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Modes and threshold condition of a gradient waveguide with

inhomogeneous amplification and absorption.
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An analysis of the modes of a linear gradient optical waveguide with a quadratic radial dependence of absorption

and amplification has been conducted. In this case, the profiles of the refractive index and absorption/amplification

differ. The parameters at which the generation threshold is achieved have been calculated, meaning that the

absorption of radiation is compensated by the amplification, which ensures the propagation of a radiation beam

with a constant amplitude.
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Introduction

Diffraction widening of radiation accompanied with re-

duction in its intensity may be compensated by a heteroge-

neous profile of the medium refractive index — a case of

gradient optical waveguides [1]. However, in actual media

the radiation is absorbed, which causes gradual loss of

intensity. The profiles of the refractive index and absorption

differ in the general case, usually the absorption may be

considered to be spatially homogeneous. Therefore, it

becomes necessary to compensate for such absorption

by amplification, which is substantially heterogeneous and

dominates in the axial area of the waveguide. This is the

objective of this message. Note that this task is relevant in

some problems of non-linear optics, for example, for solitons

of self-induced transparency [2–4].

Theoretical description

Distribution of a beam of monochromatic radiation with

electric intensity Ẽ and frequency ω in the linear medium

with dielectric permittivity ε, which depends on the distance

to the axis of waveguide r , is described with a Helmholtz

equation

1Ẽ +
ω2

c2
ε(r)Ẽ = 0, (1)

where c — light speed.

Let us proceed from the equation for amplitude Ẽ to

equation for envelope [5–7], substituting Ẽ = E exp(ik0z )
to equation (1):

2ik0

∂E
∂z

+ 1⊥E + k2
0

δε(r)

ε0
E = 0, (2)

where E — slowly changing envelope, ε(r) = ε0 + δε(r),

k2
0 = (ω/c)2ε0, 1⊥ = ∂2

∂x2 + ∂2

∂y2 , x and y — transverse

Cartesian coordinates, the radiation spreads along axis z .
We are interested in the axisymmetric modes without

angular dependence. For them in the cylindrical coordinate

system

E = A(r) exp(iδkz ).

In the medium with absorption the additive to wave

number δk in the general case is complex. We will obtain

the ordinary differential equation for A(r):

1

r
d
dr

(

r
dA
dr

)

− 2k0δkA + k2
0

δε

ε0
A = 0. (3)

We will search for a solution in the form of a Gaussian

beam A(r) = A0 exp(−γr2) [1]. In the considered case the

value γ is complex, Imγ is responsible for the curvature of

the wave front. After substituting in (3) we will obtain

4γ(1− γr2) + 2k0δk = k2
0

δε

ε0
. (4)

From (4) you can see a suitable view of δε:

δε(r) = a + b( r
r 0

)2, specified constants a and b — are

complex. Equating terms at different degrees r , we will

obtain two complex equations for complex variables δk and

γ :

4γ2 = −k2
0

ε0

b

r20
,

4γ + 2k0δk =
k2
0

ε0
a . (5)

The threshold condition is met at Imδk = 0, this limits

the parameters a and b. From the first equation in (5) we

find one value γ (we need Reγ > 0). Then from the second

equation in (5) we also find one value δk . Nonzero value

Imδk maintains the exponential multiplier exp(−Imδkz ), at
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(a) Profiles of real (dotted line) and imaginary parts of additive δε to dielectric permittivity ε depending on dimensionless distance from

axis z . The solid line corresponds to the threshold case Ima = (Ima)th, the dashed line — to case Ima = 0.9(Ima)th, the dot and dash

line — Ima = 1.1(Ima)th. (b) Change in value Imδk depending on Imaamp at Imb = 0.01 and Ima loss = 0.01. The threshold value is

achieved at Imaamp ≈ −0.0191. (c) Change in value Imδk depending on Imb at Imaamp = −0.0191 and Ima loss = 0.01. The threshold

value is achieved at Imb ≈ 0.01.

Imδk > 0 the radiation fades, and at Imδk < 0, it amplifies

on the contrary. Therefore, we obtain the following ratios:

Reγ =
ω√
2r0c

√

|b| − Reb,

Imγ = − ω√
2r0c

Imb
√

|b| − Reb
,

Reδk = − 1√
ε0

[

1√
2r0

√

|b| − Reb − ω

2c
Rea

]

,

Ima = −
√
2c

r0ω
Imb

√

|b| − Reb
. (6)

We assume the profile of the real refractive index (values
Rea and Reb) to be set. And values Ima (proportionately
to the amplification at the waveguide axis) and Imb
(determines the radial profile of amplification/absorption)
vary. The threshold condition is achieved at the ratio

of two last parameters specified in the last equation (6).
Using this ratio, one can find the required value of

amplification on the waveguide axis depending on the

steepness of the amplification/absorption profile. Without

loss of generality, it may be assumed that Rea = 0, and for

radiation localization Reb < 0 must be assumed. Initially

the medium is absorbing. Parameter Ima may be assumed

as Ima = Ima loss + Imaamp, where Ima loss determines the

initial absorption of the medium and is a known value, and

Imaamp is one of the amplification parameters. If parameters

Imaamp and Imb are chosen properly, the above propagation

of radiation is achieved, namely:

Imaamp = −Ima loss −
√
2c

r0ω
Imb

√

|b| − Reb
. (7)

Real parts a and b set the waveguide parameters:

Reε = ε0 + Rea + Reb

(

r
r0

)2

= ε0 − |Reb|
(

r
r0

)2

. (8)

Imaginary parts a and b determine the nature of

the change in the medium absorption or amplification

depending on the distance to the main axis of radiation

propagation z :

Imε = Ima + Imb

(

r
r0

)2

. (9)

At r = 0 in the medium with amplification Ima < 0,

when Imε changes the sign, the transition to radiation

absorption at the periphery takes place. Let us specify

parameter Ima , meeting the threshold condition (7), as

(Ima)th. This corresponds to the case when amplification on

axis z compensates diffraction and absorption of radiation

at the periphery (fig. a). If value |Ima | is lower than

threshold value |(Ima)th|, amplification will not be sufficient

to compensate for the processes causing damping of the

radiation amplitude. If |Ima | exceeds |(Ima)th|, an opposite

situation will occur, when the amplification dominates the

absorption. Fig. b, c reflects the change in value Imδk
depending on the amplification parameters.

Conclusion

The presented analytical review shows the possibility of

compensation for the radiation absorption in the gradient

waveguide by amplification. A threshold condition is found,

which specifies the ratio for the parameters of dielectric

permittivity, when the radiation spreads without a change

in the amplitude. The described effects may manifest

themselves in the gradient optic fiber doped with active

centers with the specified concentration profile.
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