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Nonlinear scattering of a short intense laser pulse extended targets
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Introduction

The linear theory of scattering with individual particles

and microfluids is well-known [1]. Equations of motion for

particles and Maxwell equations for fields are solved using

the perturbation theory, as a result of which the scattered

field is proportionate to the incident one. Incident field

amplitude increase to relativistic values causes significant

nonlinearity of electron motion. The specific time of

electron acceleration variation changes. Instead of a laser

period in the linear mode, the acceleration starts changing

at much shorter times, which generates ultrashort pulses of

the scattered field with the longer (compared to the pulse

duration) time interval between them. Some papers [2–5]
studied the generation of radiation arising from propagation

of laser pulses along the lengthy targets, when electrons

cross the Coulomb barrier of the target and start accelerating

in the laser field, accordingly radiating an electromagnet

wave at the same time. At relativistic intensity, electron

motion occurs as well in the direction of laser pulse

propagation, which causes increase in the intensity of the

electron bunch radiation in the motion direction. Such

process is repeated in every half-period of the laser pulse.

As a result, a comb of pulses radiated with an individual

electron is formed. Radiation of a single electron accelerated

with a power laser pulse, is considered, for instance, in [2,3],
and emission of dense electron bunches from nanoscale

targets exposed to a short relativistic laser pulse and their

further acceleration with the laser field are studied in [4,5].
Using 2D numerical modeling, it is shown [5] that in the

mode when the laser pulse has the duration of (∼ 10 fs),
the electrons are displaced from the target only partially,

and a unipolar pulse propagates from the short target. If

the target size is smaller than half of the laser radiation

wavelength, the target electrons get into the field of the

like sign, and their secondary radiation qualitatively looks

like radiation of an individual electron. It is commonly

known that the relativistic electron radiates in the direction

of its velocity, and the sign (polarity) of the radiated field

is determined by the electron acceleration sign. If the

alternation of acceleration signs is removed in the radiation

direction, the generation of an ultrashort unipolar pulse of

electric (magnetic) field of radiation becomes possible. Note

that the generation of unipolar pulses and their properties

in another range of parameters were considered in sufficient

detail in papers [6–9]. This paper studied theoretically

and numerically the generation of the secondary coherent

radiation arising from propagation of relativistic laser pulses

along the nanostructured targets, the length of which in

the direction of the laser pulse propagation is comparable

to the laser radiation wavelength, and the length in the

direction of the electric field of the laser wave is significantly

shorter, while the length in direction of the magnetic field

is several dozens of wavelengths (more than the diameter

of the laser beam). The technology for development of

such targets in the form of flat nanofilaments was designed

relatively recently [10], interaction of such targets with the

laser radiation was considered, for instance, in paper [11].

Analytical model of non-linear scattering

Let us consider a linearly polarized flat wave

eEy

mωc
=

eB z

mωc
= a0 cos(ωt − kx) = a0 cos ξ,

a0 =
eE0

meωc
≫ 1,

incident on the target limited by X and Y and extended (first
infinitely lengthy) along axis Z. Except for the field of the

wave, the target electrons are exposed to ambipolar electric
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field with components Ex ,y am. Let us consider the electric

ambipolar field to be permanent, and solve the equation of

motion for an electron along axis Y in the wave field and in

the permanent electric field:

d py

dt
=

d
dt

(

eE0

ω
sin(ωt − kx)

)

+ eEy am.

This equation is integrated:

py = −eE0

ω
sin(ωt − kx) + Ey amt.

Equation of motion in longitudinal direction X

d px

dt
=

e
c

ẏE0 cos(ωt − kx) + eEx am

is also integrated, and has the motion integral similar to the

integral in the wave field:

E − px c − eEy amy + eEx am(ct − x) = mc2.

Here E =
√

m2c4 + p2
x c2 + p2

y c2, initial electron

speeds — are zero compared to the relativistic motion in

the wave field. The presence of two motion integrals makes

it possible to express the pulses via time and coordinates

and to record the following system of equations of motion

of the ith target electron in parametric form:

dτi

dξ
=

1 + (a0 sin ξ + εy τi)
2

4π(1 + εy y i − εxξ)2
+

1

4π
,

dx i

dξ
=

1 + (a0 sin ξ + εy τi)
2

4π(1 + εy y i − εxξ)2
− 1

4π
,

dy i

dξ
=

a0 sin ξ + εy τi

2π(1 + εy y i − εxξ)
, a0 =

eE0

mωc
,

ξ = 0 . . . 6π, x i

∣

∣

∣

ξ=0
= x i0, y i

∣

∣

∣

ξ=0
= y i0, τi

∣

∣

∣

ξ=0
= x i0.

(1)
(1) introduces dimensionless coordinates, velocity and

acceleration of the electron. Coordinates x i , y i in units λ,

velocity vi in units c , acceleration wi in units c2/λ,

time τ in units 2π/ω (laser periods). The components

of the ambipolar field of target Ex ,y am in system (1)
are reduced to dimensionless form as εy = 2πeEy am/mωc ,
εx = Ex am/mωc . Solution (1) has parametric appear-

ance — coordinates and time of an individual parti-

cle depend on phase ξ = ωt − kx of the laser wave:

x i(ξ, x i0, y i0), y i(ξ, x i0, y i0), τi(ξ, x i0, y i0).
According to [12] the dimensionless (in units e/λ2)

magnetic field of radiation of an individual electron bz in

direction n̄ = ±ēy as function of time t and coordinates

of space points (x ,±y , z = 0), symmetrical to y, may be

recorded in parametric form via components of dimension-

less velocity νxi,yi and acceleration wxi,yi of the electron:

√

(x/λ)2 + (x/λ)2bz (ξ, x ,±y)
∣

∣

∣

n=±ey

= m
νxi(ξ)wyi(ξ)

(1± νyi(ξ))3
− wxi(ξ)

1± νyi(ξ))2
,

τ
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Figure 2. The angle of inclination of the trajectory in degrees (red
curve), the longitudinal component of acceleration (blue curve),
electron velocity components νx ,y (purple and green curves) when

passing the top of the trajectory identified by a circle in fig. 1.

The spike of the trajectory top is compliant with the moment

of dimensionless time τ = 13. Laser field a0 = 0. The angle

of trajectory incline at the moment of maximum acceleration is

α∗ ≈ arctan
√
10 ∼ 70◦.

ct(ξ)
λ

= τi(ξ)

+
√

(x/λ − x i(ξ, x i0, y i0))2 +(my/λ − y i(ξ, x i0, y i0))2.

(2)
In plane XY the component of the magnetic field bz

is the only one in contrast to the two components of

the electric field Ex ,y . Note that at νxi,yi ≪ 1 the main

contribution to (2) is made by the longitudinal acceleration

component wxi . Summation (integration) of system (2)
using initial coordinates of electrons in target x i0, y i0 within

the longitudinal and transverse dimensions of target L‖, L⊥

makes it possible to find the scattered field of the electrons

extracted from target Ne :

bz (t, x , y) =
Ne

L‖, L⊥

∫

V

bz (t, x , y, x i0, y i0)dx i0dy i0. (3)

Along axis Z (direction of the magnetic field of the linearly

polarized pulse) the target is assumed to be homogeneous,

and the forces that the electron is exposed to along

this axis are small. Note that the field is coherent, if

integral (3) by target volume does not become zero. For

this purpose it is necessary to comply with the condition

L‖ < λ/2, so that electrons with different numbers i got

in the same sign of the electric and magnetic fields of

the wave. The quantity Ne of the electrons that left the

target and the radiating electrons is assessed as follows.

The highest value of the ambipolar field of the target ion

core (corresponds to the highest number Ne) is achieved at

the thickness and ion density ni of the target meeting the
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Figure 1. Trajectory with account of the ambipolar fields: (a) no fields; (b) electron trajectory near the top (area of maximum

acceleration), if the ambipolar field is present for two values of the braking ambipolar field (blue curve), εx = −1.0 (red curve), εy = 0,

a0 = 10; (c) electron trajectory, if two components of the ambipolar field are present εy = 0.4, εx = −0.4, a0 = 10.

ratio πZi ni L⊥/ncrλ ∼ a0 [13], where ncr = meω
2/4πe2 —

critical electron concentration. In this case the ambipolar

field of the target — is of the order of the laser one E0, and

the charge of the surface unit is estimated as σ ≈ E0/4π.

Accordingly, in (3) the number of electrons extracted

from the target Ne ≈ L‖Dσ/e = L‖DE0/2πe, where D —
laser beam diameter. Specific concentration of high-energy

electrons is estimated as neh = Ne/L‖D1y , where the

specific distance 1y , by which the electrons move away

from the target, is determined as 1y ≈ λa0/2π. Having

substituted the above estimate Ne , we obtain neh ∼ ncr .

The ambipolar field is generated by the ion core of the

target and is estimated as Eam ≈
√

nehTeh, where neh —
concentration of high-energy electrons above the target

surface, Teh — specific energy of the electron determined

via laser intensity IL as

Teh ≈ mec2(
√

1 + ILλ2/(1.37 · 1018 Wµm2/cm2) − 1).

The dimensionless ambipolar field in system (1) is

estimated as εx ,y ∼
√

e2nehTeh/m2
eω

2c2 ≈ a0

√
neh/4πncr ,

a0 ≫ 1. Note that this is the estimate by the order of mag-

nitude, the ambipolar field is heterogeneous in space and

concentrated in the area with the size of the order of Debye

screening distance rD ≈
√

Teh/4πe2neh ≈ λ
√

a0ncr/neh/2π

around the target ion core. The ratio between the

components εx and εy in equations (1) of motion for an

electron depends on the geometric shape of the target and

on the initial position of the electron x i0, y i0.

If there is no ambipolar field, i. e. εx ,y = 0, and the

initial velocities of the electrons are small, the solution (1)
for an individual electron moving from the origin of

coordinates is the well-known trajectory in the field of the

flat electromagnetic wave specified in parametric form [12].
If there is no transverse component of the field, i. e. εy = 0,

the system (1) integrates, but the integrals are not expressed

via elementary functions. Finally, at εx ,y 6= 0 the system (1)
is solved in the Mathcad mathematical suite. The electron

trajectories without and with electric fields are shown in

fig. 1. Circles in fig. 1, a show the areas of the trajectory

with the maximum acceleration (trajectory tops). Fig. 1, b

shows the distortion of the trajectory top and change in the

top location at various values of the braking ambipolar field

at the same initial position of the electron. You can see that

the field braking along axis X
”
compresses“ the trajectory in

the longitudinal (along axis X) direction, and the trajectory

tops move closer. Figure 1, c shows that
”
a small“ electric

field is sufficient (εy = 0.4, εx = −0.4 for a0 = 10) to move

the trajectory aside and to compress it.

Since the secondary radiation of electron (2) depends

on its acceleration, note that at a0 ≫ 1 the acceleration

components achieve the maximum value near the tops of

the trajectory circled in fig. 1, a. It is explained by the fact

that the acceleration component

wxi(ξ) =
πa2

0 sin(2ξ)

[1 + 0.5a2
0 sin

2(ξ)]3

(solution to system (1) at εx ,y = 0) is only great in small

intervals of parameter ξ , when sin ξ ≤
√
2/a0. Therefore,

at a0 ≫ 1 the electron acceleration is great only near

the tops of trajectories, where sin ξ ∼ a−1
0 → 0. To

understand the features of the secondary radiation gener-

ated by the electron, fig. 2 shows the following values

built using formulae (1): angle of inclination of trajec-

tory αi(τ ) = arctg(νyi(τ )/νxi(τ )) in angular degrees (red

Optics and Spectroscopy, 2024, Vol. 132, No. 12



Nonlinear scattering of a short intense laser pulse extended targets of submicron size 1211

τ

–200 –100 0 100 200
–400

–200

0b
z

200

400
a

–154.20
–400

–200

0b
z

200

400

–154.15 –154.10
τ

τ

–30 –20 0 10 3020
–1000

–500

0b
z

500

1000
b

–10

Figure 3. (a) The dimensionless field bz of radiation (2) in

the positive (red sections) and negative (blue sections) directions

of axis Y as the function of dimensionless time τ in point of

space symmetrical by y ; the negative and positive parts of the

X-axis correspond to the negative and positive coordinate y of

symmetrical points. a0 = 10, duration of the laser pulse — 3

periods. (b) Field bz of radiation (2) in the positive direction

of axis Y (red color) and negative direction (purple color) as the

function of dimensionless time τ in points of space symmetrical

by y with the availability of two components of the ambipolar field.

εy = 0.3, εx = 0.6, a0 = 10.

curve), longitudinal component of acceleration wx (blue
curve), velocity components νx ,y of the electron (red and

green curves), as the electron passes through the top of

the trajectory circled in fig. 1, a. From fig. 2 you can see

that the longitudinal component of acceleration wxi (and
the radiation field together with it) reaches the maximum

amplitude before and after passing the top of the trajectory

at the moments of time indicated by the vertical grey lines.

At these moments the velocity is |νyi | > |νxi | ≪ 1, therefore

in (2) the summand with participation of parameter wxi

contributes mainly to the field of radiation. Despite the fact

that a0 = 10 ≫ 1 at the moment of maximum acceleration

τ
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Figure 4. Dimensionless field of radiation bz as function

of dimensionless time τ for an electron filament with length

of 2l = λ/2 in the positive (red columns) and in the negative

directions of axis Y (blue columns) in the points of space

symmetrical by y (in absence of the ambipolar electric field).

in fig. 2, both velocity components are not ultrarelativistic

and
√

ν2
xi + ν2

yi ≈ 0.5. Radiation at angle θ to axis X ,

therefore, is not narrowly focused, its aperture of the

angle is 1θ ∼ (1− ν2
x − ν2

y )−1/2 ∼ 1. At the moment of

maximum acceleration (left vertical grey line in fig. 2) prior

to passing the top of the trajectory, a unipolar (acceleration
of one sign) radiation pulse is generated, which propagates

at angle ∼ (+70◦) to axis X in the positive direction of

axis Y . After passing the top of the trajectory, acceleration

wx and velocity νy change signs, and a unipolar pulse is

generated again (of the other sign), which propagates at

angle ∼ (−70◦) to axis X . Therefore, each of the tops

of trajectories in fig. 1 generates two wide-angled 1θ ∼ 1

unipolar pulses propagating in opposite directions relative

to axis Y . At complete equivalency of all trajectory tops

(as in fig. 1, a), the sequence of the unipolar pulses from

various tops is summed into a bipolar signal, the number of

pulses in which is equal to the number of half-periods of the

incident laser pulse. Fig. 3 shows fields of radiation (2) in

the positive (positive part of the X-axis) and in the negative

directions of axis Y when moving in the wave of three laser

periods without account for the influence of the ambipolar

field εx ,y . The rectangles in fig. 3, a indicate the first of

the unipolar pulses propagating in opposite directions. The

insert of fig. 3, a shows a separate pulse in the enlarged scale

of the X-axis, so that the pulse duration would be seen along

the scale of dimensionless time τ . The pulses indicated with

the rectangles are generated in the same trajectory top (the
right circle in fig. 1, a).

The duration of an individual pulse in fig. 3 is assessed as

follows. The specific time interval of the acceleration peak

(blue curve in fig. 2) from formulae [13]

wxi(ξ) =
πa2

0 sin(2ξ)

[1 + 0.5a2
0 sin

2(ξ)]3
,

τi(ξ) = ξ/2π + x i(ξ)

Optics and Spectroscopy, 2024, Vol. 132, No. 12
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is 1τ ≈ 4/3π
√
2a0. Differentials of proper time of

particle τ and laboratory time of radiation registration

(parameter t in formula (2)) are related [13] with the known

ratio cdt/λ = (1− nv)dτ . Accordingly, the duration of the

radiation pulse in direction n for an individual electron

will make c1t/λ ≈ 4(1 − nv)/3π
√
2a0, where the velocity

of electron v is taken at the moment of the maximum

acceleration. At a0 = 10, n = ey , vy ≈ 0.5 (fig. 2) the

estimate of the radiation pulse duration for an individual

electron will make c1t/λ ≈ 0.03, which corresponds to the

pulse duration in the insert of fig. 3, a. In dimensional units

the duration of the unipolar pulse of the individual electron

at a0 = 10 is around 100 attoseconds. Note that the shortest

pulse is radiated in the direction of electron velocity n ‖ v.

For large laser intensities (a0 ∼ 100) in direction of the

electron velocity the duration of the radiation pulse of the

individual electron may be very short and be within the

zeptosecond (10−21 s) time range [2]. Angular distribution

of the secondary radiation at a0 ∼ 100 becomes narrowly

focused 1θ ≪ 1. The radiation pulse of the entire target will

obviously have much longer duration, since the radiation

pulses of different electrons are displaced in time relative to

each other (fig. 4).
The two unipolar pulses following in time are generated

by the second top of the trajectory (left circle in fig. 1, a).
In total the laser pulse from three periods comprises six

half-periods, and in each direction of axis Y six pulses are

generated.

In case of distortion (asymmetry) of the tops of the

trajectory at the expense of the outer ambipolar field εx ,y or

dissipation of the electron current, the radiation pulses from

different tops (different periods of the laser pulse) do not

repeat each other, and their sum may acquire unipolarity.

Addition of the ambipolar field εx ,y ≪ a0 hardly varies

the structure of the radiation pulses within an individual

top of the trajectory, however, due to heterogeneous

”
compression“ of the trajectory along axis X the alternating

phase difference appears between the radiation pulses of

different tops. This changes amplitudes and time intervals

between unipolar pulses generated by different tops of the

trajectory. Fig. 3, b shows the impact of the braking electric

field εx = −0.6 and the transverse field εy = −0.3 at the

radiation pulses of an individual electron. The total sum of

all pulses loses bipolarity in accordance with the appearance

of the unipolar component of acceleration ay . You can see

that the transverse electric field causes unipolarity, and the

longitudinal field assembles pulses together, and the interval

between them shortens.

Transition from the individual electron to the entire

target (integration into (3) by the initial coordinates of the

electron) causes summation of the individual unipolar pulses

shifted in time and generation of the scattered radiation field

shown in fig. 4 for x i0 ∈ [0; λ/2], y i0 = 0. The shape of

pulses in the form of a perfect rectangle is related to the

scale of the abscissa scale — if the resolution is increased

(as in the insert of fig. 3, a), the pulse envelope will be

a smooth function. The width of certain pulses in fig. 3

depends already not on the duration of the acceleration, but

by the spread 1x io in the initial coordinates of electrons

x i0 and makes 1τ ∼ 1x i/
√
5c , a0 ≫ 1. At 1τ > 1/2 the

pulses in fig. 4 will start merging into a single continuous

signal. Increased width of the rectangles in fig. 4 will cause

compensation of pulses with different polarity (reduction of

the scattered field amplitude), and in case of the long target

(L‖/λ ≫ 1), the pulses from the ends of the target will

remain non-compensated [5] (the first and the last pulses of

the train in fig. 4).
The concept of the full similarity of the electron trajec-

tories with different x i0, y i0 is approximated and works

in small time intervals, comparable to the time that the

electron passes the distance of the order of Debye radius

in the laser target plasma. The high times are affected by

divergence of the phase trajectories in different electrons,

causing smearing of the electron density in space and

disappearance of the electron current. The processes of

dissipation (chaotization of trajectories) are described with

inclusion of a damped multiplier in the density of electron

current of electrons with radius vectors s i(t):

j(r, t) = exp(−ct/rD)

Ne
∑

i=0

eṡ i(t)δ(r − si(t)).

Formula (2), when the above damped current is used, also

makes it possible to build spatial distribution of magnetic

field bz in plane XY . Such distribution is specified by the

following formulae:

bz (x , y ; ξ, x i0, y i0) = exp
(−ct(ξ)

rD

)λ

r

×

(nyνxi−nxνyi)(nywyi(ξ, x i0, y i0)

+nxwxi(ξ, x i0, y i0))+(nywxi−nxwyi)(1−nxνxi−nyνyi)

(1− nxνxi(ξ, x i0, y i0) − nyνyi(ξ, x i0, y i0))3
,

nx =
x

√

x2 + y2
, ny =

y
√

x2 + y2
,

bz (t, x , y) =
Ne

L‖L⊥

∫

V

bz (t, x , y, x i0, y i0)dx i0dy i0. (4)

Numerical simulation

To confirm the above mechanism of secondary radiation

of the electrons, equations of dynamics and the secondary

field of radiation, numerical simulation was implemented

for the interaction of the linearly polarized (Y -polarized)
laser pulse with duration of 5 fs with Gaussian time

and space profile of the field (minimum width of the

beam in the focusing area 2w0 = 4.0µm), with inten-

sity IL = 1021 W/cm2, wavelength λ = 1.0µm with foil of

L⊥ = 20 nm thickness, L‖ = 500 nm length. The target

profile is rectangular. The material was selected so that

its initial electron density complied with value ne0 = 200 nc

Optics and Spectroscopy, 2024, Vol. 132, No. 12
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Figure 5. Cross section XY (z = 0) of magnetic field B z (V/m) in 25 fs from the start of laser pulse interaction with the foil of

L⊥ = 20 nm thickness, L‖ = 500 nm length (in the 3D-estimate the height of foil is 8µm) with ultrashort (5 fs) linearly polarized pulse,

IL = 1021 W/cm2 : (a) 3D-modeling, (b) 2D-modeling.
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Figure 6. Numerical 2D-estimate at laser pulse intensity

1021 W/cm2 and trajectory (5) in the pulse field in the presence of

the ambipolar field εy = 0.1, εx = −0.6 at t = 34 fs.

ni0 = 6 · 1022 cm−3. The EPOCH code in 2D- and 3D-

geometry is used for calculations. The time step for

the output files was taken as 2 fs, time step of the code

solver for one iteration in the simulation is 20 as. In 2D-

modeling the grid spacing by space is 3.2 nm, modeling box

16× 16µm2, with the number of grid nodes 5000 × 5000.

The target was set by 40 ions and 200 electrons per cell.

In 3D-modeling the modeling box 8× 8× 16µm3, with

the number of grid nodes 600× 1000 × 1200. The target

along the additional axis Z had the size 8µm and was set

by 20 ions and 80 electrons per cell. The 2D- and 3D-

modeling use border conditions of
”
simple-outflow“ for the

fields and particles: electromagnetic waves incident on such

borders travel with minimum reflection (within the accuracy

of the numerical count), and the particles are removed from

modeling, when the border is reached. Fig. 5 shows the

comparison of the field scattered with the target in 3D-

(fig. 5, a) and in 2D-estimate (fig. 5, b). Since the size of

the target along axis Z was significantly larger than the

dimensions L‖, L⊥ and the diameter of the laser beam

was also larger than L‖, L⊥, 2D- and 3D-estimates yielded

similar results. The example in fig. 5 shows the agreement

of the results from 2D- and 3D-estimates, and further we

will specify the type of estimate in the inscription to the

figures. Comparison of the model trajectory of electrons

with the result of the numerical count is shown in fig. 6.

You can see that system (1) with the proper selection of

parameters εx ,y adequately describes the trajectories of the

numerical simulation. Dimensionless magnetic field of the

secondary radiation of the electron built in fig. 7, a using

formula (5) (see the following section), corresponds to

the results of the numerical estimation given in fig. 7, b.

Fig. 8, a provides the results of the numerical simulation of

the spatial distribution of the scattered field B z in plane XY .
You can see that the field scattered with the target looks

like a divergent spherical wave. In side directions (along
with and opposite to axis Y ) the spherical wave looks like

a unipolar (one sign of the electric field) short radiation

pulse. With fixed t formulae (4) help to build in fig. 8, b

the isolines bz (x , y) = const in plane XY . Comparison of

fig. 8, a, b demonstrates the adequacy of the analytical model

for generation of scattered pulses. Note that the total (in all

directions) scattered field at the same time remains bipolar,

and the integral from it in the entire space (i. e. by the area

of the modeling box in fig. 8, a) at each moment of time is

equal to zero.
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Figure 7. (a) Dimensionless radiation field bz as the function of transverse coordinate y for the target with length λ/2 in the positive

(red color) and in the negative (blue color) directions of axis Y in the symmetrical points of space under current damping and in the

presence of the ambipolar field εy = 0.1, εx = −0.6. (b) Field B z (V/m) of the scattered pulse in the transverse direction (2D-estimate)
at t = 50 fs.

Therefore, the scattered bipolar field is divided into two

unipolar parts, each propagating in its direction and may

be detected separately. Note that the direction of the

maximum intensity of radiation is determined by the

direction of the electron velocity at the moment of the

maximum value of the acceleration component wxi . At

a0 = 27 (IL = 1021 W/cm2) the angle between the direction

of velocity and axis X at this moment of time is α∗ ≈ 70◦.

In fig. 2 (built without account for the effect of the

ambipolar field) the angle α∗ corresponds to the crossing

of the red and vertical grey lines. Accounting for the effect

of the ambipolar field at the electron trajectory in fig. 1

changes this angle slightly, and in fig. 8, b built with account

for the ambipolar field, the maximum intensity agrees with

angle ∼ 50◦ .

Optimization

The field of secondary radiation of the target, according

to (3), is proportionate to the number of electrons Ne ,

extracted by the laser pulse from the target and moving

under the effect of the laser pulse fields. Therefore, the

optimal values of the target parameters must correspond

to the maximum Ne at the specified parameters of the

laser pulse. Accordingly, the magnetic field (4) of the

secondary radiation of the target in the form of a separate

plate normalized by amplitude of the incident laser pulse

and will account of damping will look like

B z (t, x , y)

E0

=
ebz (t, x , y)

λ2E0

= exp
(−ωt√

a0

) D
2πλ2L⊥

×
L‖
∫

0

dx i0

L⊥
∫

0

dy i0bz (t, x , y, x i0, y i0). (5)

From the above it follows that the optimal thickness

of the target is a0ncrλ/πZini ≈ 40 nm at Zi ni/ncr = 200

and intensity 1021 W/cm2. The numerical simulation used

L⊥ = 20 nm, which is less than the optimal value, however,

at L⊥ ≤ a0ncrλ/πZini field bz hardly depends on L⊥, and

the difference from the optimal value is not significant. The

amplitude bz is more dependent on the length of the target,

and the maximum possible values L‖ may yield high, but

bipolar values.

Therefore, the maximum amplitude of the field of

secondary radiation in formula (4) is achieved at

L‖ ∼ λ/2. For a laser pulse with intensity I = 1021 W/cm2,

D = 4µm, λ = 1.0µm, interacting with foil of L‖ = λ/2

and L⊥ = a0ncrλ/πZini = 40 nm length, the maximum

value of the ratio of magnetic field of radiation ebz /λ
2 from

(4) to laser field E0 in point x = 0, y = 6µm (fig. 8, b) is

ebz /λ
2E0 ≈ 0.08. In the numerical estimation in fig. 8, b the

amplitude of the short pulse is a close value B z /E0 ≈ 0.06,

therefore, the estimate had the parameters close to the

optimal ones.

Dependence of ratio ebz /λ
2E0 on laser intensity for the

target with L‖ = λ/2, L⊥ = a0ncrλ/πZi ni , Zi ni/ncr = 200

is given in fig. 9. Figure 9 shows that at laser intensities

≥ 1020 W/cm2 the conversion ratio by amplitude (ratio of

secondary radiation field intensity to laser pulse field inten-

sity) of a single target from L‖ = λ/2, L⊥ = a0ncrλ/πZi ni ,

reaches the intensity-independent value ∼ 0.1. The con-

version ratio by energy is significantly lower ∼ 0.02 due

to short duration of attopulse compared to laser pulse and

limited area of interaction compared to the area of the laser

spot.

For effective use of the entire laser pulse energy and

increase of the conversion ratio (ebz max/λ
2E0) it is feasible

to consider several parallel plates with the distance of

dy ∼ 21y between them. The example of such configuration
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is shown in fig. 10, a, and electron density in the beginning

of the process of laser radiation interaction with five

targets — in fig. 10, b. A scattered pulse propagating in

the positive direction of axis Y amplifies at the same time

∼ 5 times (proportionately to the number of plates), as

follows from fig. 11. Dimensionless field bz (4) increases

the same number of times. Use of several targets makes

it possible to
”
straighten“ the front of the scattered pulse

and to create a
”
flat“ scattered unipolar wave, the spatial

distribution of the field in which is shown in fig. 11, b.

Comparison of fig. 11 to fig. 8, a shows the possibility of

generating a
”
flat“ scattered unipolar wave propagating to

longer distances in contrast to the spherical one. Note

that space orientation of the target secondary radiation

front plane depends on longitudinal dx (along axis x) and

transverse dy (along axis y) distances between the targets in

fig. 10, a, by changing which the unipolar pulse of secondary

radiation may be sent in the specified direction. Angle θ,

in direction of which the scattered field of various targets

is added up coherently, is determined from the equation of

the
”
diffraction grating“corresponding to fig. 10, a:

dx + dx cos θ +
dy

sin θ
= lλ. (6)

For dx = dy = λ/2 the main diffraction maximum (l = 1)

of equation (6) corresponds to angle θ = π/2, which

corresponds to data for calculation of five targets in fig. 11.

The case is optimal, when the angle of the interference

maximum (6) of several targets matches the angle of

maximum of radiation of the individual target θ ≈ α∗ (for

εx ,y = 0 α∗ ≈ arctg
√
10 ∼ 70◦ at a0 ≫ 1). The scattered

pulse of several targets in this case is maximum by

amplitude.
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Figure 9. Maximum value by time of the ratio between the

intensity of magnetic field of radiation ebz max/λ
2 (at x = 0,

y = 6 µm) of the scattered pulse and the intensity of laser field

E0 at distance 6 µm from the target with dimensions L‖ = λ/2,

L⊥ = a0ncrλ/πZi ni , as the function of intensity of the incident

laser pulse.

Conclusion

This paper numerically and analytically investigates the

generation of the secondary coherent radiation arising in

propagation of relativistic laser pulses along the targets of

the extended shape, the length of which in the laser pulse

propagation direction is comparable to the wavelength of

the laser radiation and tenths of the wavelength in the

transverse direction. It is shown that the field scattered with

the target looks like a divergent spherical wave. In each

of the side directions the spherical wave is a short unipolar

(one sign of the electric field) radiation pulse, besides, the

total (integral for the entire space) scattered field remains
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Figure 11. (a) Intensity of field (V/m) of scattered pulse of five targets in transverse direction (2D-estimate); (b) spatial distribution of

the component B z of five targets’ magnetic field (2D-estimate) normalized by maximum. t = 50 fs.

bipolar (integral for the entire space is equal to zero).

For implementation of the highest intensity of the scattered

secondary radiation of the target, the optimal would be the

target with the length in the longitudinal direction L‖ ≈ λ/2,

in the transverse direction along the electric field of the

laser wave L⊥ ≈ (2÷ 4)ls , where ls — scale of a skin

layer for the specified laser intensity IL. In the transverse

direction along the magnetic field the target size must

overlap the laser spot. Intensity must be ultrarelativistic

a0 ≫ 1, and the pulse duration - short — (3− 5) periods.

Scattered pulse duration is ∼ 0.5 of the laser period, and

its amplitude from the individual target at around 0.1 of the

laser field amplitude. Interference of the scattered pulses

of several targets forming a diffraction grating makes it

possible to increase the amplitude of the total scattered

pulse proportionately to the number of the targets in the

cross section of the laser pulse.
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