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Introduction

Radio pulsars — are spinning neutron stars

surrounded with extremely strong magnetic field

B ∼ 1011 − 1014 Gs [1]. This magnetic field has energy

density ∼ B2

8π
and, accordingly, mass density ∼ B2

8πc2 . Inside

a light cylinder this field spins together with the star. Its

mass inside the light cylinder may be assumed
”
attached“

to the neutron star, roughly speaking. Accordingly, one can

assume that the mass and impulse of the field contribute to

the effective tensor of inertia of the star, making it different

from the spherical one, which results in a precession even

in isolated pulsars [2]. Another interpretation of this process

is also possible [1]. According to this interpretation, the

impact at the star and the magnetosphere spinning together

with it is described as an action of a certain additional

”
abnormal braking torque“ of forces applied to the surface

of the neutron star [3]. This precession is potentially

responsible for the appearance of a cyclic component in

the evolution of the radio emission parameters in pulsars

with the specific time scale T ∼ 103 − 104 year and a

low-frequency component of
”
red noise“ [4]. It is possibly

also related to the repeatability of the flashes in the sources

of fast radio bursts (FRB) [5]. The impact of OTO effects at

the magnetic field of pulsars was considered, for example,

in papers [6–8]. In this paper we consider the impact of

the space curvature around the neutron star at the addition

to the pulsar braking index n = P̈ P/(Ṗ)2, related to the

precession of the star caused by the contribution to the

moment of inertia of its magnetic field beyond the star

itself.

1. Model

In this paper we will use the results of papers [8], which

considered the impact of the space curvature at the pulsar

magnetic field, and [9], which considered the impact of the

space curvature near the neutron start at the moment of

inertia δI f of the magnetic field beyond the star. Let the

magnetic field beyond the neutron star be described with

a single harmonic with numbers l and m [2] and axis of

symmetry ~elm. In this paper we will limit ourselves to the

case m 6= ±1, therefore, the moment of impulse~L f
lm of such

magnetic field beyond the neutron star is [2]:

~L f
lm = I f

lm
~� + δI f

lm~elm (~elm · ~�), (1)

where ~� — angular speed of rotation of the neutron star,

� = 2π/P , P — pulsar period. Harmonics with values

l, differing by more than 3, do not interfere, and their

contributions to the moment of inertia of the magnetic field

may be simply added up. Let us consider the simplest

model of the pulsar magnetic field. Let it consist of the

harmonic (lm) = (10), which describes the dipole field of

the pulsar, and the harmonic (lm) with l > 5, describing the

contribution of the small-scale component of the magnetic

field. Let < B2
10 > and < B2

lm > — be the average values

of the field intensity for the corresponding harmonics on

the surface of the neutron star, then we will introduce

the parameter ν =
√

< B2
lm > / < B2

10 >, describing how

much the small-scale field exceeds the dipole field on the

surface of the neutron star [9]. Then the moment of impulse
~L f of the magnetic field beyond the star is equal to

~L f = (I f
10 + I f

lm)~� + δI f
10~e10 (~e10 · ~�)δI f

lm~elm (~elm · ~�).
(2)

For simplicity, let us limit ourselves to an axisymmetric case,

when ~elm =~e10, then

~L f = I f ~� + δI f
~e10 (~e10 · ~�), (3)

where δI f = δI f
10 + δI f

lm and I f = I f
10 + I f

lm. Member δI f

describes the difference of the star moment of inertia from

the spherical one and brings it to precession. The precession

period of the neutron star Tpr may be roughly assessed as

Tpr = Kpr P Ins/δI f , where Kpr — coefficient of order of
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Figure 1. Dependence of estimate of maximum braking index nmax on the value of ratio rg/rns for several values l at ν = 10. a —
complies with case m = 0, b — m = l.
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Figure 2. Dependence of estimate of maximum braking index nmax on parameter l for several values rg/rns at ν = 30. a — m = 0, b —
m = l.

unity. In the considered case ~elm =~e10 it is simply equal

to Kpr ≈ cos χ, where χ — angle between the vector of the

angular speed of the pulsar ~� and vector ~e10. Within the

considered model [2] the period of precession of the neutron

star is Tpr ∼ 103 − 104 years, which is much longer than the
period observed in the pulsar B1828-11 Tpr ≈ 468 days [10],
but agrees more or less with the results of paper [4].
During the precession the electric current flowing through

the internal clearances changes, which causes cyclic changes

of current losses and the braking rate of the pulsar [11], the
period of which is equal to the precession period Tpr . The

latter is reflected in the value of the pulsar braking index
n = P̈ P/(Ṗ)2. According to [4], the maximum possible

value of the braking index nmax, caused by precession of

the neutron star with the period Tpr , may be assessed as

nmax = Kn · 2 τ /Tpr , where τ = P/(2 Ṗ) — characteristic

age of the pulsar and Kn — coefficient of the order of unity.

Coefficient Kn depends on the structure of the magnetic

field, the location of pulsar clearances, where the particles
are accelerated, on the structure of the currents flowing

through the clearances [11]. We will assess the braking rate

of the pulsar as �̇ = Kbr · m2
10�

3/(Ins c3), where m10 —
dipole magnetic moment of the pulsar corresponding to

the harmonic (lm) = (10), Ins — moment of inertia of

the neutron star and Kbr — coefficient of the order of

unity [1,12]. Coefficient Kbr depends first of all on the

angle of inclination χ . Within the model of the magnetic

dipole losses we have Kbr ≈ (2/3) · sin2 χ, within the

current losses model - Kbr ≈ (2/3) · cos2 χ [1]. According

to paper [13] one can write Kbr ≈ (2/3) · (1 + sin2 χ).
Accordingly, the maximum possible value of the braking

index nmax may be assessed as [9]:

nmax =
Kest

4π2
·
δI f

m2
10

· c3 P (4)

where rns — radius of neutron star and

Kest = Kn/(Kbr Kpr ) — coefficient of the order of

unity.

Conclusion

Fig. 1 and 2 show the dependence of the value nmax,

estimated using formula (4), on the ratio rg/rns , where

rg = 2GMns/c2 — Schwarzschild radius of the neutron star,

and Mns — mass of the neutron star, and on the number l,
describing the small-scale component of the magnetic field.

The feature on the curves at rg ≈ (0.3− 0.4) rns is related
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Figure 3. a — dependence of the estimate of the maximum braking index nmax on the number of m at l = 10 and ν = 30 for several

values rg/rns . b — asterisks show the observed values of the pulsar braking index n, taken from [14]. The period of pulsar P is plotted

on the X axis. Horizontal lines comply with the estimate nmax at Kest = 1 and m = l = 10.

to the fact that we use a logarithmic scale along the Y

axis, and in this region the value δI f passes through zero

and changes the sign [9]. Fig. 3, a shows the dependence

of estimate nmax on the azimuthal number m. Fig. 3, b

provides the comparison of the produced estimates for the

maximum value of the braking index nmax with the observed

values taken from [14]. The fact that some pulsars have

much higher braking indices may be related to the fact that

the main contribution in them, in contrast to the tensor

of inertia from the spherical one is given by the neutron

star strain. At least in the isolated radio pulsar B1828-11

the precession is seemingly caused by the difference of the

neutron star form on the spherical one [10]. Besides, a

certain increase in the braking indices may be related to

the current decomposition of the magnetic field [12]. It is

also possible that in some pulsars the values of the braking

indices given in [14] rather reflect the specific nature of

the radio emission of the pulsars, while their real values

may turn out to be much lower n ∼ 1− 4 [15]. It should

also be noted that in the paper, when we assessed the

precession period, we considered for the simplicity only the

”
coaxial“ configuration ~elm =~e10. At the same time, in case

of a strictly axisymmetric magnetic field of the pulsar, the

star precession within the used model [11] will not impact

the currents flowing through the internal clearances and,

accordingly, the pulsar braking rate [11]. However, it would
be sufficient to divert the vector ~elm by 5◦ − 10◦, so that

at the accepted values ν ∼ 10− 30 the field in the vicinity

of the internal clearance would become substantially not

axisymmetric, and the current flowing through the clearance

would start changing during the precession. Besides, for

the pulsars close to coaxial ones χ . 30◦, the error in

the estimation of the braking index nmax, except for the

region of
”
cusps“, where the precessio stops, will not exceed

30 − 50%, which is acceptable within the precision of other

estimates.
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