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Melting criteria for classical and quantum crystals
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It was shown that the Lindemann ratio (L) can be calculated by means of the delocalized criterion of melting

for classical crystals, i. e. those with a melting point (Tm) greater than the Debye temperature (2): Tm/2 > 1.5.

It was shown that for classical single-component crystals, the L value is determined only by the crystal structure.

Calculations for various structures of classical crystals showed good agreement with the estimates of other authors.

A generalization of the Lindemann relation was obtained for the case of quantum single-component crystals, i. e.

for which Tm/2 < 0.4. It was shown that for quantum crystals, the Lindemann ratio is determined not only by

the crystal structure, but also by the function 2/Tm . Therefore, when moving from the classical to the quantum

domain, the Tm(2) function changes its functional dependence. It was shown that for quantum crystals, the L
value decreases with increasing pressure along the melting line. For quantum nanocrystals, the L value increases

with an isobaric decrease in the size of the nanocrystal. At the same time, the more noticeably the shape of the

quantum nanocrystal deviates from the energy-optimal shape, the greater the sized increase in the Lindemann ratio.

A generalization of the delocalized criterion of melting was obtained for the case of quantum single-component

crystals.
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1. Introduction

Various phenomenological criteria are used to calculate

the properties of a crystal in case of melting because there

is no theory of the crystal-liquid (C−L) phase transition

(PT) yet (as there is no theory of the liquid state) [1–3].
The most widely used of these is the Lindemann melting

criterion, which states the following [4,5]: the standard

deviation of an atom 〈u2〉1/2 in a crystal related to the

distance between the centers of the nearest atoms (c) at

the melting point (Tm) of a single-component crystal is a

constant value.

Lindemann believed that the ratio 〈u2〉1/2/c is con-

stant for all single-component crystals at Tm. How-

ever, Gilvarry using the Debye-Waller theory showed

that the Lindemann ratio is constant only for crystals

with the same structure [5]. Gilvarry estimates that for

metals with face-centered cubic ( f cc), hexagonal close-

packed (hc p), and body-centered cubic (bcc) structures

the Lindemann ratio at low pressure (P = 0) is equal

to [6]:

L=

(

〈u2〉1/2

c

)

Tm

=0.11( f cc), 0.09(hc p), 0.13(bcc). (1)

Various methods were proposed for estimating the value

of L after Gilvarry. The values of L were obtained in the

works of various authors, which slightly differ from the

values of (1). The results of some work on estimating

the value of L are presented in Table 1, where the author

is indicated in the first column-the year and method of

calculation, and the last column contains a link to the article

by this author.

The dependence of the value of L on the position of the

metal in the group of the Periodic table of elements has

been recently studied in the paper [10] using experimental

data for the ratio Tm/2
2. Here 2 — Debye temperature.

An average value of L was obtained for 12metal groups in

paper [10]. It is in the range:

L = 0.07 (group 9 : hc p-Co, f cc-Rh, Ir)

−0.139 (group 1 : bcc-Li, Na, K, Rb, Cs).

Thus, the value of L for metals can widely vary depending

on the used method of calculation of 〈u2〉: from 0.07

to 0.183.

The Lindemann ratio has been studied in many papers

by various methods for four f cc crystals of inert gases.

This is due to the fact that atoms of inert gases have

a filled outermost electron shell, i. e. they are electron-

neutral and spherically symmetric. The values of L from

Refs. [11–16] are listed in Table 2. The author–the year

and the link to the article are indicated in first line, and

the method of calculating the value of L is indicated in the

bottom line.

The lattice dynamics method was used in Ref. [11]
for atoms interacting through a paired 4-parameter Mie-
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Table 1. The Lindemann ratio at Tm(P = 0) for metals from Refs. [7−9]

Authors–year
f cc hc p bcc Ref.

Method

Shapiro–1970
0.071 0.113 [7]

Lattice dynamics method

Cho–1982
0.09659−0.1183 0.06886−0.08433 0.1210−0.1483 [8]

Method of harmonic atoms vibration

Matsuura et al.−2010
0.172 0.183 [9]

Nearly free electron model

Table 2. Lindemann ratio at Tm(P = 0) for f cc crystals of Ne, Ar, Kr, and Xe

Crystal
Goldman–1969 Gupta–1973 Crawford–1977 Singh& Mohazzabi& Batsanov–2009

[11] [12] [13] Neb–1984 [14] Behroozi–1987 [15] [16]

Ne 0.156−0.155 0.109−0.105 0.1446 0.127 0.202 0.148 0.113−0.114

Ar 0.130−0.128 0.101−0.097 0.1149 0.113 0.151 0.122 0.103−0.132

Kr 0.127−0.126 0.100−0.096 0.1129 0.115 0.142 0.110 0.103−0.125

Xe 0.125−0.122 0.099−0.095 0.0992 0.114 0.142 0.106 0.102−0.133

Method Quasi- Anharmonic Quasi- From With account By Einstein By

harmonic (b = 12)−(b = 13) harmonic entropy data three-body model and thermodynamic

(b = 12)−(b = 13) approximation interactions potential data and own

a = 6 and b = 12 model

Lennard-Jones potential, which has the following form:

φ(r) =
D

(b − a)

[

a
(r0

r

)b
− b

( r0
r

)a
]

, (2)

where D and r0 — depth and coordinate of the minimum

potential, b > a > 1 — parameters.

The
”
only nearest neighbors interaction“ approximation

was used to calculate the value 〈u2〉 in Ref. [11], and the

calculations were performed both in the quasi-harmonic

approximation (first column) and taking into account the

anharmonicity of atomic vibrations (second column). At

the same time the following exponents of potential (2) were
taken: a = 6, b = 12 (the first value in the row) and a = 6,

b = 13 (the second value in the row). A quasi-harmonic

approximation was used in Ref. [12], the interatomic

potential was taken as the Buckingham function, and the

interaction up to the 12th coordination sphere was taken

into account. The three-particle interaction of atoms was

taken into account in Ref. [14]. The value of 〈u2〉 was

calculated in Ref. [15] from the shape of the potential (2)
with powers a = 6 and b = 12, and atomic vibrations

were taken into account according to the Einstein model.

A proprietary thermodynamic method for calculating the

value 〈u2〉 was developed in Ref. [16]. As can be seen from

Table 2 in all calculation methods from the papers [11–
18] the value L increases with a decrease of the mass of

the atom, i. e. with an increase of the quantum effects in the

energy of the crystal, as noted in the articles in Refs. [17,18].

It should be noted that the criterion (1) was originally

applied in Refs. [4–6] to classical single-component crystals

(metals and semiconductors), i. e., in which the melting

point is much higher than the Debye temperature: Tm > 2.

It was when studying the melting of classical crystals that

the Lindemann criterion(1) showed good results for sub-

stances with different structures at different pressures(P),
both for macro- and nanocrystals [1–3]. However, for

melting quantum crystals with Tm < 2, the Lindemann

criterion (1) turned out to be not applicable, as it was

indicated in the Refs. [16–20]. Therefore, a relatively simple

expression for the Lindemann ratio is obtained in this

study, which is applicable to both classical (such as metals)
and quantum crystals (such as 4He and 3He) at different

pressures.

Calculation method

In our works, Refs. [21,22] proposed a delocalization

criterion for C−L PT, according to which C−L PT (in the

forward and reverse directions) begins when the proportion

of delocalized atoms (Nd) will reach a certain value of the

total number of atoms in the system (N):

xd(s − l) =
Nd(s − l)

N
∼= 10−2. (3)

Here s − l means that this value belongs to the solid

(s)−liquid (l) transition region, both in the forward and

reverse directions. It was shown in Refs. [21,22] that the
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delocalization criterion of C−L PT (3) is applicable to both

melting and crystallization, and it was shown in Refs. [23,24]
that the criterion (3) is also applicable to the liquid-glass

transition.

Let us assume for defining the function xd(P, T ) that the

atoms in the system can be in two states: localized and

delocalized. The atom is localized in the localized state

in a cell formed by its nearest neighbors and has only

oscillatory degrees of freedom. The atom has access to

the entire volume of the system V in the delocalized state,

and the atom has only translational degrees of freedom.

As it was shown in Refs. [21,22,25], the proportion of

delocalized atoms at a given temperature (T ) and specific

volume (v = V/N) is described by the expression:

xd(v, T ) =
Nd(v, T )

N
=

2

π1/2

∞
∫

Ed/(kBT )

t1/2 exp(−t)dt, (4)

where Ed is the energy required for the transition of an atom

from a localized to a delocalized state, kB is the Boltzmann

constant.

Equation (4) is a result of the fact that the number

of delocalized atoms having kinetic energy from a certain

range of values obeys the Maxwell–Boltzmann distribution

which is valid not only to a gas, but also to a liquid,

amorphous and crystalline phase [26,27].
The following expression was obtained for the energy

of atomic delocalization using the Einstein model for the

oscillatory spectrum of a crystal [21,22,25]:

Ed =

(

3

8π2

)

m

(

3ckB2

4~k1/3
p

)2

f y (yw). (5)

Here ~ — Planck’s constant, m — atomic mass,

c = [6k pV/(πN)]1/3 — distance between the centers of the

nearest cells, 2 — Debye temperature, k p — packing index

of a structure of N spherical cells.

The function f y(yw) appears in (5) due to the consid-

eration of quantum effects, and it has the following form

for a crystal with an oscillatory spectrum according to the

Einstein model [25]:

f y (yw) =
2

yw

[1− exp(−yw)]

[1 + exp(−yw)]
, yw =

32

4T
. (6)

It should be noted that if we use the Debye model,

then we will obtain the following function instead of the

function (6) [25]:

f yD(yD) =

[

yD

4
+ Dn=1(yD)

]

−1

, yD =
2

T
,

where n-dimensional Debye function defined by the expres-

sion:

Dn(yD) =
n

yn
D

yD
∫

0

tn

exp(t) − 1
dt.
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Figure 1. Dependence of functions f y (solid line) and f yD

(dotted line) on relative temperature T/2.

Figure 1 shows the dependence of the functions f y (solid
line) and f yD (dotted line) on the relative temperature

T/2 = 3/(4yw). Next we will use the formula (6) because

we used the Einstein model when we obtained the function

Ed from (5). It is easy to see that at T/2 > 1.5 it is

possible to accept: f y(T/2 > 1.5) ∼= 1. We will call this

temperature range the classical one. A linear relationship

can be assumed for the function f y (yw) at T/2 < 0.4:

f y (T/θ < 0.4) ∼= 8T/(32). We will further refer to this

temperature range as the quantum one.

Since the delocalization criterion of C−L PT (3) was

obtained in Refs. [21,22] for classical crystals (for which

f y (Tm/2 > 1.5) ∼= 1), then it follows from (3)−(5) that

the following equation holds in case of melting of a classical

crystal:

Ed

kBTm
=

( 3

8π2

)kBm
Tm

( 3c2

4~k1/3
p

)2
∼= 5.672. (7)

A relation follows from the formula (7) that is func-

tionally consistent with the dependence derived from the

Lindemann criterion:

Tm =
( 3

8π2

) kBm
5.672

( 3c2

4~k1/3
p

)2

= L2
E kB

m
3

(3c2
4π

)2

. (8)

It can be seen from (8) that according to the crite-

rion (3) the Lindemann relation for classical crystals (with

Tm > 1.52) with an oscillatory spectrum according to the

Einstein model is determined by the expression:

LE(Tm > 1.52) =
( 9

8π25.672

)1/2 1

k1/3
p

=
0.1418

k1/3
p

. (9)

It can be seen from (9) that for classical crystals the value
LE is determined only by the crystal structure and does not

depend on the pressure or the size of the nanocrystal.
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Let us summarize (9) for the case of a quantum crystal

by comparing the formulas for energy (ε) and the RMS

displacement of a classical and quantum n-dimensional

harmonic oscillator:

εcl = εqn(Tm > 1.52) = nkBTm, εqn =
εcl

f y (yw)
,

〈u2〉cl = 〈u2〉qn(Tm > 1.52), 〈u2〉qn =
〈u2〉cl

f y (yw)
. (10)

It can be seen from formulas (10) that the following

expression can be assumed for generalizing the formula (9)
for the case of a quantum crystal:

LE(Tm) =
0.1418

k1/3
p [ f y (yw)]1/2

. (11)

The formulas for the delocalization criterion of C−L

PT (4) and (7) and for the melting point (8) can be

generalized for the case of an arbitrary value Tm/2 in the

following form based on (11):

xd(v, Tm) =
Nd(v, Tm)

N
=

2

π1/2

∞
∫

5.672[ f y (yw)]2

t1/2 exp(−t)dt,

Ed

kBTm
=

( 3

8π2

)kBm
Tm

( 3c2

4~k1/3
p

)2

f y (yw) ∼= 5.672[ f y (yw)]2,

Tm =
( 3

8π2

) kBm
5.672 f y (yw)

(

3c2

4~k1/3
p

)2

= 0.003768
kBm

f y (yw)

(

c2

~k1/3
p

)2

. (12)

In the quantum domain, i. e. at Tm < 0.42, where

f y (Tm/2 < 0.4) ∼= 8Tm/(32) holds, formulas (12) can be

simplified to the form:

xd(v, Tm) =
Nd(v, Tm)

N
=

2

π1/2

∞
∫

40.334(Tm/2)2

t1/2 exp(−t)dt,

Ed

kBTm

∼= 5.672
(8Tm

32

)2

= 40.334
(Tm

2

)2

, (13)

LE(Tm < 0.42) ∼=
0.1418

k1/3
p

( 32

8Tm

)1/2

=
0.0868

k1/3
p

( 2

Tm

)1/2

,

Tm =

[

( 3

8π2

) kBm
5.672

( 3c2

4~k1/3
p

)2 32

8

]1/2

= 0.03759
c2

~k1/3
p

(mkB2)1/2.

The following conclusions can be drawn from formu-

las (11)−(13).
1) The value LE(Tm < 0.42) for quantum crystals is

determined not only by the crystal structure, but also

depends on the ratio 2/Tm.

2) During the transition from the classical to the quantum

domain, the function Tm changes its functional dependence:

Tm ∼ (c2)2 holds with Tm > 1.52, Tm ∼ c23/2 holds with

Tm < 0.42.

3) If Tm/2 = 0 holds, then all the atoms of a quantum

crystal are in a delocalized state at the melting point.

As it was shown in Refs. [28,29], the more noticeably

the shape of the nanocrystal deviates from the energetically

optimal shape the greater is the decrease of function 2 with

an isobaric decrease of the nanocrystal size. Therefore, the

function Tm/2 ∼ c21/2 will also decrease as the size of the

quantum nanocrystal decreases. Thus, it follows from (13)
that the more noticeably the shape of the nanocrystal

deviates from the energetically optimal shape the greater

is the increase of value LE for quantum crystals with an

isobaric decrease of the nanocrystal size. This is consistent

with the results of Ref. [18], which showed by the Monte

Carlo diffusion method that the Lindemann ratio increases

with the decrease of the nanoparticle size. It should be

noted that we showed in Ref. [30] that the delocalization

criterion C−L PT (3) is valid for nanoparticles: for

nanocrystal melting and for crystallization of a nanodrop.

Therefore, the formulas obtained on the basis of criteria (3)
are also applicable to the nanocrystal.

We calculated the value LE(Tm) for both classical and

quantum crystals for evaluation of the correctness of the

formulas (11) and (13) obtained for LE and compared the

results with estimates obtained by other authors.

2. Calculation results

2.1. Classic crystals

Table 3 shows calculated using the formula (9) The

values of the Lindemann ratio for classical crystals with

an oscillatory spectrum according to the Einstein model.

Calculations were performed for the following structures:

1) face-centered cubic ( f cc) and hexagonal close-packed

(hc p) structures,

2) body-centered cubic (bcc) structure,

3) simple cubic structure (scs),
4) diamond cubic structure (dcs).
5) for two amorphous packings: dense (dense amorphous

packing, da p) and loose (loose amorphous packing, la p).
The parameters for the da p and la p structures were

determined by us in the paper [31]. As shown in [31], in
the area of: 5.855 ≤ kn ≤ 6.2793 and 0.4 ≤ k p ≤ 0.6237,

one value of the first coordination number kn corresponds to

two or three values of the packing index k p. Therefore, this

structural region was defined in Ref. [31] as the
”
random

packing“ area.

It can be seen from Table 3 that the values we obtained

LE for f cc and bcc structures are slightly higher than

the results from studies in Refs. [6–8], and less than the

results of study in Ref. [9], which are presented in Table 1.

The calculation results provided in Table 3 are in good

agreement with the estimates for f cc , hc p, and bcc metals

Physics of the Solid State, 2024, Vol. 66, No. 11
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Figure 2. Dependence of the function LE(Tm/2) for structures

from Table 3.

that were obtained in Ref. [16]. Our calculations of value

LE for the diamond structure are in good agreement with

the calculations of the Lindemann ratio for silicon (Si)
and germanium (Ge) obtained by the perturbation theory

method with the local Heine-Abarenkov pseudopotential

in Ref. [32]: L(Si) = 0.272 ± 0.03, L(Ge) = 0.249± 0.03.

Our results are also consistent with the results obtained for

silicon nanocrystals by the molecular dynamics method:

L (Si with Stillinger-Weber potential)= 0.19 [33],

L (Si with Stillinger-Weber potential)= 0.35−0.39 for the

heating rates of (5.625−5.113) · 1011 K/s [34],

L (Si with Tersoff-Agrawal-Raff-Komanduri potential)=
= 0.2 [35].

Our calculations of LE for dense amorphous packing

(da p) are also consistent with the estimates of the Linde-

mann parameter for softening inorganic glasses, which were

obtained in Ref. [24]: L(Glass–Liquids) = 0.11−0.15.

The change of the function LE(Tm/2) for the classical

and quantum temperature ranges was calculated using the

formula (11). The calculation result for various structures

from Table 3 is shown in Figure 2. It can be seen that

the function LE has different dependencies for the classical

(Tm/2 > 1.5) and quantum (at Tm/2 < 0.4) temperature

ranges, for which the following asymptotic expressions can

Table 3. Values of the Lindemann ratio for classical crystals: kn

and k p — the first coordination number and packing index of the

structure

Structure kn k p LE

f cc and hc p structures 12 0.7405 0.1567

bcc structure 8 0.6802 0.1612

Dense amorphous packing (da p) 6.2793 0.62370 0.1660

Simple cubic structure (scs) 6 0.5236 0.1759

Loose amorphous packing (la p) 6.2793 0.45556 0.1843

Diamond cubic structure (dcs) 4 0.3401 0.2031

Table 4. Experimental data for f cc crystals of inert gases at

P = 1 bar and calculated values of the Lindemann ratio based on

them and using the formula (11)

Crystal m, a.m.u. Tm, K 2, K Ref. Tm/2 LE

Ne 20.18 24.56 66.6 [36] 0.369 0.1802

24.57 74.6 [37] 0.329 0.1854

Ar 39.95 83.81 93.3 [36] 0.8983 0.1611

83.78 93.3 [37] 0.8980 0.1611

Kr 83.30 115.78 71.7 [36] 1.615 0.1581

115.95 71.7 [37] 1.617 0.1581

Xe 131.3 161.37 55.0 [36] 2.934 0.1571

161.36 64.0 [37] 2.521 0.1573

be used:

LE(Tm)=
0.1418

k1/3
p [ f y (yw)]1/2

∼=
0.1418

k1/3
p



















1−
ym

4
=1−

32

16Tm
, for

Tm

2
> 1.5

(ym

2

)1/2

=
( 32

8Tm

)1/2

, for
Tm

2
< 0.4

.

2.2. Crystals of inert gases

A transition from a classical type crystal (Kr and Xe)
to a quantum type crystal (Ne) takes place in the group

of f cc crystals of inert gases. Therefore, we calculated

the value LE for these crystals using the formula (11).
The melting point and Debye temperature experimentally

determined for crystals of inert gases at atmospheric

pressure (P = 1 bar) are provided in Table 4, as well as the

values of the Lindemann ratio calculated from them using

the formula (11) for crystals with an oscillatory spectrum

according to the Einstein model. The upper values are taken

from Ref. [36] in each line, and the lower values are from

the article in Ref. [37].
It can be seen from Table 4 that our calculations are in

good agreement with the results from Ref. [14], but slightly
exceed the estimates of other authors, which are provided

in Table 2.

2.3. Crystals of hydrogen isotope molecules

Table 5 shows the melting point and Debye tem-

perature experimentally determined at various pressures

for molecular hc p crystals of hydrogen isotopes: para-

hydrogen, p-H2, m = 2.016 a.m.u. and ortho-deuterium,

o-D2, m = 4.028 a.m.u. The Lindemann ratios for crystals

with an oscillatory spectrum according to the Einstein

model were calculated based on these data using for-

mula (11). It can be seen from Table 5 that our calculations

are in good agreement with theoretical and experimental

Physics of the Solid State, 2024, Vol. 66, No. 11



Melting criteria for classical and quantum crystals 1885

Table 5. Experimental data determined at different pressures for

hc p crystals of hydrogen isotopes and calculated using them and

formula (11) values of the Lindemann ratio

Crystal P, bar Tm, K 2, K Tm/2 LE

p-H2 1 13.96 [37] 118.0 [38] 0.1183 0.2795

400 25 [39,40] 122.9 [39] 0.2034 0.2182

151.1 [40] 0.1655 0.2384

o-D2 1 18.72 [33] 114.0 [38] 0.1642 0.2393

200 25 [35,36] 91.2 [39] 0.2741 0.1956

109.0 [40] 0.2294 0.2081

2 4 6 8 10 12 14 16
0.14

0.16

0.18

0.20

0.22

0.24

 

0.15

0.20

0.25
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T
/Θ

mL
E

D2 H2

Figure 3. Baric dependence of the ratio Tm/2 (dotted lines, right

scale) and the function LE (solid lines, left scale). The lower solid

curve for LE and the upper dotted curve for Tm/2 refer to D2 .

estimates from Refs. [17–40,41,42], where the following was

obtained: L(p-H2)
∼= 0.2.

Approximations of experimental baric dependences (up
to 19 kbar) for the melting point and Debye temperature

were obtained Ref. [40] in the form of equations of the

following form (here Tm and 2 in K, P in kbar):

for p-H2

Tm =

(

P + 0.2442

2.858 · 10−3

)1/1.724

, (14)

2 = 85.389 − 0.729Pm + 98.832P0.481
m ,

for o-D2

Tm =

(

P + 0.5431

3.66 · 10−3

)1/1.677

, (15)

2 = 74.65 + 65.298P0.476
m .

We used the dependencies (14) and (15) to calculate the

baric dependence of the functions Tm/2 and LE which are

shown in Figure 3. It can be seen from these dependences

that the Lindemann ratio for molecular hc p crystals of

hydrogen isotopes decreases with the increase of pressure.

2.4. Crystals of helium isotopes

Helium has two stable isotopes 3He (m = 3.016 a.m.u.)

and 4He (m = 4.0026 a.m.u.). Experimental data for crystals

of helium isotopes with bcc and hc p structures from

Refs. [43,44] are shown in Table 6, where V is the

molar volume of the crystal, Tm(1) and Tm(2) are the

upper and lower crystallization temperatures, 2 is the

Debye temperature at T = 0K. Using these values and

the formula (13), the Lindemann ratios for crystals with

an oscillatory spectrum were calculated according to the

Einstein model, which are presented in Table 6.

It has been shown in theoretical papers by other au-

thors that for quantum systems such as helium and the

electronic Wigner crystal, the Lindemann ratio should be

at least: 0.3 [19], 0.267± 0.0026 = 0.2644−0.2696 [45],

L(bcc-3He) = 0.368 and L(bcc-4He) = 0.292 [46]. The

following was obtained in Ref. [41] using the Quan-

tum Monte Carlo simulations for bcc structures 3He at

Tm = 0.65K and 4He at Tm = 1.6K : L(bcc-3He) = 0.344,

L(bcc-4He) = 0.291. The RMS displacement of an atom in

a hc p crystal 4He at T = 0.7± 0.05 was experimentally

measured in Ref. [47]. The following was obtained in

Ref. [47]: L(hc p-4He) = 0.262± 0.006. It can be seen

from Table 6 that the calculated value LE is consistent with

the estimates from Refs. [19,41,45–47]. The value of the

Lindemann ratio decreases as the molar volume of the bcc
or hc p of a helium crystal decreases (i. e., with the increase

of pressure). It is also seen from Table 6 that the value LE is

greater at the upper crystallization temperature than at the

lower one crystallization temperature.

Many authors (for example, in Refs. [17,18,36,37,46,48])

pointed out the connection of the Lindemann relation with

the de Boer parameter [49](3), which characterizes the role

of quantum effects in the energy of a crystal, and which has

the form:

3 =
2π~

σ (mD)1/2
. (16)

Here σ is the distance between atoms at which the paired

interatomic potential (2) becomes zero: ϕ(σ ) = 0.

Figure 4 shows the dependences of the Lindemann ratio

calculated for crystals of hydrogen isotopes and inert gases

on the de Boer parameter from Refs. [18,47,49], which are

shown in Table 7. The value of the de Boer parameter in

later works differs from the value (3B) that was presentedin

Ref. [49] due to the use of different values of the functions

of equation (16). Therefore, the values of the de Boer

parameter from Ref. [47] (3Z) and from Ref. [18] (3G) are

presented in Table 7 along with 3B .

As can be seen from Figure 4, the dependence LE(3i)

for crystals of hydrogen isotopes and inert gases with a

large correlation coefficient (R) is approximated by a linear
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Table 6. Experimental data for helium isotope crystals with bcc and hc p structures from Refs. [43,44] and calculated values LE

Crystal V , cm3/mol Tm(1), K Tm(2), K 2, K Ref. Tm(1)/2 LE(1) Tm(2)/2 LE(2)

bcc -3He 23.80 1.276 0.898 20.10 [43] 0.0635 0.3917 0.0447 0.4668

20.18 2.874 2.417 28.99 [43] 0.0991 0.3135 0.0834 0.3418

hc p-3He 19.05 2.983 2.790 39.20 [43] 0.0761 0.3478 0.0712 0.3596

11.42 19.33 11.42 128.19 [43] 0.1508 0.2471 0.0891 0.3214

hc p-4He 12.23 16.78 14.23 95.50 [43] 0.1757 0.2289 0.1490 0.2486

12.21 14.12 16.85 84.0 [44] 0.1681 0.2340 0.2006 0.2143

21.04 2.27 1.45 24.2 [44] 0.0938 0.3133 0.0599 0.3920

Table 7. The calculated Lindemann ratio (from Tables 4 and 5) and the de Boer parameter from Refs. [18,47,49]

Crystal m, a.m.u. LE(calc) 3B [49] de Boer–1948 3Z [47] Zucker–1961 3G [18] Guardiola–2011

3He 3.0160 3.04∗ 3.09 0.491∗

4He 4.0026 2.64 2.68 0.426

H2 2.016 0.2795 1.73 1.73 0.293

D2 4.028 0.2393 1.22 1.22 0.207

Ne 20.18 0.1802−0.1854 0.591 0.574 0.094

Ar 39.95 0.1611 0.187 0.184 0.029

Kr 83.3 0.1581 0.102 0.102 0.016

Xe 131.3 0.1571−0.1573 0.0636 0.062 0.010

No t e. ∗ Calculated using the formula: 3(3He) = 3(4He)[m(4He)/m(3He)]1/2 = 1.1523(4He).
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Figure 4. Dependence of the calculated Lindemann ratio on the

de Boer parameter from Refs. [18,47,49].

function of the following form:

LE = 0.14829 + 0.073263B , R = 0.98323,

LE = 0.14856 + 0.073363Z , R = 0.98606,

LE = 0.14928 + 0.431623G , R = 0.98866. (17)

Calculations using linear approximations (7) for crystals

from helium isotopes have shown the following:

the following is obtained from 3B :

LE(3He) = 0.3710, LE(4He) = 0.3417,

the following is obtained from 3Z :

LE(3He) = 0.3752, LE(4He) = 0.3452,

the following is obtained from 3G :

LE(3He) = 0.3612, LE(4He) = 0.3332.

These results confirm the correctness of both the results

of our calculations for helium crystals from Table 6 and the

correctness of the used formulas (11) and (13).
In conclusion, we would like to note that the effect

of the anharmonicity of atomic vibrations in a crystal on

the melting parameters of both classical [3,50–52] and

quantum [20,53] crystals is insignificant. That is why the use

of the Einstein model of independent harmonic oscillators in

this work has shown good results. We showed that melting

is attributable to delocalization of definite portion of atoms

of both macro- [{]21,22}, and nanocrystal [29,30].

3. Conclusion

A relatively simple method for calculating the Lindemann

ratio is proposed based on C−L PT delocalization criterion

and the Einstein crystal model, which can be applied to

both classical and quantum crystals.

It is shown that the Lindemann ratio is determined

only by the crystal structure for single-component classical

crystals (in which Tm/2 > 1.5). Calculations for various

structures of classical crystals have shown good agreement

with the estimates of other authors.
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It is shown that the Lindemann relation is determined for

quantum single-component crystals (in which Tm/2 < 0.4)
by both the crystal structure and the function 2/Tm. This

leads to the fact that the Lindemann ratio for quantum

crystals decreases with the increase of pressure along the

melting line. The more noticeable is the deviation of the

shape of the nanocrystal from the energetically optimal

shape the greater is the increase of the Lindemann ratio

for quantum nanocrystals with an isobaric decrease of the

size of the nanocrystal.

The function Tm(c, 2) changes its functional dependence
in case of the transition from the classical to the quantum

domain. Therefore, the use of the Lindemann criterion to

study the melting of quantum crystals (as the authors tried

to do in Ref. [20] when studying the melting of atomic

metallic hydrogen) showed incorrect results.

A generalization of the delocalization melting criterion for

the case of single-component quantum crystals is obtained.

It is shown that all the atoms of a quantum crystal are

in a delocalized state at the melting point if the following

condition holds: Tm/2 = 0.
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