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Lyon’s integral: turbulent thermal conductivity and thickness of the

thermal sublayer
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The heat-transfer coefficient was calculated from the Lyonś integral using the two-layer model (thermal sublayer

and turbulent flow core). To estimate the turbulent thermal conductivity, the Prandtl mixing length model was

used. Under the accepted assumptions, the Lyonś integral had a rather simple form. Numerical solution of the

integral yielded the distribution of the heat transfer coefficient over parameter Re
√

Pr, which agrees well with the

Dittus−Boelter correlation for turbulent heat transfer.
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Being one of the special cases of the energy equation un-

der certain conditions, the Lyonś integral finds application in

estimating the heat transfer coefficient in various flows [1,2].
This integral is mainly considered in the form of
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where Nu = 2αr 0/λ is the Nusselt number (α is the heat

transfer coefficient), R = r /r 0 is the dimensionless radius

(r 0 is the channel radius), U = u/Um is the dimensionless

longitudinal velocity (Um is the average flow rate), Pr

and Prt are the Prandtl numbers (molecular and turbulent

ones), ν and νt are the kinematic viscosities (molecular and

turbulent ones).
In this relationship, the turbulent Prandtl number is

believed to interrelate the processes of momentum and heat

transfer. However, determination of this parameter is a

rather difficult task; attempts on its modeling and even ex-

perimental measurement gave cumbersome expressions and

ambiguous results [3]. The integration itself is proposed to

be performed over three layers (viscous sublayer, transition
region and flow core). In some cases, it is believed possible

to restrict the task to a two-layer model (viscous sublayer

and flow core).
This work is devoted to determining the heat transfer

coefficient for a turbulent flow in a circular pipe based on a

”
simpler“ (original) form of the Lyonś integral:
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where λ is the molecular thermal conductivity of the work-

ing fluid, λt = cpρ〈v ′t′〉/(dt/dy) is the turbulent thermal

conductivity of the flow (angle brackets indicate averaging),
y is the transverse coordinate (from the wall), v ′ are

the transverse velocity oscillations, t and t′ are the flow

temperature and its oscillations.

In addition to the conditions under which the Lyonś

integral was obtained, the following assumptions will be

made for solving this problem.

1. A two-layer flow model is considered: thermal sublayer

(sublayer with molecular thermal conductivity) and flow

core.

2. For the flow core, it is assumed that the turbulent

velocity profile obeys the
”
1/7“law.

3. The Prandtl mixing length model is assumed to be valid

for both the hydrodynamic and thermal flow disturbances.

Their ratio is lm/lmT ≈
√
Pr (similarly to that between

thicknesses of developing boundary layers δ/δT ≈
√
Pr).

4. Oscillations of velocity v ′ and temperature t′ strictly

correlate with each other (with correlation coefficient

r vt ≈ 1). Turbulence is isotropic. Note that liquid metals

(Pr ≪ 1) are not considered here.

5. The thermal sublayer thickness is y1 ≈ δ1/Pr1/3 (δ1 is

the viscous sublayer thickness [4].
6. Friction on the wall is defined by the Blasius formula.

Thus, the Lyonś integral takes the following form:
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Here we take into account that the turbulent thermal

conductivity in the thermal sublayer (R1 6 R 6 1) is λt = 0.

The higher is λt , the higher is heat transfer coefficient Nu.
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According to assumption (2), u/U0 = (y/r 0)1/7, where the

maximum channel-axis velocity is U0 = 1.22Um. In the

accepted frame of reference, Y = y/r 0 = 1− R. Then the

integral in the numerator (denoted as I ) will be

I =
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URdR=
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.

The obtained integral may be approximated by relation

I = 0.52R2 over the entire range 0 6 R 6 1 (with the near-

wall deviations of ±5%). Then
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Consider the denominator (denoted as Z) in the integrand

Z = 1 +
λt

λ
= 1 + cpρ

〈v ′t′〉
λ∂t/∂y

.

Here all the parameters are presented in the dimen-

sional form; they may be converted into the dimen-

sionless form using characteristic parameters V ′ = v ′/U0,

T ′ = t′/(Tf − Tw) = t′/1T , Y = y/r 0 . Then

〈v ′/t′〉 = U01T〈V ′T′〉, dt/dy = 1T/r 0dT/dY.

Hence,

Z = 1 + cpρ
U0r 0〈V ′T′〉
λ∂T/∂Y

.

If

Re = ρUmd/µ = 2ρU0r 0/(1.22µ)

obtain

Z = 1 + 0.61RePr
〈V ′T ′〉
∂T/∂Y

.

As per assumption (3), in the case of isotropic turbulence

v ′ ∼ u′ = lmdu/dy ((lm = 0.4y is the mixing length). Let

us present temperature oscillations similarly to the flow

oscillations: t′ = lmTdt/dy ((lmT is the mixing length for

temperature disturbances), where lmT ≈ lm/
√
Pr. Then, if

assumption (4) is taken unto account, the set of parameters

comprised in the turbulent thermal conductivity definition

will be

〈V ′T ′〉
∂T/∂Y

=
0.4Y(dU/dY)0.4Y(dT/dY)√

Pr(dT/dY)
=

0.16Y2(dU/dY)√
Pr

.

Note that assumption (4) seems possible if there are

no oscillations of the wall temperature or heat flow qw

independent of flow disturbances. Then

Z = 1 +
λt

λ
= 1 + 0.61Re

√
Pr · 0.16Y2 ∂U

∂Y
.

For the velocity profile obeying the
”
1/7“law,

dU/dY = d/dY(Y1/7) = Y−6/7/7. Hence,

taking into account that Y = 1− R, obtain

Z = 1 + 0.014Re
√
Pr(1− R)8/7.

Thus, the Lyonś integral is
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The available publications typically use the bound-

ary layer separation according to dynamic parameters.

However, in considering the process of heat transfer it

seems reasonable to use their thermal analogues. In

this connection, in this work we use the
”
thermal

sublayer“instead of
”
viscous sublayer“İn the framework

of the two-layer model, the viscous sublayer thickness

is assumed to be restricted by yUτ /ν < 10. Let us

define the viscous sublayer boundary by using Blasius

formula ξ = 0.3164/Re0.25. Then the dynamic velocity

is Uτ = (τ /ρ)0.5 = (c f /2)
0.5Um = 0.2Um/Re

1/8, where the

friction coefficient is c f = ξ/4. Hence, the viscous sublayer

thickness is Y < 10νRe1/8/(r 0 · 0.2Um) or Y < 100/Re7/8.

Based on assumption (5), assume that the heat trans-

fer in the sublayer with thickness Y < 100/(Re7/8Pr1/3)
proceeds only due to the molecular thermal conductiv-

ity, while that in the flow core is due to both the

molecular and turbulent conductivities. Thus, the ther-

mal sublayer boundary is R1 = 1− 100/(Re7/8Pr1/3) or

Y1 = 100/(Re7/8Pr1/3). This boundary may be represented

as Y1 = 100/
(

(Re
√
Pr)7/8Pr−0.1

)

. This relation implies

the sublayer thickness dependence on both Re
√
Pr and,

separately, Pr. Here the integrands are, in essence,

distributions of thermal resistance (in arbitrary units) along

the pipe radius, while the integral itself represents the

total thermal resistance of the flow. Therewith, the final

Lyonś integral expression turns out to be quite simple

(free of cumbersome empirical relations). The results of

numerical integration of relation (1) for medium-Prandtl-

number fluids (Pr−0.1 ∼ 1) are presented in the Table and

Figs. 1, 2. As shown in Fig. 1, the maximum thermal

resistances get achieved in the channel near-wall region at

Y → 0 (R → 1). When Re
√
Pr increases, the ratio between

thermal resistances of the thermal sublayer and flow core

varies considerably: from 77 and 23% at Re
√
Pr = 5 · 103

to 40 and 60% at Re
√
Pr = 107 .
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Results of calculation

Re
√

Pr Y1 Nu

5 · 103 5.8 · 10−2 24

104 3.2 · 10−2 39

105 4.2 · 10−3 218

106 5.6 · 10−4 1325

107 7.5 · 10−5 8894
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Figure 1. Thermal resistance at Re
√

Pr = 5 · 103 (1) and 107 (2).
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Figure 2. Heat-transfer coefficient. 1 — integral (1), 2 —
Nu = 0.023Re0.8Pr0.4.

The obtained data on the heat-transfer coefficient

(Fig. 2) exhibits a clear association with the empirical

Dittus−Boelter relation
(

Nu = 0.023(Re
√
Pr)0.8

)

. Note

that, formally, in both relations the heat transfer is deter-

mined by the same parameter Re
√
Pr. The existing devia-

tions of about 8% are, probably, associated with the factors

not taken into account here. In general, we may consider the

achieved agreement to be quite good and made assumptions

to be physically justified at least for Pr−0.1 ∼ 1. In this

case, the Lyonś integral defines the heat-transfer coefficient

as a function of turbulent thermal conductivity and thermal

sublayer thickness (thermal resistance): Nu = f (λt , y1),
where, in turn, λt = f 1(Re, Pr) and y1 = f 2(Re, Pr).
Probably, the proposed approach will be also useful in

assessing heat transfer in more complex flows, e. g. in

channels with different intensifiers.
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