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The structural, electronic and non-linear properties of the superlattices based on quartz and silicon are studied in

a framework of quantum-chemistry ab initio calculations. The thermodynamic stability of the structure is established

and analysis of electronic and optical properties is carried out. The values of band offsets is obtained using quasi-

particle GW approach. The values reproduce quite well experimental data and equal to 3.87 and 3.14 eV for

valence and conducting zones respectively. The nonlinear properties and an influence of layers thickness on linear

and quadratic dielectric susceptibility is established. The strongest nonlinear response in the structure with double

silicon layered is revealed.
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1. Introduction

Currently, there is an explosive interest in the problem

of finding new functional materials in the world. Silicon

is broadly used in microelectronics and the chemical

industry. It is mostly found in cubic modification, due

to its widespread distribution in the earth’s crust. Silicon

has a unique combination of structural, chemical, and

electronic properties. It is known that the band gap

of the cubic phase is 1.12 eV [1,2], which makes it

possible to use this material as the main elements of

solar panels. However, the features of the zone structure

do not allow achieving the maximum efficiency of such

solar cells. This circumstance initiates the search for

new structural modifications with optimal characteristics for

specific technological tasks. In particular, the theoretical

prediction of thermodynamically stable silicon structures is

relevant because of the complexity and expensive cost of

synthesizing new materials [3–7].

The simplest chemical compound with silicon is oxide,

which is also common on earth and has a very rich family

of polymorphs, which structurally differ mainly in packing

tetrahedra SiO2 into a periodic crystalline structure or into

an amorphous state. The most prominent representative of

silica is quartz, which is a wide-band dielectric with a direct

optical transition. The significant difference of the electronic

structure of silicon and its oxide allows expecting a unique

combination of fundamental properties as a result of the

fusion of the two materials.

The development of technology in the last decade has

led to the possibility of growing nanoscale structures,

in particular short-period superlattices, which are layered

heterostructures in which layers of one substance alternate

with layers of another isomorphic material. Such a fusion

of materials results in an overlap of wave functions and

the occurrence of a gap in energy levels at the interface

boundaries. Studying the gap of bands is one of the

key problems, since the size of the gap determines the

physical properties of the heterostructure that are important

for creating electronic [8] or optoelectronic devices [9].
There are many theoretical approaches to the study of

the electronic structure of heterostructures, among which

a significant share is occupied by calculations within the

framework of density functional theory.

This paper primarily presents the results of study of the

structural properties of superlattices obtained by intergrow-

ing of cubic silicon with quartz. Such structures have

shown thermodynamic stability and variation of electronic

and optical properties depending on the thickness of the

layers.

2. Calculation technique

The calculations based on the first principles were carried

out within the framework of the density functional theory

using ABINIT program [10,11]. The calculations used

functionals, the exchange-correlation part of which was de-

scribed in the approximation of the local density LDA [12].
Optimized non-local (with two projectors of the non-local

part), norm-conserving pseudopotentials for Si and O atoms

were used in these calculations [13]. The electrons in the

orbitals 2s2p for the O atom and 3s3p for the Si atom
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were considered as valence in the calculations. The cut-

off energy in the calculation of the electronic structure

was 40Ha. The Monkhorst-Pack grids [14] were used for

integration over the Brillouin zone in size 6× 6× 2. The

calculations involved complete relaxation of both atomic

positions and lattice parameters. Relaxation was carried

out until the forces acting on the atoms became less than

2 · 10−5 Ha/Bohr with a self-consistent calculation of the

total energy with an accuracy better than 10−8 Ha, and the

deviation from zero pressure did not exceed 0.1Kbar.

The electronic structure and dielectric permittivity were

calculated using the quasi-particle approximation G0W0 [15].
The wave functions and energy eigenvalues found in the

generalized gradient approximation (GGA) were used as

input data. The dielectric matrix εGG′(q, ω) was calculated

on a grid of 48 points from the polarizability matrix

PGG′(q, ω) calculated in the random phase approximation

(RPA) for 56 filled and 250 unfilled zones. Dynamic

shielding was described by the single-pole Godby-Needs

plasmon model. The calculations used Fourier components

of wave functions with a maximum kinetic energy of

35Ha. The corrections to the energies found in the GGA

approximation were calculated as diagonal matrix elements

of the operator [6− Exc ], where 6 = GW is the self-energy

operator, Exc is the exchange-correlation energy operator,

G is the Green’s function, and W = [ε−1υ] is the operator

of the shielded Coulomb interaction. The wave function

components with kinetic energy up to 35Ha were used

when calculating 6 for both the exchange and correlation

parts.

3. Structural properties

Superlattices were constructed in this study by intergrow-

ing bulk silicon (space group Fd3̄m) with quartz (P3221)
in such a way that the silicon plane (001) was parallel

to the quartz plane (120). Figure 1 shows a scheme for

the formation of a superlattice (Si)m/(SiO2)n for m = n = 1

(1× 1) formed by alternating layers of silicon and quartz

with a thickness equal to one period of the unit cell of bulk

materials (Figure 1, b). The atoms in such a superlattice

form a structure with the space group P2221, and the

atoms of the silicon layer occupy highly symmetric Wyckoff

positions 2a , 2c and 2d with local symmetry 2, and in

the oxide layer positions 2b and 2c , while the interface

layer is filled with silicon atoms in the general Wyckoff

position 4e. Oxygen atoms are located in highly symmetric

positions 4d and common 4e, which is typical for quasi-

molecular crystals [16].

The structural parameters of the superlattice obtained af-

ter optimization of the geometry showed that in the interface

plane, the oxide layer experiences a tensile strain (6.5%),
and the silicon layer a compression strain (1%), while the

energy of formation of the superlattice is 2.55 eV/Si. The

superlattice considered in this paper has greater mechanical

stability and an energetically more favorable configuration

compared with the structure studied earlier in Ref. [17,18]
(formation energy 3.74 eV). The structural parameters of

the studied superlattices and bulk precursors are listed in

Table 1. The table shows a good agreement between the

calculations and the experiment for bulk precursors, which

indicates the adequacy of the chosen calculation scheme.

The resulting superlattice configuration was also tested

for stability with respect to phonon states. Figure 2 shows

the calculated dispersion of phonon states along highly

symmetric directions in the Brillouin zone.

As can be seen from the figure, there are no states with

imaginary frequencies throughout the BZ, and therefore

the structure is stable while maintaining orthorhombic

symmetry. Moreover, as can be seen from the partial density

of vibrational states, the main contribution to low-frequency

vibrational states (with frequency up to 400 cm−1) is made

by silicon atoms localized in the silicon layer, while the

atoms of the oxide layer make the greatest contribution

to states with a frequency greater than 400 cm−1, which

indirectly indicates the presence of localized oscillations in

a separate layer in the superlattice.

The vibrational states of the superlattices 2× 1 and

1× 2 were studied only in the Ŵ-point of the ZB due to

the significant resource consumption of calculation of the

dispersion of phonon branches. It is necessary to expect

the absence of the occurrence of imaginary modes for

superlattices of a longer period because the increase of the

period along the SL growth axis leads to a collapse of the

ZB in this direction.

4. Electronic structure and dielectric
properties

As is known, the electronic states in periodic structures

are determined not only by the composition, but also by the

structural ordering in the crystal lattice. The experimental

value of the band gap (Eg) of quartz is 8.9 eV [20], and a

similar value for bulk silicon is 1.12 eV [21] (for a direct

optical transition), a significant difference of the magnitude

of Eg suggests that it is possible to adjust the band gap to the

required value in a wide range (from ultraviolet to infrared

spectrum) of length waves by varying the composition of

the superlattice. The electronic band structure shown in

Figure 3 was calculated in the quasi-particle approximation

G0W0 for revealing the impact of spatial structure on

electronic states.

Figure 3 shows that, unlike bulk silicon, the superlattice

is a direct-band semiconductor with a band gap of 1.82 eV,

which is quite close to the Shockley-Queisser limit, which

determines the maximum efficiency of a solar cell. At the

same time, the value of the effective mass of electrons

calculated by numerical differentiation m∗

h,e = ~
2
[

∂2E
∂k2 ]−1

was m∗

e ∼ 0.23me , which is about two times less than the

value of the effective mass of holes m∗

e ∼ 0.48me . The

obtained values are slightly lower than the effective masses

in silicon oxide, which are 0.42me and 0.58me [22] for
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Table 1. Lattice parameters and atomic coordinates in Si/SiO2 SL and precursors

Si-bulk SiO2 CP Si/SiO2

Parameter Experiment1 Calculation Experiment1 Calculation Settlement

Lattice parameters

a , Å 5.430 5.468 4.913 4.951 5.276

b, Å 5.430 5.468 4.913 4.951 5.450

c, Å 5.430 5.468 5.405 5.443 12.267

Positions of atoms, relative units

Si1 (0,0,0) (0,0,0) (0.469,0,0.667) (0.471,0,0.667) (0.000,0.333,0.500)
Si2 (0.250,0.000,0.652)
Si3 (0.000,0.236,0.000)
Si4 (0.250,0.500,0.908)
Si5 (0.750,0.000,0.899)
Si6 (-0.039,0.702,0.811)
O11 (0.414,0.268,0.785) (0.413,0.265,0.787) (0.250,0.500,0.479)
O21 (0.750,0.500,0.775)
O31 (0.446,0.841,0.589)
O41 (0.090,0.811,0.716)

No t e. 1 Parameters from Ref. [19].

Si

SiO
2

a

b

c

b

c

b
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a b

Figure 1. Unitcell cell of superlattice Si/SiO2 (a) and cells of bulk precursors (b). Large beige balls are silicon atoms, small red balls are

oxygen atoms.
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Figure 3. Band structure of Si/SiO2 superlattice calculated by the

G0W0 method.

electrons and holes, respectively, and therefore the carrier

mobility in the superlattice is higher. However, it is worth

noting the high anisotropy of the effective mass tensor, —
perpendicular to the interface due to the degeneration of the

dispersion of electronic states, the mass values acquire high

values that have no physical meaning.

The density of electronic states projected onto individual

atoms was calculated to analyze the states of the valence

band and the conduction band (Figure 4).

It can be concluded from the analysis of the density

of states that the greatest contribution to the high-energy

branches of the valence band is made by Si atoms in the

silicon and interface layers (Figure 4, a, b), with the most

significant contribution made by electrons of 3p-orbitals.
The bottom of the conduction band is also formed by

electrons of silicon atoms, but this time the contribution

is made by electrons 4s , 4p, 3d, which form virtual states

in free atoms.

It is worth noting that the energy levels of the Si and O

atoms of the oxide layer (Figure 4, c, d) located quite deep

in the valence band and high in the conduction band, so

optical transitions in the superlattice are mainly determined

by electronic states in the silicon layer. Such a structure

indicates the presence of a gap between the valence band

and the conduction band in layers of different compositions.

It is known that the gap of the valence band of the

heterostructure is found by the following formula [23]:

1Ev = (ESi
v − ESiO2

v ) + 1V, (1)

where 1V is the difference of the averaged electrostatic

potential in different layers of the heterostructure, which

is obtained from calculations of the long-period superlattice.

Obviously, the gap in the conduction band is related to the

gap in the valence band by the ratio:

1Ec = (ESi
g − ESiO2

g ) + 1Ev, (2)

where ESi
g and ESiO2

g are the band gap values of bulk silicon

and oxide, respectively. It is worth noting that the fields of

elastic deformations resulting from the fusion of layers into a

single structure are not isotropic, which leads to a decrease

of the cubic symmetry of bulk silicon to tetragonal.

The zone discontinuities were calculated at the first stage

within the framework of the density functional theory, then,

using the Kohn-Sham orbitals, quasi-particle corrections

were calculated using the G0W0 method, as schematically

shown in Figure 5.
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Figure 4. Projections of the density of electronic states of Si/SiO2

superlattice onto Si atomic orbitals in the silicon layer (a), in

the interface layer (b) and the oxide layer (c) and on orbitals

of atoms O (d).

The calculation showed that the quasi-particle corrections

for the SiO2 layer shift the levels of the valence bands and

conduction bands in the opposite direction by approximately

the same amount on the order of 1.3 eV, summing up the

band gap by 2.75 eV. The valence band almost does not

change position in the silicon layer, only the conduction

band shifts by 0.68 eV. As a result, the displacement

values of the zones 1Ev = 3.87 eV and 1Ec = 3.14 eV are

calculated, which is in good agreement with experimental

data of 4.3 and 3.1 eV, respectively [24]. Thus, taking

Table 2. Calculated band gap and dielectric properties of

(Si)m(SiO2)n (m × n) SL and precursors

EGW
g , eV χ

(1)
xx χ

(1)
zz χ(2), pm/V

Si-strain 0.77 16.01 16.01 0

SiO2 8.56 1.468 1.468 0.845

SL 1× 2 2.12 3.16 3.16 0.172

SL 1× 1 1.83 4.3 4.3 0.106

SL 2× 1 1.28 5.94 5.94 3.616

SL 2× 2 1.30 5.45 5.45 1.95

into account quasi-particle effects turns out to be critically

important when calculating the electronic structure of

Si/SiO2 superlattices, and the calculation results are in good

agreement with experimental data.

Calculations of the electronic structure of superlattices

with increased layer thicknesses were also performed, and

the band gap widths are shown in Table 2.

As can be seen from Table 2, the band gap is expected

to increase as the thickness of the silicon layer increases,

however, if the thicknesses of the layers increase by the

same multiplicity, the value of Eg decreases by 30%, which

indicates a decrease of the overlap of the wave functions of

adjacent layers. In other words, the thick layers retain the

individual characteristics of the bulk precursors and interact

weakly with each other. In general, the expected pattern of

the effect of the superlattice composition on the band gap is

observed in the range from 1.3 to 2.1 eV, which corresponds

to the wavelength range from 600 to 950 nm, i. e. the region

of maximum solar radiation. Thus, the studied structures

are of interest for use in optical devices in which dielectric

properties play an important role.

Calculations of linear and quadratic nonlinear suscepti-

bility were performed within the framework of perturbation

theory, and the results are shown in Table 2. There is a fairly

strict correlation between the value of the dielectric constant

and the band gap; the linear susceptibility rapidly decreases

with the increase of the latter, reaching a minimum in the

case of quartz (the table below shows the average value of

the dielectric susceptibility in three directions).

SiSiO2

E
c

E

∆E
c

∆E

GW

KS

Figure 5. Illustration to the zone gap calculation scheme.

Solid lines — levels calculated in the GGA approximation, dotted

lines — adjusted G0W0 .
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Figure 6. Dispersion dependence of the second harmonic

generation coefficient of Si/SiO2 1× 1 SL.

In the case of nonlinear dielectric susceptibility, the

connection is not so obvious because of the dependence

of nonlinear properties on the symmetry of the crystal

lattice. So, in the case of bulk silicon, the generation of

the second harmonic is prohibited by the selection rules,

and all components of the tensor χ
(2)
i jk are zero in the static

approximation. The selection rules allow only two nonzero

components for quartz — χ
(2)
xxx and χ

(2)
xyy , which are equal in

magnitude but opposite in sign, the calculated value is given

in Table 2. The obtained value correlates with experimental

data for amorphous silicon used as a waveguide on an

industrial scale.

Superlattices with a thin silicon layer exhibit rather weak

nonlinear properties. According to the selection rules, the

quadratic nonlinear susceptibility tensor of the third rank

χ(2) of structures with space group P2221 has only one

allowed component, namely χ
(2)
xyz . Calculations show that

this value dramatically increases with the increase of the

thickness of the silicon layer, several times higher than the

values for quartz, which opens up opportunities for the use

of this material in industry.

The dispersion dependence of the quadratic nonlinear

dependence plotted in Figure 6 was also calculated in this

paper.

It is worth noting the strong dispersion dependence

of the nonlinear response, which dramatically increases

with the increase of the light source wavelength. For

example, the magnitude of the nonlinear susceptibility is

3.3 pm/V in the case of second harmonic generation at a

frequency of 620 nm, which is ten times higher than the

static value. Unfortunately, the calculation of the dynamic

nonlinear properties of SL with thicker layers is limited

by computational resources, however, the great potential

of these structures in the field of nonlinear optics can be

inferred even from the example of 1× 1 SL.

5. Conclusion

The results of a comprehensive study of the structural,

electronic, and dielectric properties of Si/SiO2 superlattices

are presented in this paper. The band structure, spatial struc-

ture, phonon spectra, and nonlinear optical susceptibility of

a series of silicon oxide superlattices with different layer

thicknesses have been studied using nonempirical quantum

mechanical methods. A model based on a combination of

crystalline silicon and quartz lattices is used to describe the

interface structure. It is shown that a thermodynamically

stable heterostructure can be formed with minor deforma-

tions of both lattices. The values of the band shift in

the heterojunction region were obtained, including taking

into account the corrections calculated using the quasi-

particle approximation GW, which amounted to 3.87 and

3.14 eV, for the valence band and the conduction band,

respectively, which is in good agreement with experimental

data. The nonlinear optical properties of superlattices and

the effect of layer thickness on linear and quadratic dielectric

susceptibility have been studied. It is shown that the

maximum nonlinear response is achieved in materials with

a silicon layer with a thickness of two lattice cells. The

authors hope to arouse interest in the experimental study of

nonlinear optical properties of superlattices based on silicon

and its oxide.
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