
Optics and Spectroscopy, 2024, Vol. 132, No. 10

19

Localized plasmons in conductive nanoparticles: surface plasmon

resonance method

© M.V. Davidovich

Saratov National Research State University,

Saratov, Russia

e-mail: davidovichmv@info.sgu.ru

Received April 14, 2024

Revised October 31, 2024

Accepted November 01, 2024

Localized plasmons in small metallic and conductive particles are considered on the basis of the classical

electrodynamic approach and an approximate approach based on the surface plasmon resonance method. The

results based on the quasi-static integral equation for the surface charge density are also presented. Approximate

analytical results for resonant frequencies are presented. It is shown that the approximate approach gives good

accuracy in the case of small particles with sizes of the order of several nm.

Keywords: localized plasmons, surface conductivity, graphene, fullerenes, integral equations.

DOI: 10.61011/EOS.2024.10.60063.6264-24

Introduction

Metallic and conducting nanoparticles (specifically, gold
ones), fullerenes, and carbon nanotubes (CNTs) are used

widely in medicine, medical physics, and physics in general

as objects for interaction with laser beams [1–5]. Con-

ducting nanoparticles (nanoclusters) resemble a molecule

containing a multitude of atoms that share conduction

electrons [5–8]. The size (radius) of such clusters may

vary from one nanometer (fullerenes C28 and C60) to

tens and even hundreds of nanometers. Atoms in such

clusters may be located on their surface (fullerenes, CNTs,
graphene) or in the bulk (metallic nanoparticles). A rigorous

approach to solving the problem of interaction of particles

with sizes on the order of 1 nm (meta-atoms) with an

electromagnetic wave (photoionization) requires solving a

quantum problem with the wave vector potential introduced

into the Hamiltonian. However, the classical approach is

sufficient to examine excitations with frequencies that do

not exceed optical ones. This approach is quite accurate for

conducting particles with sizes on the order of 10 nm and

larger ones (e.g., gold nanoparticles), since the frequencies

of the resulting localized plasmons (LPs) fall within the

optical range [1–3]. In the case of metallic spherical particles

and particles in the form of a rectangular parallelepiped, the

simplest problem is reduced to the problem of an electron

in a quantum box of the corresponding shape. The wave

function and energy for a cubic box with infinitely high

walls are

ψ(r) = A sin(nxπx/a) sin(nyπy/a) sin(nzπz/a),

Enx ny nz = π2
~
2(n2

x + n2
y + n2

z )/(2mea2).

Adjusted for a finite wall height on the order of several

electronvolts, the levels decrease slightly. The energies of the

lowest levels at a = 10 nm are π2
~
2/(2mea2) = 0.003 eV

(on the order of kBT at room temperature); i.e., they cor-

respond to frequencies of the infrared (IR) range. Thermal

fluctuations induce overlapping in the line spectrum, and a

quantum box of this kind may be regarded as a particle with

a continuous spectrum of electrons from conduction band

zero to the Fermi energy; i.e., the methods of plasmonics

may be used to calculate the oscillation spectrum. The

level energies in particles with a size on the order of

one nanometer are two orders of magnitude higher and

correspond to the soft ultraviolet (UV) range. The quantum

approach is relevant here. Fullerenes, CNTs, and graphene

fragments may be characterized as conducting shells [9].
Owing to the small size of fullerenes (approximately 1 nm),
their resonant frequencies lie in the UV range. At these

quantum energies, the bonds of –electrons with carbon

atoms are disrupted, and the common model of conductivity

becomes inapplicable to graphene [10] and fullerene. The

plasma shell model should be used instead [9]. The number

of atoms may vary from several tens (fullerenes C28 and

C60) to hundreds of thousands (3.56 · 105 for a copper

nanoparticle with radius r = 10 nm). The considered nan-

oclusters support LPs (resonant electromagnetic oscillations

with complex resonant frequencies [1–8]). It is often needed

to match the natural resonant frequencies of these particles

with the frequencies of excitation lasers. The rate of decay

of free oscillations in LPs excited by a short laser pulse is

inversely proportional to the quality factor. Nanoparticles

with plasmons may also be used as meta-atoms in photonic

(electromagnetic) crystals.

The classical Mie solution is applicable to the problem of

excitation of both metallic and dielectric spherical particles.

In the case of fullerenes, an approach based on the introduc-

tion of shell conductivity was examined in [9]. In addition

to approaches relying on classical electrodynamics, quantum
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chemistry methods, which serve as a basis for calculations

in standard software packages such as Gaussian 9, are often

used.

In the present study, the surface plasmon resonance

(SPR) method, wherein volume resonance emerges as a

superimposition of resonance conditions onto the motion

of a surface plasmon (SP) along the surface of a particle,

is used. Conditions of a phase incursion divisible by

2π along closed SP trajectories and resonance condi-

tions in motion along open trajectories (e.g., vanishing

of current at the ends of a CNT) are possible. Since

resonances often arise near the SPR frequency, where an

SP is decelerated strongly, the obtained results correspond

closely to the quasi-static approach to determining the

LP frequencies [1–3], and the field itself is quasi-static

in nature. It is demonstrated below that the SPR-based

approach yields frequencies that also agree closely with the

exact solution in the case of a significant SP deceleration.

In metals, it is typically observed near the SPR fre-

quency: ω)s pr =
√

ω2
p/(εL + 1) − ω2

co ≈ ωp/
√
εL + 1. The

plasma frequency and the lattice permittivity for silver are

ωp = 1.57 · 1)16 Hz and εL ≈ 10; thus, ωs pr = 47 · 1015 Hz,
and the wavelength is 400 nm. The permittivity of

metal is written as ε(ω) = εL − ω2
p/(ω

2 − iωωc), where

ω2
p = e2Ne/(meε0) is the plasma frequency squared. Note

that the Lorentz term starts to depend on frequency at

the polarization frequencies of the crystal lattice (nor-
mally in the UV range), but it also includes interband

transitions [2] at somewhat lower frequencies. Copper

has ωp = 1.785 · 1016 Hz and εL ≈ 20, and we obtain

ωs pr = 3.7 · 1015 Hz and a wavelength of 486 nm. The LP

frequencies are slightly lower than the SPR frequencies,

and losses contribute to a reduction in the SPR frequency.

The LP frequencies depend on permittivity of the ambient

medium of particles (e.g., a transparent liquid). Collision

frequencies ωc for small particles (significantly smaller

than electron mean range λe) are usually higher than the

frequencies for bulk materials. In this case, scattering is

induced mostly by collisions with the shell. In the quasi-

static approach (∇ · E = 0), bulk transverse plasmons with

dispersion ω =
√

ω2
s pr + k2

0c
2 and bulk longitudinal plas-

mons with dispersion ε(ω, k) = 0 are found in particles [2].
The spatial dispersion is essential for such plasmons, and

they are not considered here.

Since the SPR-based approach is fairly simple to im-

plement and yields simple analytical equations, it holds

promise for the study of particles of a complex arbitrary

shape. However, the shape of their closed surface should

allow one to isolate three closed paths on the surface

in different planes. Spherical, ellipsoidal, cylindrical,

dumbbell-shaped, and torus-shaped particles (as well as

a number of other particle types) fit this definition. Of

interest are both the problem of excitation by a given field

Ein(r) = E0 exp(−ikr) with time dependence exp(iωt) and

the problem of free (natural) oscillations, where complex

frequencies ωm = ω′

m + iω′′

m are sought. The typical quality

factors of such oscillations are low. The second problem is

considered in the present study.

Electrodynamic formulation of the problem

The vector potential of a scattered or intrinsic field has

the form

A(b f r)

∫

V

G(r− r′, k0)J(r
′)d3r ′, (1)

where Green’s function (GF) G(r, k0) = 4π|r| exp(−ik0|r|),
k0 = ω/c — wavenumber, r′ — source point, and r —
observation point. The fields from (1) are expressed as

E(r) = Ein(r) + (ik0)
−1η0

(

k2
0A(r) + ∇⊗∇A(r)

)

, (2)

H(r) = Hin(r) + ∇× A(r), (3)

where η0 =
√
µ0/ε0 and excitation fields are introduced.

Polarization current density Jr = iωε0(ε(r) − 1)E(r) within

particle volume V is found in (1). These equations allow

one to formulate several types of volume integral equations

(IEs) and integro-differential equations (IDEs) both for scat-

tering problems and for problems of free (natural) oscilla-

tions in arbitrary nanoparticles [11]. In the present study, we

examine free oscillations in homogeneous metallic nanopar-

ticles, which are characterized by Drude−Lorentz permittiv-

ity ε(ω) = εL(ω) − ω2
p/(ω

2 − iωωc), and carbon nanoclus-

ters. Lorentz term εL may be considered to be constant

and positive in the IR and optical ranges. Specifically, silver

has εL = 9.3, plasma frequency (PF) ωp = 1.57 · 1016 Hz,
and collision frequency (CF) ωc = 3.46 · 1013 Hz. Thus,

the DC conductivity of silver is σ0 = ω2
pε0/ωc = 6.29 · 107,

and real permittivity component ε′(ω) = 0 at frequency

ω = 5.148 · 1015Hz. It is often assumed below that the CF

is zero (i.e., dissipation is neglected, and only the radiation

losses are taken into account). In the case of fullerenes and

CNTs, integral (1) should be considered as an integral over

their surface of surface current density j(ω) = σ (ω)Eτ (ω).
Specific (volume) conductivity iωε0(ε(r) − 1) should then

be substituted with surface conductivity σ , which implies

the introduction of an IE for surface electric field Eτ (ω) or

surface current density j(ω). The use of IEs and IDEs leads

to rather complex and implicit algorithms.

In what follows, we compare a rigorous approach involv-

ing the use of Eq. (1) with IEs and IDEs to an approximate

approach based on the examination of an SP with SPR.

The quasi-static approach [2,3] and the results obtained

this way are also considered. The SPR approximation

allows one to obtain simple explicit formulae for resonant

frequencies. An approximate approach for conducting

shells may be constructed based on the equations for

surface E-plasmons ks = k0

√

1− 4/ς 2(ω) and H-plasmons

ks = k0

√

1− ξ2(ω)/4, where ξ(ω) = σ (ω)
√
µe/ε0 is the

normalized surface conductivity of the shell [12]. If a metal
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particle is positioned in a dielectric, the Zenneck dispersion

relation (DR) [2,13] for a transverse E-plasmon yields SP

propagation constant ks = k0

√

ε(ω)εd(ω)/[ε(ω) + εd(ω)].
Here, εd(ω) is the permittivity of the dielectric material. An

E-plasmon is an electromagnetic wave without a magnetic

field component along the direction of its propagation. An

H-plasmon is an electromagnetic wave without an electric

field component along the direction of its propagation. Note

that an H-plasmon for a bulk particle may exist only if

it has magnetic properties. The given DRs are strictly

valid at sufficiently large curvature radii (for flat conducting
surfaces, such as graphene) and for a two-dimensional

electron gas (2DEG). However, with strong deceleration,

they may also be used for small particles. Next, we

introduce propagation constants ks along a certain closed

arc s with perimeter Ls on the surface of a particle or

an open line (in the case of particles in the form of

nanowires). By virtue of closedness, we obtain equations

ks ls = 2kπ, k = 1, 2, . . ., or ω
√

1− 4/ξ2(ω) = 2kπC/Ls ,

ω
√

1− ξ2(ω)/4 = 2kπC/Ls , k = 1, 2, . . .. They are the

ones setting the resonance conditions. Fullerene C60

thus has Ls = 2.25 nm; i.e., even with deceleration factors

on the order of 100, the minimum possible frequencies

lie in the UV range where normal surface conductivity

becomes irrelevant. At UV frequencies with quanta energies

greater than 3 eV, all carbon atoms are ionized. Therefore,

when a fullerene shell is exposed to hard UV radiation,

it may be regarded as plasma in which each atom gives

up one, four, or even all six electrons. Such a shell is

characterized as a 2DEG [9]. Lower-frequency spectra

correspond to fullerenes with larger radii and greater

numbers of atoms. The normalized surface conductivity

for a sphere with radius r , surface area S = 4πr2, and

surface density of carbon atoms nS = 3.82 · 1019 m−2 is

ξ = ik0t(1 − ω2
p/(ω

2 − iωωc). Here, ω2
p = e2nS/(ε0met),

where t is the shell thickness that is on the order of 0.1 nm

(the size of an atom). The exact thickness of a graphene

sheet is t = 0.34 nm (the distance between graphene sheets

in alpha graphite). In the ω ∼ ω = 1.2 · 1016Hz plasmonics

region, the conductivity is low:

xi ≈ −iω(t/c)(ω2
p/ω2) ∼ −i0.3 · 10−2, therefore, the de-

celeration factor n =
√

1− 4/ξ2(ω) of plasmons does not

exceed 600, and resonant frequencies may fall within the

UV range.

Quasi-static formulae

Quasi-static solutions of Maxwell’s equations corre-

spond to localized plasmons; i.e., it is assumed below

that k0r = ωr/c ≪ 1, where r is a certain characteristic

particle size. It is convenient to introduce frequency

ωr = c/r , which corresponds to the inverse time of

light travel over distance r, and characteristic frequencies

ω0 = ωp/
√
εL, ω̃p = ωp/

√
εL + 1 of volume ε(ω0) = 0

and surface ε(ω̃p) = −1 plasmon resonances, respectively.

Frequencies ω0 and ω̃p are close, and all resonances are

grouped around them. The formulae may be written with

either of these two frequencies. Dissipation is neglected

here. If it is taken into account, we obtain

ω0 =
√

ω2
p/εL − ω2

c ≈ ωp/
√
εL − ω2

c
√
εL/(2ωp),

which implies that these frequencies become slightly lower.

At a radius of 1 nm, ωr = 3 · 1017 Hz; metallic particles with

radius r < 10 nm always have ωp/ωr < 1. Low-frequency

plasmons for CNTs correspond to their lengths L, since

their radii are significantly smaller: r ≪ L. Approximate

values of these frequencies are determined from equation

k0L
√

1− 4/ξ2(ω) = mπ, m = 1, 2, . . . and may fall within

the IR range (or even the terahertz range if CNTs are

sufficiently long).

The quasi-static equation for a dielectric body is written

as E(r) = −∇ϕ(r), ϕ(r) = −∇A(r), with k2
0A(r) in (2)

considered negligible compared to ∇⊗∇A(r). Since

∇G(r− r′) = −∇′G(r− r′), the action of operator ∇ on

A(r) in (1) results in a volume integral of G(r− r′)∇′J(r′)
plus a surface integral of vector flux — G(r − r′)J(r′). This
integral on the surface is zero, since ν(r) · J(r) = 0. By

virtue of the law of conservation of charge, we obtain

∇′J(r′) = −iως (r)δ(r − r′), where ς (r) is the surface

charge density and point r belongs to the surface. Indeed,

there are no volume charges for a homogeneous particle.

Therefore, the equation for the normal field component on

the surface is

ν(r)E(r) = −∇ϕ(r)

= − 1

ε0

∮

ν(r)∇G(r− r′)ς (r′)dr ′
2
. (4)

This component EV in (4) is defined as the double layer

potential and undergoes a jump when the observation point

crosses the surface (the particle boundary). Denoting

the integral in (4) as I , we obtain ε0E+
V = ε0I + ς/2

and ε0E−

V = ε0I − ς/2. Defining the jump, we find

ς = 2ε0I(ε − 1)/(1 + ε). Thus, the quasi-static problem

may be formulated based on the quasi-static IE for surface

charge density ς (r) [2,3]:

ς (r) = 2
1− ε

1 + ε

∮

S

ν(r)∇G(r − r′, k0)ς (r′)d2r ′. (5)

Equation (5) characterizes a quasi-stationary LP surface

charge distribution [2,3]. Its frequency dependence is speci-

fied by dependence ε(ω). A jump in the normal component

of the electric field strength is observed in transition through

the particle surface: EV (r + 0) = εEV (r− 0). Since the

surface charge density is related to the field strength as

ς (r) = ε0(1− 1/ε)EV (r + 0), an IE may also be formulated

for it. Condition ε ≈ −1 is typical for plasmonics, and the

integral at frequency ω̃p should then be close to zero for a

non-zero charge distribution to exist. Equation (5) allows

one to find the frequencies of quasi-static resonance.

Optics and Spectroscopy, 2024, Vol. 132, No. 10



1038 M.V. Davidovich

Let us consider a spherical particle. The GF at r > r ′ in
a spherical coordinate system is written as [14]

G(r−r′, k0) =
k0

4πi

∞
∑

n=0

(2n+1)Pn(cos(γ))

× ψn(k0r ′)ξ (2)
n (k0r),

∂r G(r − r′, k0) =
k0

4πi

∞
∑

n=0

(2n + 1)

× Pn(cos(γ))ψn(k0r ′)∂r ξ
(2)
n (k0r),

Pn(cos(γ)) = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(ϕ − ϕ′).

Taking the distribution of surface charge density

ςnm(r) = Pm
n (θ) exp(−imϕ), we see that this function sat-

isfies IE (5). Indeed, performing integration with expansion

of Legendre polynomials in associated Legendre functions,

we obtain

1 =
1− ε

1 + ε

−2ik0r2

2n + 1
ψn(k0r ′)∂r ξ

(2)
n (k0r).

This is the equation for resonant frequencies. It can be seen

that they are also degenerate in m. This yields the following

expression for permittivity: ε = −(1− αn)/(1 + αn) (or
ε = −1 + 2αn/(1 + αn)). Here,

αn = −2i(k0r2/(2n + 1))ψn(k0r ′)∂r ξ
(2)
n (k0r). (6)

Thus, spectral frequencies (6) condense towards SPR

frequency ω̃p .

The LP spectrum [2,3] for metallic spherical particles

with permittivity ε(ω) = εL − ω2
p/ω

2 is characterized well

by quasi-static formula

ωn = ωp/
√

εL + 1 + 1/n − 4k0r/5, n = 1, 2, . . . . (7)

The expression in terms of ω̃p and ωr is

ωn ≈ ω̃p

(

1− 1/n − 4(ω̃p/ωr )/5

2(εL + 1)

)

, (8)

i.e., the frequencies condense to ω̃p, and relation (8) is

close to (6) at high n. To introduce dissipation, one needs

to perform substitution ωm → ωm + iωc . It is evident that

approximate solutions lead to condition ε(ω) ≈ −1, which

translates into ωm ≈ ω̃p. Metals have ω̃p ∼ ωp/3; i.e., this

is the optical range.

The approximate frequencies of a metallic sphere

in vacuum may also be found by examining the SP

motion along a circle of the maximum cross sec-

tion under the assumption that the propagation con-

stant is characterized by the Zenneck dispersion rela-

tion: kϕ = k0

√

ε(ω)/ε/ω) + 1 [2,13]. With resonance

condition 2πrkϕ = 2mπ imposed, we find deceleration
√

ε(ωm)/(ε(ωm) + 1) = αm = mωr/ωm. Since there are

three mutually perpendicular maximum cross sections of

the sphere, we have three SP polarizations with the same

frequencies (i.e., degeneracy). The value of αm is large here,

so the ratio is fulfilled at ε(ωm) = −1− 1/(α2
m − 1) ≈ −1

or at ωm = ω̃p/
√

1 + 1/(α2
m − 1)/(εL + 1). On the right-

hand side of this implicit equation, we substitute ωm with ω̃p

:

ωm ≈ ω̃p −
ω̃p

2(εL + 1)(mωr /ω̃p)2
. (9)

One may also write

ωm = ω0

/

√

1 +
1

εL [1− (mωr/ωm)−2]
,

ωm ≈ ω̃p

/

√

1 +
1

(εL + 1)(mωr /ω̃p)2
,

which agrees with (9). Thus, dependence (9) is close to (7),
and the spectral frequencies also condense toward ω̃p .

Let us consider a cylindrical particle with height h and

radius R. The Green’s function in a cylindrical system [14]
takes the form

G =
1

4πi

∞
∑

m=−∞

exp(−im(ϕ − ϕ′))

∞
∫

0

exp
(

−
√

κ2 − k2
0|z − z ′|

)

Jm(κρ)Jm(κρ′)
√

κ2 − k2
0

κdκ.

(10)
If the height is small, h ≪ R, one may neglect the

charge on the side surface and consider only the com-

ponent Ez n = J
(

ρk0

√
ε
)

exp(−inϕ). It satisfies the two-

dimensional Helmholtz equation with ∂z = 0. Accordingly,

ςn(r) = ε0(ε − 1)Jn (ρk0

√
e) exp(−inϕ). When (10) is dif-

ferentiated with respect to z , the following factor emerges:

−i
√

k2
0 − κ2sgn(z − z ′). We form a functional from (5)

by multiplying it by ςn(r) and integrating over the volume.

Since integral

I(κ) = −i

h/2
∫

−h/2

h/2
∫

−h/2

sgn(z−z ′) exp
(

−
√

k2−k2
0|z−z ′|

)

dz dz ′

is fairly easy to calculate, further details are omitted here.

The integration over angle yields 2πδnm; i.e., the sum

vanishes. The result is characteristic equation

2(1− ε)
∞
∫

0

R
∫

0

R
∫

0

I(κ)Jn(κρ)Jn(κρ
′)ρρ′dρdρ′κdκ

(1 + ε)h
R
∫

0

J2
n (ρk0

√
e) ρdr

= 1. (11)

It is approximate, and its accuracy is inversely proportional

to height. Rewriting it as (1− ε)/(1 + ε) = α2
n , we

find the resonant frequencies for large α2
n values. At

large n, the Bessel functions in the numerator of (11)

Optics and Spectroscopy, 2024, Vol. 132, No. 10
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oscillate and the double integral is small; i.e., α2
n is large.

It is somewhat more difficult to obtain approximations

with account for field variations with height. In the

other extreme case h ≫ R, one may take component

Eρnk = Jk(ρk0

√
ε) exp(−ikϕ) cos(nπz/h) only. Let us

define

Ĩn(κ) =

h/2
∫

−h/2

h/2
∫

−h/2

cos2(nπz/h)

× exp

(

−
√

κ2 − k2
0|z − z ′|

)

dz dz ′.

The characteristic equation then takes the form

2(1− ε)
∞
∫

0

R
∫

0

R
∫

0

In(κ)J′

k(κρ)Jk(κρ
′√

κ2−k2
0

ρρ′dρdρ′κ2dκ

(

1 + (−1)n

2nπ

)

(1 + ε)h
R
∫

0

J2
k

(

ρk0

√
ε
)

ρdr

= 1. (12)

The first few resonant LP frequencies

are determined approximately from equation
√

ε(ωm)/(ε(ωm) + 1) = αm = mc/(ωmR); i.e., they

are characterized by formula (9) with substitution

r → R. At large radii, αm may assume a moderate value

(possibly on the order of unity). This corresponds to

a large permittivity ε(ωm) magnitude, which is typical

of a low resonant frequency and small indices m.

In this case, ωm = m(1 + 1/(2ε(ωm)))c/R. Let us

assume, e.g., that m = 1 and R = 600 nm. Then

c/R = 5 · 1014 Hz and ε = −347.4− 59i . Taking

ω1 = 5 · 1014 Hz as a first approximation, we find

ω1 = 5 · 1014(1− 0.0014 + 0.00024i)Hz. This is an IR LP.

An increase in m again leads to large αm, and the spectrum

condenses around the plasmon resonance frequency. The

losses are low here, since an LP is formed as a resonance

of an SP that travels almost at the speed of light and

features low losses. The examined particle has another

characteristic size Ls = 4R + 2h. It may be greater than

2πR, and the first resonant frequencies may be even lower

if the �m = mc/Ls frequency lies in the IR range. To verify

this, we write down the resonance condition denoting

�m = mc/Ls :

ωm = �m

√

1 + [εL − (ωp/ωm)2]−1.

If ωp�m ≫ εL, ωm ≈ �m. If εL − (ωp/ωn)
2 ≈ −1, the

square root becomes small, and ωm ≈ ω̃p ≪ �m . Index m is

azimuthal for a cylinder with an LP along the circumference.

In the case of a plasmon along the diameters and generating

lines, this index characterizes radial axial dependences of

the fields. Radiation losses are expected to be low at

large radii. Let us also consider a cylindrical metallic

particle of height h and radius R with two hemispheres with

radius R at the ends. The lower LP frequencies of such

a capsule may be characterized approximately by equation

ωm

√

ε/(ε + 1) = αm = �m/ωm, �m = mc/(R + h/π). It is
the same as (9) if substitution mωr → �m is performed.

However, modes (9) with substitution r → R are also

possible for this particle.

Rigorous formulae

A rigorous problem for an arbitrary bulk particle may be

formulated based on an IE or an IDE [11]. The problem

has an analytical solution for a spherical surface. In the

case of excitation of a sphere by a plane wave, this is the

Mie solution. Using Debye potentials and stitching the fields

when modeling a particle with a conducting shell, one may

easily obtain the equations for surface LPs in fullerenes for

E- and H-modes:

ξ∂xψ
−

n (χ0) = i
[

f nψ
+
n (χ0) − εψ−

n (χ0)
]

, (13)

ξψ−

n (χ0) = i
[

gn∂yψ
+
n (χ0) − ∂xψ

−

n (χ0)
]

. (14)

Here, ξ = σ η0, χ0 = k0r0, r0 is the particle radius,

ψ−

n (x) =
√
πx/2Jn+1/2(x) are Riccati–Bessel functions,

ψ+
n (x) =

√
πx/2H(2)

n+1/2(x) are Riccati–Hankel functions,

and the coefficients are

f n =
∂rψ

−

n (χ0)

∂rψ+
n (χ0)

= ε1/4
χ0Jn−1/2(χ0) − nJn+1/2(χ0)

χ0H
(2)
n−1/2(χ0) − nH(2)

n+1/2(χ0)
, (15)

gn =
ψ−

n (χ0)

ψ+
n (χ0)

= ε1/4
Jn+1/2(χ0)

H(2)
n+1/2(χ0)

. (16)

This approach was used in [9] to examine LPs in fullerenes

and diffraction off them. Free oscillations for the Enm and

Hnm modes of spherical particles are characterized [15] by
equations

n
k0r

(ε − 1) +
Jn−1/2(k0r

√
ε)

Jn+1/2(k0r
√
ε)

=
√
ε

H(2)
n−1/2(k0r)

H(2)
n+1/2(k0r)

, (17)

Jn−1/2(k0r
√
ε)

Jn+1/2(k0r
√
ε)

=
H(2)

n−1/2(k0r)
√
εH(2)

n+1/2(k0r)
. (18)

Here, n = 1, 2, . . . is the meridional index corresponding

to dependence Pm
n (θ), and degeneracy with respect to az-

imuthal index m with dependence exp(−imϕ) is observed.

Equations (17) and (18) for n = 1 may be written as

sin(k0r
√
ε)

sin(k0r
√
ε)/(k0r

√
ε) − cos(k0r

√
ε)

=

√
εk0r

1 + i(k0r)
+

1− ε

k0r
= α, (19)

√
ε

sin(k0r
√
ε)

sin(k0r
√
ε)/(k0r/

√
ε) − cos(k0r

√
ε)

=
k0r

1 + i(k0r)
= β, (20)
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or as tan (k0r
√
ε)(1 − α/(k0r

√
ε)) = −α and

tan (k0r
√
ε)(1− β/(k0rε)) = −β/√ε. The first

relation takes the form tan(k0r
√
ε) ≈ α(k0r)3ε/3

at |k0r
√
ε| ≪ 1 and is fulfilled exactly at ε = 0.

Let us rewrite the second equation in the form√
ε tan (k0r

√
ε) = β⌊(k0r

√
ε)/(k0r

√
ε) − 1⌋. It is also

fulfilled exactly at ε = 0; i.e,. both equations have a

degenerate solution ω = ω0. These equations do not

provide radiation losses. Taking ohmic losses into account,

one may write ω = ω0 + iωc . A more accurate resonant

frequency for (20) with dissipation is

ω′

1 = Re (ω1)

= ω0

√

1+
ωc

3ω0

(

3− (k0r)4

1+(k0r)2

)

− ω2
c

3ω2
0

(

3− (k0r)3

1+(k0r)2

)

.

Here, k0r = ω0/ωr is fairly small; therefore,

ω′

1 ≈ ω0 + ωc/2. Likewise, we obtain ε − (k0r)2ε2/9 = 0

by revising the root in (19). Since the contribution

of the second term here is small compared to that

of the first, it is sufficient to set the real part of

permittivity to zero: εL − ω2
p/(ω

2 + ω2
c ) = 0, which yields

ω′ = ω0

√

1− ω2
c/ω

2
0 = ω0 − ω2

c/(2ω0); i.e., dissipation

lifts degeneracy. The next n = 2 modes may be called

quadrupole ones. Their resonant frequencies without

dissipation also satisfy the ε = 0 condition, but differ

slightly from ω0 due to dissipation. Using the expansions of

cylindrical functions in (17) and (18), one may demonstrate

that the LP spectra condense towards frequency ω0.

We used the Zenneck dispersion relation obtained for a

flat surface to derive some of the formulae for complex

particles. Naturally, this is an approximation. However,

it yields resonant frequencies for small particles in the

SPR region that agree well with the results obtained using

other methods (including the exact results for spherical

particles). Approximate resonant frequencies in the IR

range, where SPs are decelerated slightly, may be less

accurate. In any case, such plasmons moving along

curved surfaces may emit energy, shifting the resonant

frequency and reducing the quality factor. In the case of

IR laser excitation, a low quality factor is not a critical

parameter. It is preferable to verify the obtained results

against rigorous formulae. Let us consider symmetric

mode E0n of a metallic cylinder with the electrical field

in it assuming the form Ez = E0J0(ρ
√

k2
0ε − k2

z n) cos(kz nz ),

Eρ = ikz E0J1(ρ
√

k2
0ε − k2

z n) cos(kz z )/
√

k2
0ε − k2

z n, Eϕ = 0

where kz n = nπ/h. Inside, it satisfies the Helmholtz wave

equation. Note that the field completely penetrates a particle

smaller in size than the skin layer, and the complex nature

of permittivity should be taken into account in this case. A

different solution satisfying the Helmholtz equation at ε = 1

and the radiation condition needs to be constructed outside

the cavity. There are no tangential electric field components

at the boundary of the cylinder. This mode also hasHρ = 0

and Hz = 0. The magnetic field has a single component. It

takes the following form inside the cavity:

Hϕ = −iωε0εE0J1(ρ
√

k2
0ε − k2

z n) cos(kz z )/
√

k2
0ε − k2

z n.

(21)
Thus, our task is to find this component outside the cavity

and stitch it with (21). It has Hϕ = ∂z Aρ − ∂ρAz . We

define the components of the vector potential in terms

of polarization current densities Jρ(r) = iωε0(ε − 1)Eρ(r),
Jz (r) = iωε0(ε − 1)Ez (r) as

Aρ = iωε0(ε − 1)

∫

V

cos(ϕ − ϕ′)G(r− r′)Eρ(r
′)d3r ′,

Az = iωε0(ε − 1)

∫

V

G(r − r′)Ez (r
′)d3r ′.

Azimuthally symmetric GF (10) takes the following form in

a cylindrical system:

G =
1

4π

∞
∫

0

exp
(

−
√

κ2 − k2
0|z − z ′|

)

J0(κρ)J0(κρ
′)

√

κ2 − k2
0

κdκ.

We thus obtain

Aρ(ρ, z ) = − kz nωε0(ε − 1)

4π

√

k2
0ε − k2

z n

E0Iρ(ρ, z ),

Az (ρ, z ) =
iωε0(ε − 1)

4π
E0Iz (ρ, z ),

where the following integrals were introduced:

Iρ(ρ, z ) =

=

∞
∫

0

2π
∫

0

h/2
∫

−h/2

R
∫

0

ρ′ cos(ϕ−ϕ′)J0(κρ)J0(κρ
′)J1(ρ

√

k2
0ε−k2

z n)

χ

× exp(−χ|z − z ′|) cos(kz nz ′)κdκd3r ′,

Iz (ρ, z ) =

∞
∫

0

2π
∫

0

h/2
∫

−h/2

R
∫

0

ρ′J0(κρ)J0(κρ
′)J0(ρ

√

k2
0ε − k2

z n)

χ

× exp(−χ|z − z ′|) cos(kz nz ′)κdκd3r ′.

Here, χ =
√

κ2 − k2
0,

√

k2
0 − κ2 = −iχ . The first integral

is angle-independent and equal to zero. Indeed, we find

sin(−ϕ) − sin(2π − ϕ) = 0 by integrating in ϕ′ . In the

second integral, integration over angle yields 2π. Integration

in z ′ in Iz results in factor

In(χ, z ) = 2

χ cos(kz nz ) + exp(−hχ/2)cosh(χz )

×(nπ/h sin(nπ/2) − χ cos(nπ/2))
χ2 + k2

z n
.

Optics and Spectroscopy, 2024, Vol. 132, No. 10



Localized plasmons in conductive nanoparticles: surface... 1041

Therefore, derivative ∂ρIz (ρ, z ) is written as

I ′z (ρ, z ) = − 2π

∞
∫

0

R
∫

0

ρ′J1(κρ)J0(κρ
′)J0(ρ

′

√

k2
0ε − k2

z n)

χ

× In(χ, z )κ2ρ′dρ′dκ.

Integrating in ρ′, we apply the mean value theorem, taking

ρ′J0(ρ
′

√

k2
0ε − k2

z n) at midpoint ρ′ = R/2. The result is

I ′z (ρ, z ) = πRI0(R
√

k2
z n − k2

0ε/2)

×
∞
∫

0

J1(κρ)(J0(κR) − 1)

χ
κIn(χ, z )dκ. (22)

The integral should be calculated numerically by dividing

the domain of integration in κ into two regions: 0 < κ < k0

and k0 < κ < ∞ with κ substituted with χ . Since the real

part of permittivity for an LP is close to zero, we introduced

a modified Bessel function. The external magnetic field at

ρ = R is

Hϕ(R, z ) =
iωε0(ε − 1)

4
E0RI0(R

√

k2
z n − k2

0ε/2)

×
∞
∫

0

In(z , k0, χ)
J1(κR)(1− J0(κR/2))

χ
In(χ)κdκ. (23)

We equate it to component (21) at ρ = R. In this case, we

multiply the equality by cos(nπz/h) and integrate it in z
along the interface. The integration result is

Ĩn(k0, χ) =

h/2
∫

−h/2

In(χ, z ) cos(kz nz )dz =
hχ

χ2 + k2
z n

+

(

kz n sin
(

nπ
2

)

− χ cos
(

nπ
2

))[

kz n sin
(

nπ
2

)

×(1 + exp(−hχ)) + χ cos
(

nπ
2

)

(1− exp(−hχ))
]

χ2 + k2
z n

.

At large χ, this integral decreases as 1/χ . The end result is

1− ε

ε
= αn(ω)

=
2(h/R)I1(R

√

k2
z n − k2

0ε)
√

k2
z n − k2

0εI0(R
√

k2
z m − k2

0ε/2)

×
∞
∫

0

Ĩn(k0, χ)
J1(κR)(1−J0(κR/2))√

κ2−k2
0

κdκ

. (24)

Quantity αn in this equation is complex, large in magnitude,

and has a small imaginary part. Thus, ε ≈ 0, and fre-

quencies ωn = ω0/
√

1− [(αn(ω0) + 1)εL]−1. The iteration

Real parts of circular frequencies (in THz) of a silver cylindrical

resonator with R = 4 nm determined using formulae (24), (11),
and (9)

n h = 6 nm

(24) (11) (9)

1 5137.128 4890.883 4891.887

2 5138.009 4891.915 4891.926

3 5138.213 4891.929 4891.933

4 5138.232 4891.933 4891.936

n h = 12 nm

1 5138.078 4891.729 4891.832

2 5138.959 4891.887 4891.912

3 5139.164 4891.916 4891.927

4 5139.183 4891.926 4891.932

method is well-suited for finding the complex roots of (24).

The initial approximation was ω = ω0. The results are

listed in the table. Note also that exact Eqs. (15) and

(16) also allow one to formulate iterative algorithms for

root refinement. Specifically, the following is derived from

Eq. (16) at n = 1 with three terms in the tangent expansion

taken into account:

ε =
2(k0r)4ε2/15

1 + i(k0r) − (k0r)2/3
= α1.

The initial approximation should be taken from the ε′ = 0

condition; i.e., ω1 =
√

ω2
p/εL − ω2

c . Having a non-zero

complex permittivity, one may perform the first iteration.

Since the value of α1(ω1) is very small, one iteration is

sufficient.

Localized plasmons in long nanoparticles

Long nanoparticles are those with their length satisfying

relation L ∼ λ and small transverse dimensions: k0r ≪ 1.

Such particles may be regarded as nanoantennas. This is

typical of nanowires, long CNTs, and graphene nanoribbons.

A rigorous approach requires solving IEs in this case.

With small transverse dimensions, they are reduced to

Gallen- and Pocklington-type equations and their modifi-

cations [16]. In addition to these, resonances associated

with transverse dimensions are also possible. By virtue

of a significant length, the longitudinal current density

component may be considered to be independent of trans-

verse coordinates and taken in the form Jn = sin(nπz/L),

n = 1, 2, . . ., i.e., one may assume that it vanishes at the

ends. This component produces volume charge density

ρV (ω) = i(nπ/L)/ cos(nπz/L)/ω within a particle. Overall
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component Ez within a particle is given by

Ez (ω, z ) =
sin(nπz/L)

iωε0(ε(ω) − 1)

=
1

iωε0

L
∫

0

[

k2
0K(ω, z − z ′) sin(nπz ′/L)

+
(nπ/L)∂z K(ω, z − z ′)

ω
cos(nπz/L)

]

dz ′, (25)

where kernel

K(ω, ρ, z − z ′)

= R

∞
∫

0

J0(κρ)J1(κR) exp(−
√

κ2 − k2
0|z − z ′|)

2

√

κ2 − k2
0

dκ.

We consider this equation within a particle under the

assumption that the left-hand side does not depend on

ρ. Multiplying by ρ and integrating, we obtain the same

equation with kernel

K̃(ω, z − z ′) =
1

R

∞
∫

0

J2
1(κR) exp(−

√

κ2 − k2
0|z − z ′|)

κ

√

κ2 − k2
0

dκ.

Multiplying (25) by sin(nπz/L) and integrating in z , we

find characteristic equation

1− (−1)n

(nπz/L)(ε(ω) − 1)
=

L
∫

0

L
∫

0

sin(nπz/L)

×
[

k2
0K̃(ω, z − z ′) sin(nπz ′/L)

+
(nπ/L)K̃(ω, z − z ′)

ω
cos(nπz/L)

]

dz ′dz .

The left-hand side vanishes at even indices. The right-hand

side may be simplified via integration by parts:

L
∫

0

K̃(ω, z − z ′) cos(nπz/L)dz ′

= K̃(ω, z − z ′)((−1)n − 1)

+ (nπz/L)

L
∫

0

K̃(ω, z − z ′) sin(nπz/L)dz ′.

Integrals over the coordinate are taken analytically, and

a convergent spectral integral remains. It is convenient

to find complex roots using the iteration method. As

above, the initial approximations for it may be derived

from the k0

√

ε/(ε + 1) = nπ/L conditions. This equation

is rather approximate, since it does not take wire curvature

into account. A rigorous approach requires solving the

Sommerfeld equation for a wave along a wire [17] rather

than the Zenneck equation. In the case of a Sommerfeld

wave inside a wire, the only component of the Hertz

electric vector may be expressed through the Bessel function

as 5z = AJ0(
√

εk2
z − k2

z ) exp(−ikz z ), while the outside

component may be expressed through the Macdonald

function: 5z = BK0(ρ
√

k2
z − k2

z ) exp(−ikz z ). Stitching the

fields, we find

ε = α = −

√

k2
0ε − k2

z
√

k2
z − k2

0

J0(R
√

k2
0ε − k2

z )K1(R
√

k2
z − k2

0)

K0(R
√

k2
z − k2

0)J1(R
√

k2
0ε − k2

z )
.

(26)
With a short wire length and kz = nπ/L, we find the

resonant frequencies under condition ε ≈ 0. The value of

α≈ − (nπ/L)
√

(nπ/L)2−k2
0

I0(R
√

(nπ/L)2)K1(R
√

(nπ/L)2−k2
0)

K0

√

(nπ/L)2 − k2
0k

2
0I1(nπR/L)

should be small in this case. At frequencies significantly

lower than the optical ones, the velocity of a Sommerfeld

wave in a wire is slightly slower than the speed of light.

The permittivity is complex and large in magnitude at these

frequencies. In this case, resonance condition k0 = nπ/L is

quite accurate at small indices and large lengths, and the

resonant frequencies are low. Equation (26) is inconvenient.
At R → ∞, it transforms into the Zenneck equation, which

is easier to use as an initial approximation.

Equations for an LP in a CNT are formulated in the same

way as in a nanowire, the only difference being that surface

current density j z = sin(nπz/L) is specified. It produces

surface charge density ρs(ω) = i(nπ/L) cos(nπz/L)/ω.
Volume integrals are then replaced by surface ones, since

all quantities contain delta function δ(ρ − R). Equation (25)
takes the form

Ez (ω, z ) =
sin(nπz/L)

σz z (ω)

=
1

iωε0

L
∫

0

[

k2
0K̄(ω, z − z ′) sin(nπz ′/L)

+
(nπ/L)∂z K̄(ω, z − z ′)

ω
cos(nπz/L)

]

dz ′

with kernel

K̄(ω, z − z ′)

= R

∞
∫

0

J0(κR)J0(κR) exp(−
√

κ2 − k2
0|z − z ′|)

2

√

κ2 − k2
0

κdκ.

Dynamic CNT conductivity σz z (ω) was determined

in [18]. An approximate solution for an E-plasmon is

Optics and Spectroscopy, 2024, Vol. 132, No. 10



Localized plasmons in conductive nanoparticles: surface... 1043

derived from condition kz = nπ/L = k0

√

1− 4(η0σz z (ω))2.
It also corresponds to the large-radius approximation. In

order to obtain the dispersion relation in an infinite CNT,

we write the current density as Jz = exp(−ikz z )δ(ρ − R)
and find the field component for it:

Ez (R, z ) =
exp(−ikz z )

2πiωε0

∞
∫

0

(k2
0 − k2

z )
J0(κR)J0(κR)

κ2 + k2
z − k2

0

κdκ

=
exp(−ikz z )

σz z
.

(27)
Integral (27) exists, since quantity k0 is complex. Reducing

by the exponential factor, we obtain equation

k2
z = k2

0 −
2πk0

η0σz z (ω)
∞
∫

0

J0(κR)J0(κR)

κ2+k2
z−k2

0

κdκ
. (28)

It is analogous to the equation for a surface E-plasmon along

a graphene plane. One may write Jz = sin(nπz/L)δ(x)
for a graphene nanoribbon of small width W and length

L. Owing to the smallness of width, we neglect the

dependence on y and the Jy component. We thus obtain

W
2πωε0⌊(−1)n − 1⌋

σ (ω)(nπ/L)
=

=

∞
∫

0

dκ

π/2
∫

0

dϕ

L
∫

0

L
∫

0

sin(nπz/L)
sin2(κ sin(ϕ)W/2)

(kyW )2

×
exp(−i

√

k2
0 − κ2|z − z ′|)

√

k2
0 − κ2

sin(nπz ′/L)κ3dz ′dz .

Here, we switched to a polar coordinate system in inte-

gration. The integral over angle is calculated using the

mean value theorem with midpoint ϕ = π/4, which yields

factor π sin3(κπW/8)/2. The integrals over coordinates z
and z ′ are calculated explicitly. Thus, the right-hand side is

represented by a convergent spectral integral.

Discussion and conclusions

It is demonstrated that the SPR method is a fine approx-

imation for calculating LP resonances. This is attributable

to the quasi-static nature of these resonances. Macroscopic

parameters for nanoparticles were used throughout analysis.

The macroscopic polarizability of a nanocluster may differ

significantly from the value for a bulk sample (where atoms

are arranged periodically) due mostly to the influence of

boundaries and changes in the internal field. This should

be taken into account in refining the formulae. Quantum-

mechanical methods with the excitation of the cluster

by the field of a plane monochromatic wave taken into

account need to be used to find an exact solution to the

problem. Such problems often turn out to be difficult to

solve even in approximations. The presence of boundaries

and free electrons leads to a significant change in the

collision frequency. Problems associated with dimensional

quantization and ballistic transport arise in the case of nan-

oclusters characterized by conductivity. Particles involved

in conduction move at the Fermi velocity; i.e., they are

characterized by de Broglie wavelength 1 = 2πη/(meν f ).
Particles with lower energies are not involved in directional

motion. In the case of a large mean range of an

electron λe ≫ L and longitudinal motion, n = 2L/1 levels

corresponding to it arise. In addition, we have m = 2W/1

levels corresponding to the transverse dimension. These

latter levels for a long nanoribbon correspond to the number

of longitudinal modes of conductivity, which is quantized.

In practice, such a quantum well (nanoribbon) requires

solving Schrödinger equations with a potential correspond-

ing to the electromagnetic field. If this ribbon (e.g., a

metallic one) also has thickness t, a three-dimensional

object (a quantum box with approximately 8LWt/13 levels)
emerges. These levels correspond to conduction electrons.

The model of infinitely high walls with wave function

ψ = sin(nπz/L) sin(mπy/W ) sin(kπx/t) yields a known re-

sult for levels Enmk = 2me(n2/L2 + m2/W 2 + k2/t2)/η2, but
it does not provide any data on the transition frequencies.

If the potential with account for all the atoms or the

approximate potential for conduction electrons (for which

the single-particle Schrödinger equation may be solved) in

this box is known, the energy levels and the transition

frequencies may be determined. The polarizability of such

a meta-atom (quantum dot) in the field of a plane wave

of the optical range may be determined by the perturbation

method. The large number of atoms in a quantum dot offers

hope that a macroscopic permittivity will provide a correct

qualitative result.

Let us examine the example of a meta-atom in the form

of a graphene region with dimensions L and W . The surface

conductivity of graphene derived from linear dispersion (for
electrons and holes in the vicinity of Dirac points) without

regard to interband transitions is actually given by the Drude

formula [10]:

σ (ω, µ, ωc , T ) =
σintra(0)

1 + iω/ωc
, (29)

σintra(0) = σ0 =
e2kBT
πη2ωc

ln

(

2

[

1 + cosh

(

µc

kBT

)])

. (30)

Here, µc is the electrochemical potential and T is tem-

perature. Since, according to Drude, the DC value is

σ (0) = σ0 = ensµF , we determine surface concentration of

conduction electrons and holes ns = σ0/(eνF) from (30).
The mean range in graphene is rather large (on the order

of a micrometer). If a cluster is significantly smaller in

size, collisions may be neglected. Conductivity (29) is

diffusion in nature. If the phonon dispersion in graphene is

known, one may determine DC ballistic conductivity gB(0).
The high-frequency ballistic conductivity is then obtained
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by inserting gB(0) instead of σintra(0) into (29). Since the

collision frequency is fairly low, gB(ω) = −iωcgB(0)/ω.
This corresponds to the fact that the contribution to

conductivity decreases with increasing frequency due to the

oscillatory nature and the reduction in oscillation amplitude

(the range decreases with decreasing period). The kinetic

inductance, which takes the form LK = meνF L/(Wσ0e) for

current directed along the large dimension in a 2DEG

of this kind, then plays a significant role. It con-

tributes to surface conductivity σ (ω) = gB(ω) + 1/(iωLK).
Writing down the resonance condition, we ob-

tain ωn =
√

�2
n − 4/(ωcη0gB(0) + (W/L)η0σ0e/(meνF))2.

Here, �n = nπc/L. Only low frequencies where the

formulae remain valid should be considered, since the

imaginary part of conductivity becomes small compared to

the real one in the optical range. Transverse resonances are

obtained by substituting L ↔ W .

As for the Drude–Lorentz formula for the permittivity of

a metal, it is quite accurate in the IR and lower-frequency

ranges. In the case of optical LPs, it is advisable to take

several Lorentz terms in it to approximate experimental

permittivities of metals. Specifically, ε′(ω) for silver

goes through zero three times, and a single εL value is

clearly insufficient. A complex frequency dependence of

permittivity leads to implicit and cumbersome formulae.

The resonant frequencies for them should be determined

iteratively; two iterations are sufficient in most cases. As for

the introduction of one constant εL into the given formulae,

the corresponding error is no greater than a few percent,

as is the error of the quasi-static formulae themselves. It

should be noted that the use of strict formulae leads to a

spectrum that condenses toward frequency ω0 = ωp/
√
εL,

while the quasi-static approach and the SPR method yield

frequency ω̃p = ωp/
√
εL + 1. Note also that particles are

often examined in a certain transparent medium with

permittivity ε̃. In this case, all the results are obtained by

performing substitutions k0 → k0

√
ε̃ and εL → εL − ε̃.
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