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Influence of point defect misfit parameter

on the dynamic yield strength of metals and alloys
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The motion of an ensemble of edge dislocations in case of high strain rate deformation of metals and alloys with

a high concentration of point defects was theoretically analyzed. An analytical expression of the dependence of

the dynamic yield strength on the point defect misfit parameter for various cases of high strain rate deformation is

obtained. A qualitative analysis of the obtained results has been performed within the framework of the theory of

dynamic interaction of defects (DID). Numerical estimates of the field of applicability of the obtained results have

been made.
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1. Introduction

High strain rate deformation of metals and alloys occurs

under conditions of high-energy external influences both at

the stage of processing functional materials and during their

operation [1–9]. It significantly differs from quasi-static

deformation. Te kinetic energy of the dislocation exceeds

the energy of its interaction with the structural defects of

the crystal due to strong external influences. The dislocation

performs an over-barrier sliding, overcoming crystal defects

without the help of thermal fluctuations. The mechanism

of energy dissipation is radically changing and the role

of collective dynamic effects is significantly increasing.

As a result, the dependence of the dynamic drag force

of dislocations on the characteristics of structural defects

becomes significantly more complicated. This leads to a

more complicated dependence of the mechanical properties

of materials on these characteristics. The dynamic

interaction of dislocations with other defects in the crystal

structure, in particular, with the Guinier-Preston zones

formed at the first stage of aging of alloys, has a significant

effect on the mechanical properties of crystals [10].
The dependence of the dynamic yield strength on the

concentration of point defects and dislocation density under

high strain rate deformation conditions was theoretically

analyzed in Ref. [11,12]. It has been shown that this

dependence has a non-monotonic character. The purpose

of this work is to obtain an analytical dependence of the

dynamic yield strength on the point defect misfit parameter.

2. Formulation of the problem, solution,
analysis of results

The studied region of dislocation velocities is deter-

mined by the inequality 10−2c ≤ v ≪ c , where c is the

velocity of propagation of transverse sound waves in a

crystal. These are the rates 10−2−10−1c . The problem

is solved within the framework of the theory of dynamic

interaction of defects (DID), which has been successfully

applied to solve a number of problems of dislocation

dynamics [13–16]. Dislocation is considered as an elastic

string with effective tension and effective mass. The

dissipation mechanism in the dynamic domain consists in

the irreversible transformation of the energy of external

influences into the energy of dislocation vibrations in

the plane of sliding. These fluctuations are considered

small, which makes it possible, in the second order of

perturbation theory, to calculate the force of dynamic drag

of dislocation by structural defects using the following

formula

Fde f =
nb2

8π2m

∫

d3q|qx | · |σxy (q)|2δ
(

q2
xv

2 − ω2(qz )
)

. (1)

Here n — the volume concentration of the corresponding

defects, m — the mass of the dislocation unit, σxy(q) — the

Fourier transform of the stress tensor components created

by the corresponding defect, ω(qz ) — the spectrum of

dislocation vibrations. We can find the contribution of

the corresponding structural defects to the dynamic yield

strength of the crystal by calculating the dynamic drag force

of the dislocation.

Consider an ensemble of infinite edge dislocations mo-

ving under the action of constant external stress σ 0
xy along

the axis OX with constant velocity v in planes of sliding

parallel to XOZ. Point defects are randomly distributed

throughout the crystal. The dislocation lines are parallel

to the axis OZ, their Burgers vectors are parallel to the

axis OX . The position of the kth dislocation is determined
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by the function

Xk(y = 0, z , t) = vt + wk(y = 0, z , t). (2)

Here wk(y = 0, z , t) is a random variable describing trans-

verse dislocation vibrations in the sliding plane as a result

of interaction with structural defects.

The equation of motion of the kth dislocation can be

represented as

m

{

∂2X
∂t2

− c2 ∂
2X
∂z 2

}

= b
[

σ0 + σ d
xy + σ dis

xy

]

− B
∂X
∂t

. (3)

Here σ d
xy — component of the stress tensor created by point

defects on the dislocation line, σ dis
xy — component of the

stress tensor created on this line by other dislocations of the

ensemble, B — phonon damping constant.

It follows from the formula (1) that the magnitude of the

dynamic drag force of dislocations, and, consequently, the

dynamic yield strength, depends on the type of spectrum of

dislocation vibrations. The collective interaction of point

defects with dislocation and the collective interaction of

other dislocations of the ensemble can generate a gap in

the dislocation spectrum, which has a significant impact on

the nature of dynamic drag. The spectrum of dislocation

vibrations in this case has the following form

ω(qz ) =
√

c2q2
z + 12. (4)

If the gap 1 is created by the collective interaction of

point defects with dislocation, then according to [11], it has
the form

1 = 1d =
c
b

(

ndχ
2
)1/4

, (5)

where nd — the dimensionless concentration of point

defects, χ — the parameter of their dimensional discrepancy,

which is determined by the expression [10]

χ =

∣

∣

∣

∣

Rd − Rm

Rm

∣

∣

∣

∣

. (6)

Here Rd is the radius of the point defect atom, Rm is the

radius of the matrix atom.

The contribution of the collective interaction of the

ensemble dislocations to the formation of the spectral gap

according to [12] is defined by the expression

1dis = πb
√

µρ

6πm(1 − γ)
≈ c

√
ρ. (7)

Here ρ is the dislocation density, µ is the shear modulus,

γ is the Poisson’s ratio.

Let us first consider the case when point defects make the

main contribution to the dynamic drag of dislocation, and

the formation of the dislocation spectrum is dominated by

the collective interaction of the dislocations of the ensemble.

This happens at concentrations of

nd < n0 =

(

ρb2

χ

)2

. (8)

Let us make numerical estimations. We obtain n0 = 10−4

for the values b = 3 · 10−10 m, χ = 10−1, ρ = 4 · 1015 m−2.

Using the results of the DID theory, we obtain the

dependence of the dynamic yield strength of the metal on

the defect misfit parameter. It is quadratic

τ = Kχ2; K = µ
nd

(ρb2)2
ε̇b
c
. (9)

Here ε̇ — strain rate, µ — shear modulus.

Let us now analyze the case when the main contribution

to both the dynamic drag of dislocation and the formation of

a gap is made by the collective interaction of point defects.

This situation is realized at point defect concentrations of

nd > n0. Using the results of the theory of DID and

performing the necessary transformations, we conclude that

the dependence of the dynamic yield strength of the metal

on the defect misfit parameter in this case is linear

τ = Dχ; D =
µε̇

√
nd

ρbc
. (10)

This formula is valid for dislocation velocities

v < v0 = b1d = c(ndχ
2)1/4. (11)

v0 = 3 · 102m/s is obtained for the values c = 3 · 103 m/s,

nd = 10−4, χ = 10−1 .

This type of dependence was observed by the authors of

Ref. [17].
Next, let us consider the high strain rate deformation of

an aged two-component alloy with a high concentration of

Guinier-Preston zones. The most interesting case is when

the Guinier-Preston zones make the main contribution to the

dynamic drag of dislocations, and point defects dominate

the formation of the spectral gap. This situation is realized

with a volumetric concentration of Guinier-Preston zones of

nG = 1023−1024m−3 and a concentration of point defects

of nd > n0. Dynamic drag of dislocations by Guinier-

Preston zones has the character of dry friction (i. e., it

does not depend on the sliding velocity) at velocities of

v < vG = R1, where R is the average radius of the Guinier-

Preston zone. For the values R = 10b and nd = 10−2,

we obtain that the critical velocity vG is close to the

velocity of transverse sound waves in metal, i. e. dry friction

occurs in almost the entire considered velocity range. The

dependence of the yield strength on the defect misfit

parameter is determined in an aged alloy by the expression

τ =
G√
χ
; G = µ

nGb2R
4
√

nd
. (12)

It follows from the formula obtained that the yield strength

decreases with the increase of the misfit parameter.

Let’s analyze the results obtained within the framework of

the DID theory. Dislocation drag occurs when irreversible

energy losses occur as a result of defect overcoming. As

noted above, the dissipation mechanism comprises the

conversion of energy from external influences into the

energy of dislocation oscillations. The greater the energy

of these oscillations, the stronger the dislocation drag. The
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occurrence of a spectral gap reduces the efficiency of

oscillation excitation, and therefore reduces the dislocation

drag. Thus, there are two competing factors. On the one

hand, the increase of the misfit parameter increases local

elastic stresses, and, consequently, the drag force. On the

other hand, the spectral gap increases according to formula

(5) with the increase of the parameter χ which reduces the

drag force. The competition of these factors explains the

pattern of the obtained results. Point defects make the main

contribution to the drag force in the first case, but they do

not affect the spectral gap. This situation is characterized by

the strongest (quadratic) increase of the yield strength with

an increase of χ . These defects make the main contribution

not only to drag, but also to the formation of a gap in

the second case, as a result, the dependence τ (χ) becomes

weaker (linear). Point defects do not significantly contribute

to drag in the third case, but they increase the spectral gap,

as a result, an increase of the misfit parameter leads to a

decrease of the yield strength.

3. Conclusions

It is shown within the framework of the theory of

dynamic interaction of defects that collective effects in

the field of high strain rate deformation have a significant

effect on the specific type of dependence of the dynamic

yield strength on the point defect misfit parameter. This

dependence varies for different concentrations of point

defects, since it is their concentration that determines the

degree of influence of point defects on the formation of the

total dynamic drag force and the magnitude of the spectral

gap.

The obtained results may be useful for the analysis of

high strain rate deformation of metal and alloys.
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