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Hybrid model of hydrogen thermodesorption from structural materials
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Thermodesorption spectrometry (TDS) is one of the effective methods for studying the interaction of structural

materials with hydrogen isotopes. A thin plate made of a material with metallic properties is considered. The

sample pre-saturated with dissolved hydrogen is slowly heated in a vacuum chamber. The degassing flux is

recorded using a mass spectrometer. The TDS spectrum is the dependence of the desorption flux density on the

current temperature is analysed. The paper presents a new hybrid model of thermodesorption, which operates with

both volume-averaged concentrations and surface concentration. The dynamics of concentration is determined by

nonlinear dynamic boundary conditions.
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Introduction

In many application problems it would be enough to

operate with the volume-averaged hydrogen concentrations.

It is rather adequate for
”
porous“, powdered materials,

when the geometric characteristics of the specimen are

not significant. For the structural materials with the metal

properties, the substantial effect of the surface adsorption,

desorption, dissolution and atomic diffusion in the volume is

specific. This causes the need for considering more detailed

models, in particular, to describe the dynamics of the surface

concentrations. The clarified model makes it possible

after the parametric identification using the experimental

data to forecast the material behavior in the hydrogen-

containing medium (this is especially true for deuterium and

tritium), including under the extreme conditions of material

operation.

The purpose of this paper — is to present the hybrid

model of thermal desorption, which combines a model in

terms of the volume-averaged concentration and a more

detailed model in the form of a diffusion equation with non-

linear dynamic boundary conditions reflecting the processes

on the surface. As a result, we come to the system of

ordinary differential equations (ODE system of a relatively

low order). Such model requires no specialized software.

It is possible to numerically model various situations and

conditions of material operation n any mathematical package

(the authors used Scilab) without substantial expenditures

of machine time.

In accordance with the purpose and nomination of

”
extended theses“ the concise treatment in the standard

designations provides only the most necessary references.

1. Limitation by diffusion

Let us specify that ℓ — plate thickness, diffusion

coefficient D = D(T (t)) ≡ D[t], i.e. the heating is slow and

even (T does not depend on x). Usually the linear heating

is used: T (t) = T0 + βt . When Tmax is achieved, the heating

stops.

For the volume-averaged concentration

X(t) ≈ 1
ℓ

∫ ℓ

0
c(t, x)dx

(

= c̄(t)
)

they often use a linear

model (see in more detail [1]): Ẋ(t) = −K(T )X(t),
X(0) = c0, K(T ) = π2ℓ−2D(T ), T = T (t)(T0 + βt).
The value X(t) has the meaning of the volume-averaged

concentration of the dissolved hydrogen left in the specimen

at t > 0. The model is operable, when the temperature is

rather high, and we are interested in the integral flow of

degassing. At the same time the kinetic coefficient K(T ) is

proportionate to D(T ).

Note 1

It can be additionally normalized to the initial con-

centration: X̃ = X
c0
, X̃(0) = 1. The equation will stay

unchanged (linear and homogeneous), but a nondimen-

sional variable X̃(t) will already have the meaning of the

remaining share of c0. One can operate with the desorbed

share Y (t) = 1− X̃(t) and then Ẏ (t) = K(T )
(

1− Y (t)
)

,

Y (0) = 0. Note that such simplest model, when only the

diffusion limits strictly, will not respond to c0, but will

respond to the geometric parameter ℓ: K(T ) = K(T ; ℓ).
In non-linear models we will not normalize to c0 (in contrast

to [1]).

2. Limitation by desorption

Under strict limitation by desorption the

concentration in the volume is practically even:

c(t, x) ≈ c(t) ⇒ X(t) ≈ c(t). Then, based on the

assumptions of the material balance, one may record

ℓẊ = −2b(T )X2, X(0) = c0, and consider b(T ) the

effective recombination coefficient [2].
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For unity the averaged degassing flow is to be counted in

the hydrogen atoms: 1H/(cm3s).

Note 2

This is the second considered extreme case, when the

diffusion is relatively quick, and only desorption limits

strictly. Here the kinetic coefficient is K(T ) = 2b(T)
ℓ

. Instead

of D(T ), b(T ) naturally appears, and dependence on ℓ

remains. If we go to shares X̃ = X
c0
, then dX̃

dt = −K̃(T )X̃2,

X̃(0) = 1, K̃(T ; ℓ, c0) = 2b(T)c0

ℓ
. Additional dependence

on the initial saturation appears. It should be taken into

account for metals and alloys. Then one may record the

response equation of the second order dX̃
dt = −b̃(T )X̃2,

interpreting b̃(T ) as the volume desorption coefficient.

Therefore, let us leave the averaged concentration X(t) as

the variable, and leave c0 in the source data: X(0) = c0.

3. Averaging by diffusion and desorption
processes

In the wide range of the experiment conditions the

diffusion and desorption are substantially interdependent

(dynamics of the processes on the surface dictates the

boundary conditions for the diffusion equation). With ac-

count of T = T (t) = T0 + βt, dT = βdt, t ↔ T ∈ [T0, T∗]
instead of X(t) one may record X(T )

(

≈ c̄(T )
)

and

dX
dT

= −β−1K(T )Xα(T ), X(T0) = c0, α ∈ [1, 2],

K(T ) = K0 exp{−Q[RT ]−1}.

Parameter α ∈ [1, 2] makes it possible to take into account

the degree of participation of the limiting factors. We

apply averaging both by concentration and the processes

of diffusion and recombination. Coefficient K(T ) indirectly

depends on α: at α ∼ 1 we focus on π2ℓ−2D(T ), and

at α ∼ 2 — on 2b(T )/ℓ. In [1] analytically analyzed this

model (only it additionally considered the normalization of

X → X/c0 ∈ (0, 1), t > 0, and K = K(T )).

Note 3

Paper [3] presents the spectrum of models

Ẋ = K(T ) f (X), where X(t) — the reacted fraction.

Compared to the designations above in [3] X = 1− X/c0

is assumed, where on the right X — is the volume-

averaged concentration. [4] studied the impact of the initial

saturation. Paper [5] contains the detailed description of the

proposed model and the wide list of references. Let us also

note the substantial review [6].

4. Model with dynamic boundary
conditions

Let us proceed to a more detailed model, clearly

separating the volume and surface processes (following [7]).
The boundary value problem of the degassing TDS will look

as follows:

∂tc(t, x) = D(T )∂2x c(t, x), t ∈ (0, t∗), x ∈ (0, ℓ),

c(0, x) = c0, x ∈ [0, ℓ], c0,ℓ(t) = g(T )q(t),

dq
dt

≡ q̇(t) = −b(T )b(T )q2(t) + D(T )∂x c(t, 0),

J(t) = b(T )q2(t), T (t) = T0 + βt, β > 0.

Here c(t, x) — volume concentration (1H/cm3); q(t) —
surface concentration (1H/cm2); D, b, g — (Arrhe-
nius by temperature) coefficients of diffusion, desorp-

tion, quick dissolution, size accordingly cm2/s, cm2/s,

1/cm; J(t) — density of the desorption flow (atoms

recombined into molecules), [J] = 1/cm2s, 1 means one

atom H. In virtue of t ↔ T , J = J(T ) may be expressed.

Within such model, the curve is
(

T, J(T )
)

and makes

the TDS spectrum. Desorption is referred to the single

(cm2) part of the double-sided surface, q0,ℓ(t) = q(t).
To simplify recording D(t) ≡ D

(

T (t)
)

, g(t) ≡ g
(

T (t)
)

,

b(t) ≡ b
(

T (t)
)

. Paper [8] implements the three-stage ex-

periment of
”
breakthrough−overlow−thermal desorption“,

which substantially improves its information value.

Let us complicate the diffusion equation with account

of the reversible capture into the traps of various types

(practically evenly distributed in the volume):

∂t c = D∂2x c − 6m
ν=1[a

−

ν [1− Zν ]c(t, x) − a+
ν z ν(t, x)],

∂tz ν = a−

ν (T )[1− Zν ]c(t, x) − a+
ν (T )z ν(t, x),

where z ν(t, x) — concentrations of H (1/cm3), trapped by

defects (microcracks, grain boundaries,. . . ); a∓
ν — coeffi-

cients of absorption and release of H; Zν ≡ z ν(t, x)/max z ν .

5. Hybrid model of thermal desorption

Let us proceed to the main content of this paper. Let

us set the objective of combining the two considered

classes of models. Not to clutter the calculations, let us

limit ourselves to one type of traps (for example, grain

boundaries). Let us record the diffusion equation in the

form of ∂tc + ∂tz = D(T )∂2x c , T = T (t). A change in

the total concentration c + z is determined by the density

of the diffusion flow Jd = −D∂x c . Continuity equation:

∂t(c + z ) = −∂x Jd . Let us integrate the equation by x :

∫ ℓ

0

∂c
∂t

dx +

∫ ℓ

0

∂z
∂t

dx =
d
dt

∫ ℓ

0

c(t, x)dx

+
d
dt

∫ ℓ

0

z (t, x)dx = D(T )

[

∂c
∂x

∣

∣

∣

ℓ
−

∂c
∂x

∣

∣

∣

0

]

.
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Figure 1. Comparison of models: boundary value problem

and hybrid model; a — thermal desorption flows, b — comparison

of relative concentrations.

Let us introduce the volume-averaged concentrations

X(t) = 1
ℓ

∫ ℓ

0
c(t, x)dx , Y (t) = 1

ℓ

∫ ℓ

0
z (t, x)dx . In virtue

of symmetry ∂x c(t, 0) = −∂x c(t, ℓ) we get Ẋ(t) + Ẏ (t) =

= −2D(T ) ∂c
∂x

∣

∣

∣

0
· ℓ−1. Let us substitute the expression for

D∂x c|0 in the equation for the surface concentration:

dq
dt

≡ q̇(t) = −b(T )q2(t) −
ℓ

2
[Ẋ(t) + Ẏ (t)].

And for X , Y let us accept the averaged models. For X :

Ẋ(t) = −K(T )Xα(t), X(0) = c0,

K(T ) ≡ K(T ; ℓ, α) = K0ℓ
α−3 exp{−Q/[RT ]}.

Let us integrate using x ∈ [0, ℓ] the equation for z :

∂tz = a−(T )c(t, x) − a+(T )z (t, x), z (0, x) = z 0

⇒
d
dt

Y (t) = a−(T )X(t) − a+(T )Y (t), Y (0) = z 0.

Let us now record the model in compact form. Dynamics

of concentrations:











dq
dt = −b(T )q2(t) + ℓ

2
[K(T )Xα(t) − a−X + a+Y ],

d
dt X(t) = −K(T )Xα(t),
d
dt Y (t) = a−(T )X(t) − a+(T )Y (t).

Source data (at the even equilibrium initial saturation of the

specimen):

q(0) = q0, X(0) = c0, c0 = g(T0)q0,

Y (0) = z 0, a−(T0)c0 − a+(T0)z 0 = 0.

Note that the initial values c0, q0, z 0 are dependent.

We are interested in the density of the desorption flow

J(t) = b
(

T (t)
)

q2(t). In axes (T, J) we have the TDS

spectrum (curve J(T ), t ↔ T (t)
)

.

We have a system of three ODEs. But in fact it is

numerically integrated in series. First we calculate X(t)
using the second equation. Substituting to the third one, we

get the linear ODE for Y (t). With the known X(t), Y (t) it

is left to integrate numerially the first equation for q(t).

6. Results of numerical modeling

Let us focus on the data on tungsten [9]. Pa-

rameter estimates depend substantially on the con-

ditions of the experiment and specimens prepara-

tion, so let us perceive the values as the model

ones (in numerical order). Accepted values of

model parameters: b0 = 3.2 · 10−7 cm2/s, [E] = kJ/mol,

Eb = 100, D0 = 4.1 · 10−3 cm2/s, ED = 62, g0 = 200 cm−1,

Eg = 0, c0 = 6.567 · 1017 cm−3, ℓ = 0.05 cm, T0 = 300K,

Ṫ = β = 2K/s.

Fig. 1 presents the spectra and concentrations using the

model in the form of the boundary value problem and

the hybrid model. Two-peak curves are produced, and

the peaks are comparatively isolated. With the growth

of the reaction α = 2 order the high temperature peak

moves towards the low-temperature one. At α = 2 we

have the spectrum with one peak. Further see figures

α = 1. Fig. 2 illustrates the impact of parameters that

the experimenter may vary. Fig. 3 presents numerical

spectra with account of various defects. Curves with

account of defects of
”
microcavity type“ (a− = 10−5,

Ea− ≡ 10, a+ = 1.5, Ea+ = 35, zmax = 1017 cm−3). The

initial concentration in the defects is determined on the

basis of the equilibrium conditions. Here in fig. 3 the

impact of defects of
”
hydride inclusion type“ is illustrated.

The hydride decomposition starts at T = 600K, a+ = 1.5,

Ea+ = 25, z 0 = 1017 cm−3.

The general conclusion on the results of numerical

modeling consists in the following. The hybrid model

demonstrated the consistency compliant with the physical

representations both at the quality and quantity levels. One

may assess the extent of impact of (
”
derivatives“) at the
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flow of degassing in variations of the model parameters

and experiment conditions. If it is necessary to identify

the qualitative differences at the level of
”
capture in the

volume or dynamics with account of the surface“, the

experiments with the specimens of various thickness are

most informative (fig. 2, c).
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