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Method of calculation of relativistic charged particles density
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The Q, G method for studying non-stationary processes in collisionless plasma with relativistic particles has been

developed. Analytical expressions for the particles density and current in a slightly perturbed electric field are

obtained. Based on the obtained expressions, a theory of stability of a relativistic Boursian diode stationary states

in the absence of electron reflection from potential barriers is constructed.
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Plasma produced by various astrophysical objects [1]
and laboratory setups [2] often contains charged particles

accelerated to relativistic velocities. Pulsars are one of

the most complex objects with relativistic plasma. They

have been discovered approximately 50 years ago, but the

nature of generation of their RF radiation still remains

unclear [3]. Fluxes of charged particles in the indicated

objects normally leave the emitter surface with a known

velocity distribution function (VDF) and propagate without

collisions in a nonstationary electric field. The Q, G-method

for calculating the density of nonrelativistic particles was

proposed in [4]. It relies on an analytical expression that is

an integral over the regions of initial velocities at the emitter.

Compared to the stationary case [5], this expression contains

two additional functions: G and Q, which are associated

with the field change over time. Exact expressions were

obtained for them in [4]. In the present study, a method

of this kind is developed for relativistic particles. It is

demonstrated that the method provides an opportunity to

investigate the stability of stationary states (constructed
in [5]) of a Bursian diode with relativistic electrons.

A planar diode with distance d and potential difference U
between the electrodes is considered. It is assumed that a

relativistic electron flux is supplied from an electrode with

a known VDF f 0(v0, t0) and moves in a nonstationary

electric field without collisions.

The equation of motion of a relativistic electron with mo-

mentum p = γmv (γ =
[

1− v2/c2
]

−1/2
is the relativistic

factor, c is the speed of light, and m is the electron mass)
in electric field E(z , t) takes the form

d p
dt

= −eE(z , t) = e
∂

∂z
ϕ(z , t). (1)

Here, e is the electron charge and ϕ(z , t) is the potential.

Multiplying (1) by velocity v and using the expressions

for kinetic energy Wkin = (γ − 1)mc2 and its derivative
dWkin

dt = v dp
dt , we obtain the law of conservation of en-

ergy with an additional term on the right-hand side —

eG(z , t; v0, t0):

(γ − 1)mc2 − eϕ − (γ0 − 1)mc2

= −e

t
∫

t0

dt′
∂

∂t′
ϕ(z , t′)

∣

∣

z=z (t′;v0,t0)
≡ eG(z , t; v0, t0). (2)

Here, γ0 is the relativistic factor at the emitter. Quantity

e G(z , t; v0, t0) is the amount of energy acquired by an

electron leaving the emitter with velocity v0 at time t0,
propagating in a nonstationary field, and arriving at point

z at time t . Equation (2) relates the velocity of the particle

at point (t, z ) to its velocity at the moment of emission.

The calculation of particle density follows the one per-

formed in [4]. We divide the VDF at the emitter tentatively

into groups (
”
beams“) of electrons leaving the emitter with

velocities from a narrow interval (v0, v0 + 1v0) within a

short period of time (t0, t0 + 1t0). It is assumed that

density 1n(z , t; v0, t0) for each beam is related to its average

velocity v(z , t; v0, t0) by a formula similar to formula (5)
from [4]:

1n(z , t; v0, t0) =
f 0(v0, t0)v0dv0
∣

∣D(z , t; v0, t0)
∣

∣

,

D
(

z , t; v0, t0
)

= −
∂

∂t0
z (t, v0, t0). (3)

This relation may be obtained by applying the law of

conservation of energy for a particle and the continuity

equation for a beam.

To find the trajectory of an electron emitted with velocity

v0 at time t0, we integrate equation of motion (1) once.

This yields

p(t; v0, t0) = mγ0v0

− e

t
∫

t0

dt′E[z (t′; v0, t0), t′] ≡ F(t; v0, t0). (4)
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Velocity v determined from this relation is

v(t; v0, t0) =
d
dt

z (t; v0, t0) =
F(t; v0, t0)

[m2 + F2(t; v0, t0)/c2]1/2
.

(5)
Solving differential equation (5), we find trajectory

z (t; v0, t0):

z (t; v0, t0) =

t
∫

t0

dt′
F(t′; v0, t0)

[m2 + F2(t′; v0, t0)/c2]1/2

=

t−t0
∫

0

dt′
F(t′ + t0; v0, t0)

[m2 + F2(t + t′0; v0, t0)/c2]1/2
. (6)

Functions D(z , t; v0, t0) and Q(z , t; v0, t0) are then written

as

D(z , t; v0, t0) = v(t; v0, t0) + e m2

×

∫ t−t0

0

dt′
∫ t′

0
dt′′ d

dt0
E[z (t′′ + t0; v0, t0), t′′ + t0]

[m2 + F2(t′ + t0)/c2]3/2
,

Q(z , t; v0, t0) = v − D = −e m2

×

∫ t−t0

0

dt′
∫ t′

0
dt′′ d

dt0
E[z (t′′ + t0; v0, t0), t′′ + t0]

[m2 + F2(t′ + t0)/c2]3/2
. (7)

To calculate the density, we sum the contributions of all

beams that may reach point z at time t :

n(z , t) =
∑

i=0,1

∫

�i (z ,t)

f 0(v0) v0dv0

|v(z , t; v0, t0) − Q(z , t; v0, t0)|
,

v(z , t; v0, t0)

= c

(

{

γ0 + e/(mc2)[ϕ(z , t) + G(z , t; v0, t0)]
}2

− 1
)1/2

γ0 + e/(mc2) [ϕ(z , t) + G(z , t; v0, t0)]
.

(8)
Here, i = 0 and 1 correspond to particles arriving at point z
with positive and negative velocities. The relation between

velocity v0 and time of emission t0 of particles from the

boundary may be found by solving equation of motion (6).
In addition, at given z and t, regions �i (z , t) are determined

from the shape of curve v0 = v0(t0; t, z ).

Let us consider the motion of particles without reflections

from potential barriers in a weakly perturbed field; i.e., it is

assumed that

ϕ(z , t) = ϕ0(z ) + ϕ̃(z ) exp(−i ω t), |ϕ̃(z )| ≪ |ϕ0(z )|.
(9)

As in the nonrelativistic case, we assume that

G(z , t) = G̃(z ) exp(−i ω t), Q(z , t) = Q̃(z ) exp(−iωt).
Let us find Q̃(z ). First, we find the derivative of field E

with respect to t0 using (9):

d
dt0

E[z (t + t0; v0, t0), t + t0]

=

[

i ω
dϕ̃(z )

dz
− ϕ′′

0 Q̃(z )

]

exp[−iω (t + t0)]. (10)

Inserting this expression into (7), we obtain an integral

equation for Q̃(z ). Substituting integration variable t in

the integrand with variable z (dt = dz/v(z )) and switching

from Q̃(z ) to new function W (z ) = Q̃(z ) exp[−i ω σ (z )],
we obtain

W (z ) =

z
∫

0

dx
v(x)γ3(x)

x
∫

0

dy
v(y)

×

{

(vv ′γ3)′W (y) − iω
e
m

dϕ̃(y)

dy
exp

[

−iωσ (y)
]

}

.

(11)

Here, σ (z ) =
z
∫

0

dx
v(x) is the time of flight to point z . This

Volterra integral equation may be solved by the method

proposed in [4]. Thus, we find W (z ) and Q̃(z )

Q̃(z ) = −iω
e
m
v(z ) exp

[

iωσ (z )
]

×

z
∫

0

dx
v3(x)γ3(x)

x
∫

0

dy ϕ̃′(y) exp
[

−iωσ (y)
]

. (12)

It is notable that expression (12) for Q̃(z ) differs from the

nonrelativistic case only in the presence of factor γ3 in the

denominator of the outer integral.

The formula for G̃(z ) is the same as in the nonrelativistic

case [4]:

G̃(z ; v0, t0) = −ϕ̃(z )

+

z
∫

0

dx ϕ̃′(x) exp
{

iω
[

σ (z ) − σ (x)
]}

. (13)

The developed method allows one to investigate the

stability of stationary potential distributions in a Bursian

diode that were found in [5]. It is convenient to switch

to dimensionless quantities and use the energy of electrons

entering from the left boundary and the Debye length at

the left boundary as the units of energy and length [5]:

W0 = (γ0 − 1)m0c2, λD =
[

(2ε̃0W0)/(e2n0)
]1/2

. The unit of

velocity is v0 = c
√

γ2
0 − 1/γ0. The dimensionless coordi-

nate, potential, electric field strength, velocity, and time

are ζ = z/λD , η = eϕ/(2W0), ε = eEλD/(2W0), u = v/v0,

and τ = t /(λD/v0). The dimensionless gap length and

potential difference between the electrodes are written as

δ = d/λD and V = eU/(2W0). It is convenient to represent

stationary solutions by points on the
{

ε0, δ
}

plane, where
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Figure 1. Branches of stationary solutions for a Bursian diode

for different values of relativistic factor γ0 . The potential difference

between the electrodes is V = 0.
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Figure 2. Dependences of the Ŵ increment on δ for the stationary

solutions in a Bursian diode corresponding to the branches in

Fig. 1.

ε0 is the dimensionless electric field strength at the emitter.

At fixed V , these points form continuous curves (branches
of stationary solutions). In the regime without electron

reflection examined in the present study, such branches

corresponding to V = 0 are shown in Fig. 1 for a series

of γ0 values. The lower and upper parts of these branches

are often called normal and overlap branches, respectively,

in literature. Note that overlap branches are interrupted on

the left at the points of origin of solutions with electron

reflection from a virtual cathode.

To examine the stability of stationary solutions, we insert

electron density (8) into the Poisson equation in which the

potential distribution has the form of expression (9) and

perform linearization in the amplitude of small perturbation

ϕ̃. An integro-differential equation for ϕ̃ containing G̃ and Q̃

is obtained as a result. We use expressions (12) and (13) for
these functions. The resulting equation may be integrated

once in z to obtain an integral equation for ϕ̃′(z ). If the

electron VDF at the emitter is a δ-function, the equation for

amplitude in dimensionless variables takes the form

η̃′(ζ ) +
2γ2

0

γ0 + 1

ζ
∫

0

dx
u3(x)γ3(x)

x
∫

0

dy η̃′(y)

× exp
{

i�[q(ζ ) − q(y)]
}

= −
i
�

J̃. (14)

Here, q =
∫ ζ

0
dx

u(x) is the dimensionless time of flight of an

electron from the emitter to point ζ , � = ω/(λD/v0) is

the dimensionless frequency, and J̃ is the dimensionless

amplitude of the total current perturbation. The derivative

is taken with respect to coordinate ζ .

To solve Eq. (14), one needs to calculate the characteris-

tics of stationary solutions: u and γ . Using the expression

for the momentum of a relativistic electron, Eq. (1), and

the Poisson equation, we obtain the following for these

quantities:

u(q)γ(q) =
γ2
0

γ0 + 1
q2 −

2γ2
0

γ0 + 1
q + γ0 = f (q),

u(q) =
f (q)

{

1 + [(γ2
0 − 1)/γ2

0 ] f 2(q)
}1/2

,

ζ (q) =

q
∫

0

dt f (t)
{

1 + [(γ2
0 − 1)/γ2

0 ] f 2(t)
}1/2

. (15)

Using the law of conservation of energy (2), we obtain the

dependence of potential η on q

η(q) = −
1

2
+

(γ0 + 1) f 2(q)

2γ2
0

{

[

((γ2
0 − 1)/γ2

0 ) f 2(q) + 1
]1/2

+ 1
} .

(16)
It can be seen from formulae (15) and (16) that the

stationary solutions in a relativistic diode are governed by

three external parameters: δ, V , and relativistic factor γ0.

Let us solve Eq. (14) numerically to study

the stability of the obtained potential distributions.

First, we divide it by η̃′(0) = − i
�

J̃ and introduce

9(ζ ;�) = η̃′(ζ )/η̃′(0) exp(−i�τ (ζ )). Changing the order

of integration in the double integral in (14) and multiplying

the entire equation by exp
(

−i�τ (ζ )
)

, we obtain

9(ζ ;�) +
2γ2

0

γ0 + 1

ζ
∫

0

K(ζ , y)9(y ;�)dy = exp
(

−i�τ (ζ )
)

,

K(ζ , y) =

ζ
∫

y

dx
(

u(x)γ(x)
)3
. (17)
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Let us divide the entire [0, δ] interval into N intervals

with length h and boundaries ζi , i = 0, 1, . . . , N in a way

that 0 = ζ0 < ζ1 < · · · < ζN = δ and substitute the integrals

with sums. The result is a system of linear equations for

determining the value of unknown function 9(ζi ;�) at

nodes ζi .

The discrete form of the relation specifying the connec-

tion between � and δ (dispersion relation) is

N−1
∑

j=1

9(ζ j ;�) exp
(

i�τ (ζ j)
)

+
1

2

[

9
(

ζN ;�) exp(i�τ (ζN)
)

+ 1
]

= 0.

We find �(δ) from this relation and determine the stability

of branches. The dispersion branches of stability are shown

in Fig. 2. In the case of a nonrelativistic diode (γ0 = 1),
the Ŵ(δ) dependences match those plotted in [6]. It is

evident from Fig. 2 that, as in the nonrelativistic case, normal

branches are aperiodically stable, while overlap branches are

unstable with respect to small perturbations.

Thus, an analytical method for calculating the density

of relativistic charged particles leaving an emitter with a

known VDF and propagating in a nonstationary electric field

without collisions was developed. The obtained expression

for particle density was used to examine the stability of

solutions for a diode with relativistic particles in the case

of their motion without reflection from potential barriers.

Analytical expressions for functions G and Q in the case of a

small electric field perturbation were obtained. The stability

of stationary states of a Bursian diode with relativistic

electrons [5] was investigated for illustrative purposes. The

developed method may be used to study the stability of

diodes with relativistic fluxes of charged particles.
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