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Elasticity of Neutron Star Mantle: Impact of Neutron Adsorption
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The elastic modulus of the neutron star mantle, associated with a change in intercluster distances, is calculated

within the framework of the thermodynamically consistent compressible liquid drop model. It is demonstrated that

the neutron adsorption on the surfaces of nucleon clusters results in a ∼ 10−20% change in the elastic modulus

within the typical range of mean nucleon number densities of the neutron star mantle.
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Introduction

Neutron star mantle is a layer that contains nuclear clus-

ters whose energetically favorable shape may take a form

of cylinders (spaghetti phase), plane-parallel plates (lasagna
phase), inverted cylinders (bucatini phase), inverted spheres

(Swiss cheese phase) [1]. The existence of this layer was

first predicted in papers [2,3]. Since then, efforts have been

made to determine the impact of mantle presence on the

evolution and observational manifestations of neutron stars

(see, for example, Refs. [4–8]).

In particular, its elastic properties might be important

for description of torsional oscillations which serve as an

option for explaining quasi-periodic oscillations observed

after flares of soft-gamma repeaters associated with neutron

stars (see, for example, Ref. [7]). The maximum quadrupole

deformation of a neutron star and the corresponding

gravitational wave radiation by rotating neutron stars might

also depend on the mantle’s elastic properties [8].

Elastic properties of the mantle for the spaghetti and

lasagna phases were first addressed in Ref. [9] within a

liquid-drop model neglecting the neutron adsorption on

the cluster surface. Inclusion of the effect of neutron

adsorption (deposition) on the nuclear cluster surface into

the compressible liquid drop model allows taking into

account the difference in rms radii of proton and neutron

distributions in the cluster. Moreover, adsorption must be

considered for the thermodynamically consistent description

of the interface of two-phase system (see, for example,

Ref. [10]). Nevertheless, many authors discard it for simplic-

ity. For example, neglecting this effect allows for analytical

calculations as described in Ref. [9]. Elastic properties of the
mantle were also studied in a computationally demanding

relativistic-mean-field model [11]. Another work to be

noted is one of Ref. [12] that investigated breaking strain

of the lasagna phase in the classical molecular dynamics

simulations, and of Ref. [13] that considered the effective

shear modulus of the mantle disordered on a hydrodynamic

scale.

Here we calculate the mantle’s compression modulus for

the spaghetti and lasagna phases. We employ a thermo-

dynamically consistent compressible liquid drop model that

takes into account the neutron adsorption on the cluster

surface. Section 1 describes our model, Section 2 contains

our findings and detailed comparison with Refs. [9,11].

1. Physical model

Authors of Ref. [9], whose notations we follow here,

showed that the lasagna phase is characterized by two elastic

constants B and K1. The elasticity modulus B describes the

response to varying spacing between the plates and K1 the

response to their bending. To describe the elastic properties

of the spaghetti, three quantities are required: compression

modulus B , the transverse shear modulus C and the elastic

modulus associated with bending K3. Following to Ref. [9],
we consider pasta deformations keeping the mean number

density of nucleons nb fixed.

In this work we calculate the elastic modulus B for the

spaghetti and lasagna phases within the thermodynamically

consistent liquid-drop model, i.e. taking into account the

neutron adsorption on the nuclear clusters surface (see, for
example, Ref. [14]). Surface energy is calculated using the

2nd-order extended Thomas−Fermi method [15]. Calcula-

tions rely on the Wigner−Seitz approximation. Therefore,

we consider a cylindrical cell with the circular cross-section,

where the cylindrical cluster is located in the center for the

spaghetti phase, and a flat layer with a flat cluster in the

center for the lasagna phase. Previously, in study [16], we
used a similar model to calculate the elasticity modulus C
for the spaghetti phase, there the dependence of C on the

cluster size and lattice spacing was described analytically.

As noted above, the elasticity modulus B was studied

analytically in Ref. [9] within the liquid-drop model that
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neglected the neutron adsorption effect. In this case,

nucleon densities inside and outside the cluster may be

assumed constant during deformation, which simplifies the

discussion and makes it possible to couple B with the

Coulomb energy of the cluster and volume fraction u
occupied by the cluster. However, when the adsorption

is taken into account, nucleon densities inside and outside

the cluster can vary during deformation because a part of

nucleons can additionally be adsorbed on the cluster surface

or released from it. This leads to explicit dependence of B
on the model of nucleon interaction and requires numerical

calculation to determine B .

Similar to Ref. [9], to determine B , we calculate the

difference in energy densities between the deformed and

undeformed states of the mantle at the pre-defined mean

nucleon number density nb and approximate it by the

quadratic dependence on δrc/req
c :

E (nb, δrc) − E (nb, δrc = 0) = ξB

(

δrc
req
c

)2

. (1)

Here, req
c and δrc are the equilibrium size of the

Wigner−Seitz cell and its variation in deformation, the

geometrical parameter ξ = 1
2
for the lasagna and ξ = 2 for

the spaghetti (calculations for both phases were conducted

independently).
Numerical computations were carried out as follows. For

each of the values of nb from the realistic range of mean

nucleon number densities for the mantle, the equilibrium

size of the Wigner−Seitz req
c cell was determined, then the

change in the energy density was calculated with this size

being varied within [0.99 req
c , 1.01 req

c ] where equation (1)
is satisfied with good accuracy without introducing next-

order corrections. E (nb, δrc) was calculated in two

assumptions corresponding to the limit of very fast and very

slow β-reactions. In the former case, β-equilibrium of the

matter is maintained during deformation. In the latter case,

the fraction of protons in the Wigner−Seitz cell Yp remains

unchanged during deformation.

2. Results and conclusions

The figure shows B of the spaghetti (Figure, a,b) and

lasagna (Figure, c,d) phases in the mean nucleon number

density range nb typical for the neutron star mantle.

Calculation was conducted for the two parameterizations of

the Skyrme-type effective interaction: SLy4 [17] (Figure, a,c)
and BSk24 [18] (Figure, b,d). As expected, in the fast β-

process limit, relaxation to the β-equilibrated matter leads

to energy reduction in the deformed state and, therefore, to

decrease of B .

For comparison with the literature, figure also shows

B obtained using the expressions derived in Ref. [9] and

their updated versions from Ref. [11] presented as analytical

approximations of the relativistic mean field calculations

(i.e. results in Ref. [11] account for the differences in

the neutron and proton distribution profiles in the cluster

that are described as the neutron adsorption in the liquid-

drop model). Although the first of the works listed

above assumed Yp = const and the second one used the β-

equilibrium, the fits proposed in Ref. [11] actually represent

the equations from Ref. [9] with introduction of additional

correction factors that only depend on u.
Figure shows that the expressions from Refs. [9,11]

for the spaghetti phase agree well with each other and

systematically give the values of B that are by ∼ 10−20%

higher than those in our calculation. One should also

notice a low sensitivity of B to the assumed rate of the

β-processes during deformation, which follows both from

our calculations and comparison of findings of Refs. [9,11].

In turn, for the lasagna phase, results of our calcula-

tions with the assumption of Yp = const agree well with

Ref. [9]. However, in the case of the fast β-processes at

nb . 0.07 fm−3 the obtained results predict a higher value

of B by & 10% (up to ∼ 30−40%) than the approximation

from Ref. [11]. Nevertheless, at higher densities that are

more typical for the lasagna phase, all calculations agree

well with each other. Note a higher sensitivity of the

lasagna compression modulus to the β-process rate during

deformation than that of the spaghetti compression modulus.

As mentioned above, the difference of our results from

those in Ref. [9] is explained by the fact that the neutron

adsorption is accounted for, which changes the surface

energy description significantly (see, for example, Ref. [10])
and leads to a complex dependence of B on the chosen

nuclear model. The approximated equations proposed

in Ref. [11] differ from the expressions in Ref. [9] by

introduction of the correction factors that are equal to

10−3u4 and 100.55u−10u8−0.19 for the spaghetti and lasagna,

respectively. These factors were derived for one particular

nucleon interaction model in [11] (for the second model

applied in that paper, the mantle is energetically unfavorable

and the authors did not calculate the elastic properties). For
the spaghetti, this factor gives a correction of about 5%

at u ∼ 0.3 that is typical for the spaghetti phase (for
example, [3]), and this correction grows dramatically with

further growth of u. For the SLy4 and BSk24 models

applied here, u . 0.3−0.35, the difference between the

approximations [9,11] for the spaghetti does not exceed 10%

(see the figure), while, according to our calculations,

inclusion of the neutron adsorption leads to a somewhat

higher effect. It is difficult to find the exact reason, but,

in our view, this may be caused by the following factors:

(1) as mentioned above, the neutron adsorption effect

on the compression modulus depends on the particular

nuclear model and probably for one applied in Ref. [11]
it turns to be very low or does not appear at all due

to the numerical effects; (2) in Ref. [11], the moduli of

elasticity were determined by fitting the energy calculated

not only for the small deformations, but also for the large

deformations (as specified in Ref. [16], this may affect the

obtained quantitative results); (3) during approximation of

their numerical results, the authors of Ref. [11] probably
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Dependence of elastic constant B on nb . a, b — spaghetti phase, c, d — lasagna phase. a, c — for SLy4, b, d — for BSk24. Solid line

(
”
β-equilibrium“) shows our calculations with the assumption that the nuclear matter stays β-equilibrated during deformation, dashed

line (
”
Yp = const“) shows our calculations with the assumption of the constant proton fraction, crosses (

”
PP98“) show the analytical

expression from [9], pluses (
”
Xia23“) show the approximation expression from [11]. For details see the text.

made the main focus on the high filling factors u, where

the introduced correction was very significant, but did not

pay much attention to the approximation uncertainty at

small u, where the correction was small; (4) it cannot

be ruled out that the compressible liquid drop model

does not have sufficient accuracy and overestimates the

neutron adsorption effect on the elastic properties, for

example, due to neglecting the corrections associated

with the cluster surface curvature (see, for example, [14]

that shows the importance of the last effect for the

equilibrium mantle structure). This assumption may be

verified by the direct comparison of the elastic properties

with the calculations using the extended Thomas−Fermi

method. However, such a study is more computationally

expensive, and we are planning to undertake it in the

future.

Finally, it should be noted that, although this study

shows the importance of taking into account the neutron

adsorption, nevertheless, the quantitative description of this

effect depends on the chosen nuclear model and this

dependence requires additional investigations that we plan

to do in future.
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