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The differential flow near by polar cap surface of neutron star in the case

of inclined magnetic field
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The flow in a liquid layer at the neutron star surface due to magnetospheric electric current in the case of

homogeneous inclined to star surface magnetic field is considered.
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Introduction

One of the main neutron star deceleration mechanisms

is short circuiting of electric current, that flows in the

magnetosphere along magnetic field lines, in the star’s

surface layers [1,2]. Pulsar deceleration by electric current

flowing through the magnetosphere and distribution of the

braking torque on the star surface layers were discussed,

for example, in [3]. Flow induced by electric current in the

flat layer of conducting liquid was addressed, for example,

in [4]. This work, following studies [5,6], discusses the flow

induced by this current in the liquid layer on the neutron

star surface.

1. Model

As in [6], we assume that the neutron star surface

is covered with liquid layer
”
ocean“ with the depth

L ∼ 10−100m [7]. Since L ≪ rns , where rns ≈ 10 km —
is the neutron star radius, then we neglect the surface

curvature and assume that the ocean is an infinite flat layer

with the depth L (Figure 1). We address the liquid flow

in the neutron star’s frame of reference and assume that

the liquid flow doesn’t depend on the time t in this frame

of reference. In this work, as in [6], we limit ourselves

to the simplest case, when the pressure p depends only

on the liquid density ρ. Liquid viscosity and conductivity

are also assumed as isotropic for simplicity. In this case,

magnetohydrodynamics equations may be written as

ρ (2 [�× v] + (v · ∇)v) = −∇p +
1

c
[j× B] + Fvis + ρg,

(1)

−∇8 +
1

c
[v× B] = Rj, divB = 0,

rotB =
4π

c
j, div(ρv) = 0, (2)

where v is the liquid flow velocity in the frame of reference

that rotates together with the star, B is the magnetic field

induction, j is the current density, 8 is the electrostatic

potential, R is the liquid resistance, p = p(ρ), Fvis is the

viscosity force, g = −gez is the gravity field intensity, and

we assume that g is independent of coordinates, � is

the star’s angular rotation rate, � = 2π/P , P is the star’s

rotation period. We assume that to the zero approximation

the ocean has no flow v = 0 and electric currents j = 0.

Equations (1) and (2) then are written as

∇p(0) = ρ(0) · gez , divB(0) = 0, rotB(0) = 0, ∇8(0) = 0,

(3)
where p(0) = p(ρ(0)) and (0) mark the zero approxi-

mation quantities. In this work, we limit ourselves

only to a special case of uniform magnetic field

B(0) = B (0)(cos βez + sin βex ), where B (0) and β are con-

stant quantities (Figure 1). Assume also 8(0) = 0 and that

p(0), ρ(0) and R(0) depend only on z . We now consider

small disturbance induced by the current flow through the

ocean. We assume p = p(0) + δp and ρ = ρ(0) + δρ and

limit ourselves only to a linear case in v, j, δp and δρ. Then

z

x

L

β

Figure 1. Schematic diagram of the liquid layer on the star

surface. The liquid layer is shown grey, hard crust is shown yellow,

magnetic field lines are shown by green arrows.
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equations (1) and (2) may be written as:

2ρ(0)[�× v] =
B (0)

c
[j× eB ] + Fvis − c2

s∇δρ − δρgez ,

(4)

−∇8 +
B (0)

c
[v× eB ] = R(0)j, divj = 0 and div(ρ(0)v) = 0,

(5)

where eB = B(0)/B (0) and c2
s = dp

dρ (ρ(0)). As boundary

conditions on the ocean surface z = 0, we require ∂vx
∂z = 0,

∂vy

∂z = 0 and vz = 0 to be met, the first two conditions

correspond to the tangential component continuity of the

stress tensor at the boundary of the liquid layer and

magnetosphere, the latter means that there is no liquid

flow from the ocean to the magnetosphere [5]. We also

assume that j z is set at z = 0, i.e. the current flowing

into the ocean from the magnetosphere [5]. On the ocean

bottom at z = −L, we assume v = 0 [5]. In addition,

for simplicity we assume that the hard crust has infinite

conductivity and, thus, 8 = 0 at z = −L. We suppose

that L ∼ 102 m, ρ ∼ 106 g cm−3 [7], the shear-viscosity co-

efficient η(0) ∼ 104 gm−1 s−1 [8,9], R(0) ∼ 10−19 CGS [10].

The Ekman number E = η(0)/(�L2ρ(0)) ∼ 10−11 and the

Hartman number Ha = (B (0)L)/(c
√

η(0)R(0)) ∼ 1011. Since

Ha2 ≫ E−1 ≫ 1, then the Coriolis forces can be ne-

glected and everywhere, except the surface layers, the

viscous forces Fvis can be also neglected. The nonlinear

term ρ(v · ∇)v is also neglected because the Reynolds

numberRe = ρ(0)vL/η(0) in our case will be very low

Re ∼ 10−2−10−4. Equation (1) also neglects the small

term ρ[�̇× x] and doesn’t assume centrifugal forces due

to their smallness compared with the gravity ρg [5]. An

approximate solution of equations (4) and (5) outside the

boundary layers may be written as

vx = −
1

cos2 β

c2

B2
(0)

(

R f
∂δ p̂0

∂ x̃
+ tg βR̃ f

∂2δ p̂0

∂y2

)

+
1

cos2 β

c
B (0)

∂ ĵB

∂y

(

R̃(0) +
sin2 β

ρ(0)(z )
K̃(z )

)

, (6)

vy =
1

cos2 β

c2

B2
(0)

(

−R f
∂δ p̂0

∂y
+ tg βR̃ f

∂2δ p̂0

∂ x̃ ∂y

)

+
c

B (0)

(

tg βR(0) ĵB −
R̃(0)

cos2 β

∂ ĵB

∂ x̃

)

, (7)

vz = tg β
c

B (0)

1

ρ(0)(z )

∂ ĵB

∂y
K̃(z ), (8)

where the following notations are introduced

R̃(0)(z ) =

z
∫

−L

R(0)(z
′)dz ′, R f (z ) = R(0)(z ) f (z ),

R̃ f (z ) =

z
∫

−L

R f (z
′)dz ′

and

K̃(z ) =

z
∫

−L

ρ(0)(z
′)R(0)(z

′)( f (z ′)K0 − 1)dz ′,

constant K0 is defined as

K0 =

0
∫

−L

ρ(0)(z
′)R(0)(z

′)dz ′

/

0
∫

−L

ρ(0)(z
′)R(0)(z

′) f (z ′)dz ′.

f (z ) is defined as

f (z ) = exp

(

0
∫

z

g/c2
s(z

′)dz ′

)

.

δ p̂0 and ĵB depend only on x̃ = x − tg βz and y . δ p̂0 is

equal to

δ p̂0(x̃ , y) = sinβ
B (0)

c
K0

4π

+∞
∫

−∞

ln
(

(x̃ − x̃ ′)2 + (y − y ′)2
) ∂ ĵB

∂y
(x̃ ′, y ′)dx̃ ′dy ′. (9)

Correction to pressure δp is equal to δp = δ p̂0(x̃ , y) · f (z )
and correction to density δρ is equal to

δρ = δp/c2
s (z ), respectively. ĵ(x̃ , y) is defined as

ĵB(x , y) = j z (x , y, 0)/ cos β and equal to the density of

current flowing in the magnetosphere along the magnetic

field lines.

Contribution of the surface layers and consideration of the

Coriolis force only give the corrections ∼ 1/(Ha · cos(β))
and ∼ E−1/Ha2 to expressions (6)−(8). Moreover, the

liquid flow velocity v in the upper boundary layer re-

mains almost unchanged and expressions (6) and (8)
give correct velocities on the ocean surface with an

accuracy to corrections ∼ 1/(Ha · cos(β)). To illustrate

the arising flow, let’s consider the simplest model case,

when the profile of current flowing from the mag-

netosphere into the liquid layer is axisymmetric, i.e.

ĵB(x̃ , y) = ĵB(r), where r =
√

x̃2 + y2, and assume that

c2
s = const(z ) and R(0) = Rs exp

(

−γ(z + L)
)

. The current

profile is taken the same as in [5], i.e. assume that

ĵB(r) = Is
∫ +∞

0
ĴB(k)J0(kR)dk , where

ĴB(k) =
(

a2b2/(b2
− a2)

)(

(1/b)J1(kb)

− (1/a)J1(ka)
)

exp(−εk2).

This current profile for a = 0.9b and ε = 10−4 is shown in

Figure 2, the left curve. The right curve in Figure 2 shows

Technical Physics, 2024, Vol. 69, No. 12



1894 International Conference PhysicA.SPb, 21–25 October 2024, St. Petersburg

0 0.2 0.4 0.6 0.8 1.0
–2

–1

2

1

3

4

r/b

0

5
j

/I
B
s

0 0.2 0.4 0.6 0.8 1.0
–200

–150

200

100

150

y/L

0

50

–100

–50v
B

/(
c
I
R

)
(0

)
s
s

v , z = –L/2x

v , z = –L/2z

v , z = 0x

Figure 2. The left curve shows the current profile for current flowing from the magnetosphere. The right curve shows the dependence

of the velocity components vx and vz on y at x̃ = 0 for z = 0 and z = −L/2. Due to the boundary conditions vz = 0 at z = 0.

the velocity components vx and vz of the flow that occurs

at such current in the plane x̃ = 0 for z = 0 and z = −L/2
for the case of β = 45◦, b = L, gL/c2

s = 1 and γL = 1. It

can be seen that, as in the case of the vertical magnetic field

β = 0 [5], almost all current is accumulated near the pulsar

tube boundary, where a current gradient exists.

Conclusion

Expression for liquid flow induced in the ocean on the

neutron star surface by the current ĵB flowing in the magne-

tosphere in the case of inclined uniform magnetic field B(0)

was addressed. As in [5,6], the resulting flow velocity is

extremely low. With B (0) ∼ 1012Gs and P ∼ 1 s, assuming

that ĵB ∼ �B (0)/(2πc), we have v ∼ 10−10−10−8 cm s−1.

This reflects the fact that current isn’t almost short circuited

in the liquid layer [5], which agrees with the results of [3]
and, in particular, supports the conclusions of [2] regarding
deceleration of the J0901-4046 pulsar by current loss due to

currents flowing through the vacuum gap, including also the

case when a small-scale magnetic field exists on the neutron

star surface. Unlike the case of β = 0 addressed in [5,6],
consideration of the field inclination leads to the occurrence

of a vertical liquid flow components compared in magnitude

with horizontal components. Such flow can probably induce

a very slowly growing instability that is a little similar to that

addressed in [11]. Note also that, when the magnetic field is

close to the horizontal field, cos β . 0.1, the flow velocity

may grow by a factor of ∼ 102−103 and a situation with

Re > 1 is possible in the area with sharp current gradients.

In this case, the obtained solution is not applicable any more

and instability may occur [11].
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