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Structural nature of localized plasticity autowaves dispersion
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The relationships between macroscopic and microscopic deformation methods are considered using comparative

characteristics of dislocation systems and the nature of dispersion of localized plasticity autowaves for different

stages of the deformation curve. It is established that the form of the dispersion law for each stage of strain

hardening is determined by good dislocation ensembles that arise at different stages of the plastic deformation

process.
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The development of the autowave approach in plasticity

physics [1,2] was facilitated by the difficulty of application

of dislocation models to severe plastic strain [3]. One of

the foundational aspects of the autowave model of localized

plasticity is the correspondence rule [1], which stipulates

that each stage of the deformation curve corresponds

uniquely to its own autowave mode of plastic flow. In turn,

the stages of plastic flow are realized sequentially in the

process of deformation of materials (see Fig. 1, which is

plotted based on the data from [4]).
As is known [5,6], autowave processes are generated only

by active deformable media. The activity of a medium

is specified by the presence of distributed sources of

potential energy associated with dislocations and dislocation

ensembles [3], which act as stress concentrators. Their

elastic fields [3], which evolve regularly under deformation,

make the medium active. It is of interest to compare
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Figure 1. Stages of plastic flow under tension in a single crystal of

the Fe−Cr−Ni alloy in the presence of atomic hydrogen (50 ppm).
I — Lüders strain, II — stage of linear strain hardening, III —
stage of parabolic strain hardening, IV — collapse of the autowave

function (pre-fracture), and V — necking.

the macroscopic characteristics of autowave processes of

plastic flow [1,2] with available data on the morphology of

dislocation ensembles typical of different stages of plastic

flow [3].
This comparison may be based on the dispersion laws

of localized plasticity autowaves. As was demonstrated,

they may be presented in the general form of ω(k) ∼ kβ ,

where ω is the frequency, k is the wave number, and

index β changes discretely in interstage transitions. It

follows from Fig. 2 that the stage of Lüders elastoplastic

transition has β = 1 (linear dispersion), the stage of lin-

ear strain hardening is characterized by β = 2 (quadratic
dispersion), β = 5/2 corresponds to the stage of parabolic

strain hardening, and the stage of collapse of the localized

plasticity autowave (pre-fracture) is characterized by β = 3

(cubic dispersion).
Using dimensional analysis, one may present the disper-

sion equation for localized plasticity autowaves in a form

that is common to all stages of plastic flow:

ω(k) ∼
(

3β

ϑ

)

kβ , (1)

where coefficient 3β/ϑ for each stage of the process is

specified by spatial (structural) scale 3 and relaxation

time ϑ corresponding to this stage. Thus, we obtain the

following relations for the Lüders strain stage:

ω(k) ∼ (3/ϑ)k, β = 1, (2)

the stage of linear strain hardening:

ω(k) ∼ (32/ϑ)k2, β = 2, (3)

the stage of parabolic strain hardening:

ω(k) ∼ (35/2/ϑ)k5/2, 2 < β = 5/2 < 3 (4)

and the pre-fracture (autowave collapse) stage:

ω(k) ∼ (33/ϑ)k3, β = 3. (5)
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Figure 2. Dispersion curves for different stages. Squares — easy

slip [2], circles — Lüders strain (I), triangles — linear strain hard-

ening (II), inverted triangles — parabolic strain hardening (III),
and diamonds — pre-fracture (IV).

In relations (3) and (5), 32 = 6 is area and 33 = � is

volume, which reveals the geometric nature of this interpre-

tation. The physical meaning of quantities 6 and � will be

discussed below.

Let us consider the physical nature of relations (2)−(5)
under the assumption that changes in the dispersion law

are induced by changes in the type of active media during

strain hardening [7,8]. Data on dislocation substructures at

relevant stages of the process may be needed to interpret

the dispersion relations in this case.

At the stage of elastoplastic transition at constant stress

σ = const, deformation proceeds at the Lüders front mov-

ing with a constant velocity [9]. Its phase and group

velocities

V (ph)
aw =

ω

k
and V (gr)

aw =
dω
dk

(6)

are equal; i.e., V (ph)
aw = V (gr)

aw = Vaw . Multiplying the right-

and left-hand sides of Eqs. (6) and integrating the products,

we obtain

ωdω
kdk

=

∫

ωdω
∫

kdk
=

1/2ω2 + c1

1/2k2 + c2

= V 2
aw, (7)

where c1 and c2 are integration constants. With c2 = 0, re-

lation (7) yields dispersion law ω2 ∼ 1 + k2 corresponding

to the Klein−Gordon equation [8] for displacements u

∂2u
∂t2

− ∂2u
∂x2

+ u = 0, (8)

which is applicable to the propagation of macroexcitations

(specifically, solitons in active media). At k ≫ 1, Eq. (8)
is reduced to equation ∂2u/∂t2−∂2u/∂x2 = 0 with linear

dispersion ω ∼ k , which is typical of elastic strain waves [8].
At the stage of linear strain hardening, when σ ∼ ε (ε is

strain), the characteristics of elastic strain and plastic flow

form an elastoplastic invariant [1,2]:

λVaw

χVt
= Ẑ ≈ 1

2
, (9)

where localized plasticity autowaves are specified by their

length λ and velocity Vaw , while elastic ones are specified

by interplanar distance χ and transverse sound velocity Vt ,

respectively. If one substitutes χ and Vt in invariant (9)
with Hartree [10] scales of length a0 = ~2/me2 and sound

velocity Vs ≈ e2/~(m/2M)1/2 expressed in terms of Planck

constant ~ = h/2π, electron charge e, electron mass m, and

atom mass M, the following relation is obtained (see [11]):

λVaw =
χVt

2
≈ ~

2(mM)1/2
. (10)

The value of λVaw ≈ 10−6 m2/s calculated using for-

mula (10) is close to the ones obtained experimentally for

the studied materials [1]. Equation (10) holds promise for

analysis of the nature of the elastoplastic invariant, since it

relates the characteristics of autowave plasticity to physical

constants.

Let us demonstrate that a quadratic autowave dispersion

law at the stage of linear strain hardening follows from

Eq. (10). Setting λVaw ≈ 32/ϑ , we find

λVaw =
32

ϑ
=

(

2π
k

)2

2π
ω

= 2π
ω

k2
≈ ~√

mM
≈ const, (11)

which yields a quadratic dispersion equation for this stage:

ω =
~

2π
√

mM
k2 ∼ k2. (12)

The discussed quadratic dispersion law

corresponds to nonlinear Schrödinger equation

2i∂8/∂t−Q∂28/∂x2 + G|8|28 = 0 [8] for function 8

in potential G|8|28. Here, Q and G are coefficients and

i =
√
−1. In the general case, this equation characterizes

the evolution of the carrier wave envelope in a weakly

nonlinear system [6,8]; in the case of plastic deformation,

it is applicable to the process of self-organization of a

sequence of thermally activated elementary shears. The

medium is auto-oscillating at this stage, and it corresponds

to a phase autowave with ωt−kx = const.

At the stage of parabolic strain hardening with σ ∼ ε1/2,

a stationary dissipative structure forms from localized

plasticity centers. Varying length λ of the localized plasticity

autowave by altering the deformation conditions, we man-

aged to construct a dispersion dependence that is shown

in Fig. 2 and follows relation (4): ω ∼ k5/2. The stage of

parabolic strain hardening may be regarded as a transition

from the stage of linear hardening, where ω ∼ k2, to the

stage of pre-fracture (collapse of the localized plasticity

autowave), where ω ∼ k3.

The dispersion law obtained for this stage of strain

hardening, where σ ∼ εn and n < 1/2, by processing the
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X−t diagrams for different metals and alloys from [1,2]
is presented in Fig. 2. A dispersion relation of the

ω ∼ k3 form corresponds to Korteweg−de Vries equation

∂u/∂t−∂3u/∂x3 = 0, which characterizes the propagation of

excitation pulses in active excitable media [8].

It seems logical to associate the change in dispersion

relations in Eqs. (2)−(5) with the evolution of sizes and

shapes of dislocation ensembles [3,12] (i.e., the structural

part of coefficient 3β). Index β should then depend

on the configuration of the dislocation ensemble at the

corresponding stage of the process. At the yield plateau

stage (β = 1), Lüders strain does indeed transform an

elastic medium into a plastically deformable one. The

transformation is caused by the avalanche-like release of

dislocations from blocking impurities [13]. Coupled with

linear dispersion, this allows one to treat the Lüders front

as a switching autowave [7] in a medium consisting of

interconnected bistable elements (i.e., dislocations that pass
from the initial metastable (immobile) state to a stable

(mobile) state). As was noted in [14], the transition process

kinetics is similar to the kinetics of the first-order phase

transition front.

To analyze the role of the dislocation structure at the

stages of linear strain hardening and pre-fracture, we

take into account that 32 = 6 and 33 = � (see above).
Quantities 3, 6, and � found in expressions (2)−(5) are

the geometric characteristics of dislocation ensembles; 6

may be regarded as the surface area of dislocation cells at

the stage of linear strain hardening, while � is the volume

of dislocation tangles forming at the pre-fracture stage [12].

As for the stage of parabolic strain hardening, it is

known [3,12] that a cellular dislocation structure emerges

at its onset in deformed metals and is replaced by a tangle

one during the deformation process. This is consistent

with the above reasoning that the stage of parabolic strain

hardening, which corresponds to index 2 < β = 5/2 < 3,

is a transition from linear hardening to the collapse of the

localized plasticity autowave.

The results of the above analysis reveal a connection

between dislocation and autowave concepts of plastic flow

and verify the notion [1,2] that the physical basis of

emergence of different stages in plastic flow is the formation

of active media specific to each stage. The dispersion law

of localized plasticity autowaves for each stage is related to

the parameters of the corresponding dislocation structure. It

was demonstrated that the key relations characterizing the

autowave nature of plastic flow may be expressed through

physical constants.
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