальных образцов. На рис. 3 представлены спектры КРС исходной кремниевой подложки (кривая I), образца №1 (кривая 2), который не облучался лазером, образцов №2 и №3 (кривая 3), образцов №4-№14 (кривая 4). Спектры КРС образцов №4-№14 практически совпадают.

Спектральная линия 521 cm^{-1} характеризует фундаментальное колебание кристаллической решетки кремния (рис. 3) [15]. Линия 302 cm^{-1} обусловлена поперечным акустическим фононом второго порядка 2ТА и характерна для монокристаллического кремния [16]. Присутствие этой линии на спектрах КРС всех исследуемых образцов с пленкой *por*-Si, а также подложки,

Рис. 3. Спектры КРС: монокристаллической кремниевой подложки (1), а также образцов № 1 (2); № 2 и № 3 (3); № 4-№ 14 (4).

Рис. 4. Спектры КРС линии фундаментального колебания кремниевой решетки вблизи частоты 521 см^{-1} для монокристаллической кремниевой подложки (•), а также образцов №1, №2, №6 (\circ); №4, №5 (\Box); №3, №7, №8 (Δ); №13 (**П**); №14 (\Diamond).

свидетельствует о том, что при выращивании пленки *por-*Si, а также ее облучения лазером, кристаллическая решетка кремния не претерпела серьезных нарушений (рис. 3). Широкая полоса в диапазоне 930–1000 сm⁻¹ обусловлена линией второго порядка КРС кремния [15].

На спектрах КРС образцов №2–№14 (кривые *3* и *4* на рис. 3) проявляются линии 135 и 480 сm⁻¹, характерные для аморфного кремния [17,18]. Однако интенсивность этих линий много меньше по сравнению с линией 302 сm⁻¹. Это также свидетельствует о том, что облучение лазером пленки *por*-Si образцов №2–№14 не приводит к существенным нарушениям кристаллической решетки кремния, аморфизация проявляется крайне незначительно.

Спектральная линия КРС 610 cm^{-1} связана с примесью электрически активной примеси бора в кремнии [19]. Для образцов №2–№14 (кривые 3 и 4 на рис. 3) наблюдается увеличение интенсивности данной линии по сравнению с подложкой (кривая 1 на рис. 3) и образцом №1 (кривая 2 на рис. 3). Возможно, это связано с перераспределением электрически активной примеси бора в ходе перекристаллизации кремниевых кристаллитов пленки *por*-Si, вызванной лазерным облучением образцов №2–№14.

На рис. 4 представлена спектральная линия КРС фундаментального колебания кремниевой решетки вблизи частоты 521 сm⁻¹ для монокристаллической подложки, а также образцов №1-№14. Для образцов №9-№12 спектральные линии 521 сm⁻¹ практически сливаются и находятся между кривыми, обозначенными символами "•" и "о". Для образцов №1-№12 рассматриваемая спектральная линия заметно смещена в сторону низких частот и имеет уширение по сравнению с данной линией монокристаллической подложки. Согласно [20], это объясняется эффектом пространственного ограничения фононов в ансамблях наноразмерных кремниевых кристаллитов пленки *por*-Si. По методике, представленной в [20], был определен средний диаметр кремниевых кристаллитов *d* в пленке *por*-Si образцов №1-№12. Значения *d* представлены в таблице.

Таким образом, можно утверждать, что пленки *por*-Si образцов №1-№12 образованы ансамблями кремниевых нанонитей.

Для образцов №13 и №14 положения максимумов спектральных линий КРС фундаментального колебания кремниевой решетки смещены в сторону высоких частот относительно данной линии монокристаллической подложки. Это может свидетельствовать о возникновение растягивающих механических напряжений [21] в результате лазерного облучения пленки *por*-Si. Величину механического напряжения σ в пленке *por*-Si можно оценить с помощью формулы

$$\sigma = -52.7\Delta\omega,$$

где $\Delta \omega = \omega - \omega_0$, ω_0 и ω — положения максимумов спектральной линии первого порядка КРС кремния при отсутствии и наличии механических напряжений соответственно, значение σ выражено в МРа [21]. Величина ω_0 составляет 521.0 сm⁻¹, для образца №13 $\omega = 521.2$ сm⁻¹, для образца №14 $\omega = 521.5$ сm⁻¹, значения σ приведены в таблице.

Анализируя характер поведения спектральной линии фундаментального колебания кремниевой решетки вблизи частоты 521 cm^{-1} для образцов №1–№14, можно отметить следующие закономерности. Наибольший разброс значений d (12.4–36 nm) наблюдается для группы 2 исследуемых образцов (см. таблицу). В группу 2 входят образцы с наименьшими значениями d (см. таблицу). Для группы 1 величина d изменяется слабее (32–38 nm). Для образцов группы 3 эффект пространственного ограничения фононов отсутствует, в то же время здесь возникают растягивающие механические напряжения.

Спектры диффузного отражения исследуемых образцов, распределенных по группам в соответствие с таблицей, представлены на рис. 5.

Важно отметить, что спектры отражения образцов в пределах каждой группы близки друг к другу. В связи с данным обстоятельством для группы 1 представлены спектры образцов №2 (" \blacksquare " на рис. 5) и №10 (" \square " на рис. 5), спектры остальных образцов данной группы находятся между указанными кривыми и на рис. 5 не показаны. Исключением в данной группе является образец №1, не подвергавшийся облучению лазером (" Δ " на рис. 5), однако по темпу роста коэффициента отражения в диапазоне длин волн 500–1100 nm он близок к образцам группы 1. Для группы 2 представлены

Рис. 5. Спектры диффузного отражения образцов групп 1 (\blacksquare , \Box , Δ), 2 (\bullet , \circ), 3 (\blacklozenge , \diamond).

спектры отражения образцов №4 ("•" на рис. 5) и №12 (символ "•"). Спектры остальных образцов данной группы располагаются в области, ограниченной спектрами образцов №4 и №12. Группа 3 содержит всего два образца — №13 и №14 — , они представлены символами "\$" и "•" на рис. 5 соответственно.

На спектрах отражения исследуемых образцов (рис. 5) можно выделить две заметно отличающихся области — коротковолновая, в которой коэффициент отражения снижается, и длиноволновая, в которой коэффициент отражения растет.

Коротковолновая область для образцов групп 1-3 находится в диапазоне длин волн 300-480 nm (рис. 5). Для образца №1, который не облучался лазером, эта область слабо выражена и находится в диапазоне 300-340 nm (рис. 5). Снижение коэффициента отражения в коротковолновой области может быть объяснено поглощением света в кремниевых наноразмерных кристаллитах [22], что подтверждается результатами анализа спектров КРС (см. таблицу). Причем наиболее низким коэффициентом отражения обладают образцы №4 и №5 (рис. 5), принадлежащие ко 2-й группе, для них отмечается наиболее низкий средний размер кремниевых кристаллитов 12.4 nm (см. таблицу). Для образцов группы 3 в коротковолновой области коэффициент отражения значительно выше по сравнению с остальными образцами. Это можно объяснить отсутствием эффекта пространственного ограничения фононов (см. таблицу) в пленке por-Si, образованной крупными кристаллитами.

Длинноволновая область включает видимую и ближнюю ИК области спектра, в диапазоне 480–1100 nm. Здесь для образцов групп 1 и 2 коэффициент отражения растет более заметно по сравнению с образцами группы 3. Согласно [22,23], изменение коэффициента отражения в указанной спектральной области может быть обусловлено рассеянием света в кремниевых кристаллитах с размерами 100–500 nm, что приводит к усилению рассеяния Ми. В результате коэффициент отражения возрастает [22]. Таким образом, достаточно интенсивный рост коэффициента отражения в длинноволновой области для образцов групп 1 и 2 (рис. 5) может быть обусловлен значительным разбросом размеров кремниевых кристаллитов субмикронных размеров. Снижение темпа роста коэффициента отражения для образцов группы 3 в диапазоне 480–1000 nm (рис. 5) может быть обусловлено уменьшением разброса размеров субмикронных кремниевых кристаллитов под влиянием лазерного облучения пленки *por-Si*.

Следует отметить, что уменьшение толщины пленок *por*-Si, выращенных металл-стимулированным травлением, приводит к снижению коэффициента отражения поверхности [22]. В то же время анализ спектров отражения на рис. 5 показывает отсутствие корреляции между толщиной пленок *por*-Si (рис. 2) и коэффициентом отражения. В связи с этим характер спектров отражения на рис. 5 главным образом определяется поглощением света в приповерхностных кремниевых кристаллитах разного размера.

Выводы на основе результатов исследования

С ростом P при фиксированном значении τ наблюдается увеличение показателя СВИ и снижение величины фрактальной размерности D (см. таблицу). Это может свидетельствовать об увеличении степени упорядоченности структурных элементов поверхности и повышении корреляций структуры кремниевых кристаллитов [11–14] на субмикронном и микронном масштабах. Поверхность всех образцов характеризуется средней информационной емкостью, так как показатель МВИ изменяется в диапазоне 0.5–0.7 [11,12].

Анализ зависимости фрактальной размерности D от показателя СВИ (рис. 1) позволяет разделить исследуемые образцы на три группы с различным характером морфологии, который визуально прослеживается на рис. 2. Рельеф поверхности образцов от группы №1 до группы №3 становится более развитым, принимает более сложные структурные формы.

Для образцов №3-№5, а также №7-№12 лазерное облучение приводит к изменению среднего размера кремниевых кристаллитов *d* (см. таблицу). Наименьшие значения *d* имеют образцы №4 и №5 (см. таблицу). Как отмечается в [24], при $\tau \sim 1$ ns и менее, на облучаемой лазером поверхности образуются наноразмерные структуры. Вследствие малого размера наноструктур поверхностное натяжение расплава облучаемой поверхности стремится сгладить их, поэтому для образования стабильных наноструктур необходимы малая длительность импульса и плотность энергии, близкая к порогу плавления материала поверхности [24,25]. Возможно, именно этим объясняются минимальные значения d образцов №4 и №5. Для образца №2 не наблюдается изменения *d* по сравнению с необлученным образцом №1, а для образца №3 d снижается незначительно. Повидимому, для образцов №2 и №3 порог плавления поверхности кремниевых кристаллитов не достигается, поэтому значительного снижения d здесь не наблюдается (см. таблицу). Для образцов №6-№12 величина d меняется незначительно, что может быть обусловлено большими значениями τ .

В пленке *por*-Si образцов №13 и №14 присутствуют растягивающие механические напряжения (см. таблицу), которые могут быть следствием перекристаллизации *por*-Si под действием лазерного облучения. Также плавление и последующая перекристаллизация пленки *por*-Si при облучении лазером может приводить к перераспределению примеси бора, о чем свидетельствует трансформация спектральной линии КРС вблизи 610 сm⁻¹ на рис. 3.

Облучение пленки por-Si наносекундными лазерными импульсами существенно изменяет характер спектра отражения ее фронтальной поверхности (рис. 5). Как показано в [26], в результате воздействия лазерного излучения на поверхности образуются мелко- и крупномасштабные образования, и распределение их средних размеров зависит от параметров облучения. Морфология поверхности в значительной степени определяет ее оптические свойства. В коротковолновой области (300-480 nm) характер спектров отражения исследуемых образцов (рис. 5) определяется поглощением света в наноразмерных кремниевых кристаллитах. Причем наименьший коэффициент отражения наблюдается для образцов с наименьшими значениями d. В длинноволновой области спектра (480-1100 nm), включающей видимую и ближнюю ИК область, механизм отражения определяется рассеянием Ми в кремниевых кристаллитах с размерами 100-500 nm.

Спектры диффузного отражения поверхности образцов групп 1-3 (см. таблицу) заметно отличаются (рис. 5). Наиболее низким коэффициентом отражения во всем исследуемом спектральном диапазоне обладают образцы группы 2 (рис. 5), что может быть актуально для формирования антиотражающих слоев кремниевых солнечных элементов.

Заключение

В результате проведенных исследований установлено, что с помощью изменения параметров облучения импульсным наносекундным иттербиевым волоконным лазером можно влиять на информационнокорреляционные, фрактальные и оптические свойства поверхности пленок пористого кремния. По результатам, полученным методами фрактального анализа и средней взаимной информации, образцы были разделены на группы, обладающие схожими свойствами. С помощью анализа спектров КРС и отражения для каждой группы образцов определены средние размеры кристаллитов облученных пленок *por*-Si. Полученные результаты могут быть использованы при создании антиотражающих слоев кремниевых солнечных элементов, а также химических датчиков.

Финансирование работы

Работа выполнена с использованием оборудования регионального центра зондовой микроскопии коллективного пользования Рязанского государственного радиотехнического университета им. В.Ф. Уткина (РГРТУ).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Handbook of porous silicon. Edited by Leigh Canham (Springer International Publishing AG, part of Springer Nature, 2018), 1578 p. DOI: 10.1007/978-3-319-71381-6
- [2] М.С. Русецкий, Н.М. Казючиц, Г.Д. Ивлев. Сб. науч. тр. III Междунар. науч. конф. (Минск, Республика Беларусь, 2008), с. 150.
- [3] Л.М. Сорокин, В.И. Соколов, А.П. Бурцев, А.Е. Калмыков, Л.В. Григорьев. Письма в ЖТФ, **33** (24), 69 (2007).
- [4] Н.В. Рыбина, Н.Б. Рыбин, В.С. Хилов, В.В. Трегулов, Ю.Н. Горбунова. ЖТФ, 94 (5), 817 (2024).
 DOI: 10.61011/JTF.2024.05.57821.24-24
- [5] С.В. Заботнов, Д.А. Куракина, Ф.В. Кашаев, А.В. Скобёлкина, А.В. Колчин, Т.П. Каминская, А.В. Хилов, П.Д. Агрба, Е.А. Сергеева, П.К. Кашкаров, М.Ю. Кириллин, Л.А. Головань. Квант. электрон., **50** (1), 69 (2020). DOI: 10.1070/QEL17208
- [6] Н.Н. Мельник, В.В. Трегулов, В.С. Хилов, Н.В. Рыбина, Н.Б. Рыбин, Д.С. Косцов. Кр. сообщ. по физике ФИАН, 11, 52 (2024). DOI: 10.3103/S1068335624600785
- [7] D. Hahnel, C. Golla, M. Albert, Th. Zentgraf,
 V. Myroshnychenko, J. Förstner, C. Meier. Light Sci.
 Appl., 12, 97 (2023). DOI: 10.1038/s41377-023-01134-1
- [8] G. Korotchenkov. Porous Silicon: From Formation to Application (London: CRC Press, 2016), ISBN: 9780367575328
- [9] H. Han, Zh. Huang, W. Lee. Nano Today, 9 (3), 271 (2014).
 DOI: 10.1016/j.nantod.2014.04.013
- [10] A. Efimova, A. Eliseev, V. Georgobiani, M. Kholodov, A. Kolchin, D. Presnov, N. Tkachenko, S. Zabotnov, L. Golovan, P. Kashkarov. Opt. Quant. Electron., 48 (4), 232 (2016). DOI: 10.1007/s11082-016-0495-0
- [11] А.В. Алпатов, С.П. Вихров, Н.В. Вишняков, С.М. Мурсалов, Н.Б. Рыбин, Н.В. Рыбина. ФТП, 50 (1), 23 (2016).
- [12] С.П. Вихров, Т.Г. Авачева, Н.В. Бодягин, Н.В. Гришанкина, А.П. Авачев. ФТП, 46 (4), 433 (2012).
- [13] Б.М. Смирнов. Физика фрактальных кластеров (Наука, Гл. ред. Физматлит, М., 1991), 136 с.
- [14] A. Karperien. FracLac Advanced User's Manual (Charles Sturt University, Australia, 2005), 36 p. URL: https://www.researchgate.net/publication/238733659 (accessed: 25.04.2024).
- [15] W.J. Salcedo, F.R. Fernandez, J.C. Rubimc. Brazilian J. Phys., 29 (4), 751 (1999).

- [16] V. Lavrentiev, J. Vacik, V. Vorlicek, V. Vosecek. Phys. Status Solidi B, 247 (8), 2022 (2010). DOI: 10.1002/pssb.200983932
- [17] A.T. Voutsas, M.K. Hatalis, J. Boyce, A. Chiang. J. Appl. Phys. 78, 6999 (1995). DOI: 10.1063/1.360468
- [18] K. Shrestha, V.C. Lopes, A.J. Syllaios, C.L. Littler. J. Non Cryst. Solids, 403 (1), 80 (2014).
 DOI: 10.1016/j.jnoncrysol.2014.07.013
- [19] F. Cerdeira, T.A. Fjeldly, M. Cardona. Phys. Rev. B, 9 (10), 4344 (1974).
- [20] M. Yang, D. Huang, P. Hao. J. Appl. Phys., 75 (1), 651 (1994).
- [21] Qiu Li, Wei Qiu, Haoyun Tan, Jiangang Guo, Yilan Kang. Opt. Lasers Eng., 48 (11), 1119 (2010).
- [22] Г.К. Мусабек, Д. Ермухамед, З.А. Сулейменова, Р.Б. Асилбаева, В.А. Сиваков, И.Н. Завестовская, В.Ю. Тимошенко. Кр. сообщ. по физике ФИАН, 10, 23 (2019).
- [23] Sh. Kato, Y. Kurokawa, Y. Watanabe, Y. Yamada, A. Yamada,
 Y. Ohta, Y. Niwa, M. Hirota. Nanosc. Res. Lett., 8, 216 (2013).
 DOI: 10.1186/1556-276X-8-216
- [24] Е.В. Бармина, Э. Стратакис, К. Фотакис, Г.А. Шафеев Квант. электрон., **40** (11), 1012 (2010).
- [25] J. Bonse, S. Hohm, S.V. Kirner, A. Rosenfeld, J. Kruger. IEEE J. Selected Topics Quant. Electron., 23 (3), 9000615 (2017).
- [26] С.А. Ахманов, В.И. Емельянов, Н.И. Коротеев, В.Н. Семиногов. УФН, 147 (4), 675 (1985).