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Introduction

The rapid development of microelectronics in connection

with ever-increasing volumes of processed data has led

to an explosive growth in the number of logic elements

in integrated circuits [1]. This increase in the number

of elements inevitably leads to a reduction in their size,

and the quantum properties of both nanostructures and

processed signals start to manifest themselves as the sizes

approach nanometer scales [2]. The concentration of

an electromagnetic field in nanometer volumes of matter

induces nonlinear interaction of electrons and photons in

nanostructures [3–11].
Nanoplasmonics is one of the rapidly developing recent

research trends in nanophotonics [12]. However, energy dis-

sipation, which translates into large losses in the process of

transmission and processing of plasmonic signals in metallic

nanowires and nanostructures, hinders the transition from

semiconductor to plasmonic circuitry. Carbon (graphene)
nanostructures, which include carbon nanotubes (CNTs) [3–
6,13–16] and logic elements based on them [17,18], may

serve as an alternative to plasmonic metallic nanostructures.

The dynamics of electrons in the conduction band of

curvilinear nanostructures is currently being investigated

both theoretically and experimentally [19,20]. The energy

losses of signals transmitted and processed in carbon nanos-

tructures are significantly lower than those corresponding

to metallic nanostructures. In view of this, the future

development of plasmonic circuitry is likely to be focused

on carbon nanostructures.

In the present study, the nonlinear properties of CNTs

with an armchair configuration of carbon atoms, which

translates into metallic conductivity, are investigated. The

dispersion relation for conduction electrons in such CNTs

depends on the azimuthal and longitudinal components of

the electron quasi-momentum, and the electromagnetic field

is characterized by a system of two nonlinear equations

for the azimuthal and longitudinal components of the

vector potential. Cyclic boundary conditions allow one to

introduce a relation between the electron quasi-momentum

components and obtain a single nonlinear equation for the

longitudinal potential component. Depending on the ratio of

parameters of ultrashort electromagnetic pulses and CNTs,

this equation has solutions in the form of a cnoidal wave

or a soliton. An ultrashort plasmonic pulse with a Gaussian

envelope may transform in CNTs with metallic conductivity

into a soliton propagating along the nanotube axis with

a velocity depending on its amplitude. The considered

nonlinear effects in CNTs provide an opportunity to design

new nanoelements of integrated circuits operating at optical

frequencies.

Dispersion relation

In the approximation of tight binding of nearest-neighbor

atoms in the graphene crystal lattice, the dispersion relation

takes the form [21]

E = Ẽ ± E, (1)

where the plus and minus signs correspond to the energy

of electrons in the conduction band and the energy in

the valence band, respectively. The terms of dispersion

relation (1) have the form

Ẽ = E0 + γAA′g(kx , ky ),

1E = γAB

√

g(kx , ky)
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Figure 1. Carbon nanotube with an ultrashort electromagnetic

pulse applied to it along axis z .

— half-width of the spectral gap, where

g(kx , ky) = 1 + 4 cos
ky a
2

(

cos

√
3kx a
2

+ cos
ky a
2

)

(2)

— geometric function, a — lattice constant of graphene,

and E0 — energy of a carbon atom. The overlap integrals

in dispersion relation (1) assume the following values:

γAA′ = 0.2γAB = 0.54 eV, γAB = 2.7 eV [16].
Periodic boundary conditions

Rk = (nr1 + mr2)(1x kx + 1y ky ) = 2πs , where r1 = r2 = a
and s = 1, 2, . . . , m, for a CNT (Fig. 1) with chirality

indices (n, m) [13] provide an opportunity to determine the

relation between the components of electron vector k:

√
3kx

2
=

1

n + m

[

2π

a
s + (n − m)

ky

2

]

,

which allows one to rewrite geometric function (2) in the

form

gnms = 1 + 4 cos

(

a
2~

py

)

×
[

cos

(

2πs
n + m

+
n − m
n + m

a
2~

py

)

+ cos

(

a
2~

py

)]

,

where py = ~ky is the electron quasi-momentum. At

n 6= 3q and m 6= 0, where q = 1, 2, 3, . . . , gap 1Enms 6= 0

is present in the electron spectrum; i.e., the CNT is

semiconducting. The electron spectrum becomes gapless

for zigzag(n, 0) CNTs at n = 3q and armchair(m, m) CNTs

at any m at the points of contact between the valence

and conduction bands; i.e., these CNTs feature metallic

conductivity [3,13,14,16].

Semiclassical approximation

Let us consider the dynamics of a plasmonic pulse excited

in a CNT by an ultrashort electromagnetic pulse (Fig. 1).
The electromagnetic field in the semiclassical approximation

is characterized by the equation for vector potential [22]

∇2A− 1

c2

∂2A

∂t2
= −4π

c
j (3)

with gauge

E = −1

c
∂A

∂t
,

where the current density vector is

j = −e
∫

v f
d3p

(2π~)3
,

v = ∂E
∂ p — electron velocity, and

∇2 → ∂2

∂r2
+

1

r
∂

∂r
+

1

r2
∂2

∂ϕ2
+

∂2

∂z 2

— Laplacian in the cylindrical coordinate system. The

electron current in this CNT is excited by an electromagnetic

pulse. In this case, electrons undergo no drift motion, but

oscillations of the electron density emerge under the influ-

ence of the electromagnetic pulse field. Electron oscillations

and the electromagnetic pulse field are hybridized, which

leads to the generation of a plasmonic pulse propagating

along longitudinal CNT axis z .
Electron distribution function f satisfies relation

∂ f
∂t

− e
c
∂A

∂t
∂ f
∂p

+
∂E
∂p

∂ f
∂r

= St f .

Within the relaxation time approximation [3,4], the collision

integral in Eq. (4) may be written as

St f =
1

tr
( f 0 − f ),

where tr
∼= 3 · 10−13 s is the relaxation time,

f 0 = [1 + exp(E/kBT )]−1 is the equilibrium Fermi

distribution function, kB is the Boltzmann constant, and

T is temperature, kBT = 2.6 · 10−2 eV. Equation (4) for

the distribution function takes the following form on the

CNT surface:

∂ f
∂t

− e
c
∂Aϕ

∂t
∂ f
∂ pϕ

− e
c
∂Az

∂t
∂ f
∂ pz

+
∂E
∂ pϕ

1

r
∂ f
∂ϕ

+
∂E
∂ pz

∂ f
∂z

+
1

tr
f =

1

tr

1

1 + exp(E/kBT )
, (5)

where Aϕ(t, z ) and Az (t, z ) are the components of the

vector potential of the CNT surface mode field.

With the dependence of energy on coordinates E(ϕ, z )
taken into account, the current density vector in a CNT in

Eq. (3) may be presented as

j = − e
(2π~)3

∫

d prd pϕd pz

(

1ϕ
∂E
∂ pϕ

+ 1z
∂E
∂ pz

)

f , (6)

where 1ϕ,z are unit vectors of the cylindrical coordinate

system. Current density vector (6) has azimuthal compo-

nent jϕ and longitudinal component j z , which is directed

along longitudinal CNT axis z ; i.e., depending on the phase

ratio of the current components, it is a right-handed or left-

handed helix. It follows from expression (6) for the current
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density that electron current component j r is not excited in

a CNT, since the equation for radial potential component Ar

has no source:

∂2Ar

∂z 2
− 1

c2

∂2Ar

∂t2
= 0.

Let us write the equations for vector potential compo-

nents Aϕ and Az in a CNT with account for expression (6)
for the current density vector:

∂2Aϕ

∂z 2
− 1

c2

∂2Aϕ

∂t2
=

e
cπ~2a

π~/a
∫

−π~/a

d pϕ

π~/a
∫

−π~/a

d pz
∂E
∂ pϕ

f ,

(7)

∂2Az

∂z 2
− 1

c2

∂2Az

∂t2
=

e
cπ~2a

π~/a
∫

−π~/a

d pϕ

π~/a
∫

−π~/a

d pz
∂E
∂ pz

f .

(8)
An external electromagnetic field with vector potential

components Aϕ and Az interacts with electrons in a CNT,

and an electromagnetic field with the same vector potential

components is generated by electron current components jϕ
and j z ; i.e., the mode with potential component Ar is not

generated in CNTs.

In a thin (with a diameter on the order of a few

nanometers) CNT, the field of surface modes excited by

an electromagnetic pulse with a field distribution inde-

pendent of angular coordinate ϕ may be presented in

the form of a combination of modes with zero azimuthal

indices: E-mode with components (Er , Hϕ, Ez ) and H-

mode with components (Hr , Eϕ, Hz ) propagating along

nanotube axis z [18]. Thus, the electromagnetic field on

the CNT surface is a combination of surface modes with

vector potential components Aϕ and Az (Eqs. (7) and (8)).
Electron distribution function f

(

E(pϕ, pz )
)

in a CNT

depends on both azimuthal pϕ and longitudinal pz quasi-

momentum components; i.e., azimuthal jϕ and longitudinal

j z components of the electron current are excited. This, in

turn, leads to the generation of an electromagnetic field with

potential components Aϕ and Az . When excited by a pulse

in the H-mode, the electromagnetic field is characterized

by potential component Aϕ ↔ (Hr , Eϕ, Hz ). The longitu-

dinal potential component characterizes the components of

generated magnetic and electric fields: Az ↔ (Hr , Eϕ, Hz );
i.e., magnetic field component Hr is also generated. Since

only the electromagnetic modes with potential components

Aϕ and Az interact with conduction electrons in CNTs, an

excitation electromagnetic pulse propagating along the z
axis of a CNT should have a field with at least one of these

potential components in order to interact with electrons.

Ultrashort pulses in a CNT

In a CNT with an armchair(m, m) carbon atom configu-

ration, substitution of variables [3]

px cos 30
◦ =

√
3px/2 → pϕ,

py sin 30
◦ = py/2 → pz ≡ p

yields geometric function

gms = 1 + 4 cos

(

sπ
m

)

cos

(

a
~

p

)

+ 4 cos2
(

a
~

p

)

,

where s = 1, 2, . . . , m is the subband index. Let us

rewrite dispersion relation (1) for a CNT with the armchair

configuration in the form

Ems = E0 + γAA′gms ± γAB
√

gms . (9)

Let us also assume that a plasmonic pulse in a CNT is

characterized by vector potential A ≡ Az . Equation (5) for

the distribution function then takes the form

∂ f
∂t

− e
c
∂A
∂t

∂ f
∂ p

+
∂Ems

∂ p
∂ f
∂z

+
1

tr
f =

1

tr
f 0ms , (10)

where

f 0ms =
1

1 + exp(Ems/kBT )
.

The solution of Eq. (10) for electron distribution func-

tion f may be obtained using the method of characteris-

tics [4], which yields

f ms = f 0ms

(

p − c−1eA(t)
)

.

Let us perform substitution p → p − c−1eA for the quasi-

momentum in dispersion relation (9). Equation (8) for the

potential then takes the form

∂2A
∂z 2

− 1

c2

∂2A
∂t2

=
2e

~ca2

π~/a
∫

−π~/a

d p
∂Ems

∂ p
f 0ms , (11)

where geometric function

gms = 1 + 4 cos

(

sπ
m

)

cos[~−1a(p − c−1eA)]

+ 4 cos2[~−1a(p − c−1eA)]

in the expression for electron energy Ems depends on

the potential. The expression for energy Ems(A) includes

potential A(t, z ); i.e., Eq. (11) is nonlinear.

Substituting integration variable d p = dEms
∂ p
∂Ems

in inte-

gral

r =

π~/a
∫

−π~/a

d p
∂Ems

∂ p
f 0ms

on the right-hand side of Eq. (11), we obtain

r = kBT
∫

dE
1

1 + exp(E)
= kBT{E − ln[1 + exp(E)]},

where E = Ems/kBT . Let us insert the values of Ems in the

middle p = 0 and at the boundary of the Brillouin zone into

the right-hand part multiplied by 2:

r = 2
{

E − kBT ln[1 + exp(E/kBT )]
}

∣

∣

∣

Ems (π~/a)

Ems (0)
.
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At p = 0, the geometric function in the expression for

electron energy Ems is

gms0(0) = 1 + 4 cos

(

sπ
m

)

cos

(

ea
c~

A

)

+ 4 cos2
(

ea
c~

A

)

,

while the same function at p = π~/a takes the form

gmsa

(

π~

a

)

= 1−4 cos

(

sπ
m

)

cos

(

ea
c~

A

)

+4 cos2
(

ea
c~

A

)

.

The right-hand side of Eq. (11) in subband s of the CNT

conduction band takes the form

rms = 2γAA′(gmsa − gms0) + 2γAB
(√

gmsa −
√

gms0
)

+ 2kBT ln

[

1 + exp(Ems0/kBT )

1 + exp(Emsa/kBT )

]

,

where Ems0 = Ems(gms0), Emsa = Ems(gmsa).

Assuming
√

gmsa ≈ √
gms0 for subband s of the con-

duction band and taking relation kBT ≪ γAA′ into ac-

count, we neglect the second and the third terms in

the expression for rms . Summing over the subbands,
∑m

s=1 | cos(sπ/m)| = 1, we obtain an equation for dimen-

sionless potential Ā = (ea/~c)A in the case of excitation of

electrons in the conduction band of a CNT:

∂2Ā
∂z 2

− 1

c2

∂2Ā
∂t2

= −q2
as cos(Ā), (12)

where

q2
as =

16e2γAA′

c2~2a
.

Figure 2 presents the numerical solution of Eq. (12) for

dimensionless potential Ā(z , tc) with a CNT excited by an

electromagnetic pulse with a Gaussian envelope

Ā(0, tc) = Ā0 exp(−t2c T−2
0 )[1− cos(ω0tc)] + π/2,

where Ā0 = (ea/~c)A0 is the potential amplitude and

tc = ct .
If we consider the dynamics of a plasmonic pulse

in the telecommunication range, the carrier mode fre-

quency, which assumes a value of ωt = 1.216 · 1015 s−1

(λ0 = 1.55µm), yields scale factor 0.8 · 105 at the

value of ω0 that was used for numerical calculation

(ω0 = 0.5 · 3 · 1010 = 1.5 · 1010 s−1). Thus, the CNT length

in Fig. 2 is zmax = 1.25µm, and electromagnetic excitation

pulse duration T0 = 33.3 · 10−12 s. If the CNT length

increases by a factor of 10, dimensionless potential Ā(z , tc)
undergoes damped oscillations (Fig. 3). The emergence of

potential oscillations after a tenfold increase in the CNT

length is illustrated in Fig. 4 in a 2D format.

In order to perform analytical analysis of the dynam-

ics of plasmonic waves in CNTs, we introduce variable

τ = t − z/vg , where vg = const is the group velocity

of a plasmonic pulse in a CNT. Equation (12) for the

10

4

1.54

1.58

1.56

1.60

1.62

8
6

4
2

0

z
2

6
8
10

0

1.54

1.58

1.56

1.60

1.62

A

tc

Figure 2. Dimensionless potential Ā(z , tc) of a plasmonic pulse

in a CNT at zmax = tc max = 10 (this corresponds to CNT length

zmax = 1.25 µm), qa = 0.5, T0 = 1, ω0 = 0.5; arbitrary units.

dimensionless potential of a plasmonic pulse may then be

presented in the form

d2Ā
dτ 2

= −ω2
as cos(Ā), (13)

where

ω2
as =

16e2γAA′v2
g

~2a(c2 − v2
g)
.

The solution of Eq. (13) has the form of a cnoidal wave

Ā = sn(�τ + F0, k̃), (14)

where k̃ =
√
2ωas/� ≤ 1 — modulus of an elliptic integral,

F0 =

Ā0
∫

0

dξ
√

1− k̃2 sin ξ

— elliptic integral of the first kind [23],

� =
[

(dĀ/dτ )20 + 2ω2
as sin Ā0

]1/2
, Ā0 = (ea/~c)A0,

(dĀ/dτ )0 = �Ā0 cos Ā0[1− k̃2 sin2 Ā0]
1/2 if τ = 0.

When modulus k̃ → 0, elliptic sine Ā = sn(�τ + F0, k̃)
is transformed into trigonometric sine Ā = sin(�τ + F0);
if k̃ → 1, elliptic sine is transformed into kink

Ā = tanh(�τ + F0) at �τ + F0 < 1 or antikink

Ā = cotanh(�τ + F0) at �τ + F0 > 1. Thus, depending

on the ratio of parameters of an excitation electromagnetic

pulse and a CNT, the dimensionless potential of a plasmonic

pulse takes the form of either a nonlinear periodic (cnoidal)
wave or a kink/antikink.

The strength of the electric field of a plasmonic pulse in

a CNT is determined by taking a derivative with respect to

τ of potential in the form of a cnoidal wave (14),

Ez = −c−1∂A/∂τ = −Eacn(�τ + F0, k̃)dn(�τ + F0, k̃),
(15)
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Figure 3. Dimensionless potential Ā(z , tc) of a plasmonic pulse in a CNT at zmax = tc max = 100 (this corresponds to CNT length

zmax = 12.5 µm), qa = 0.5, T0 = 1, ω0 = 0.5; arbitrary units.
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Figure 4. Emergence of oscillations at the trailing edge of a plasmonic pulse with an increase in CNT length from 1.25 µm to 12.5 µm.

Normalized time tc and dimensionless potential Ā(z , tc) of a plasmonic pulse are plotted on the abscissa and ordinate axes; arbitrary units.

where Ea = ~�/ea ; at k̃ = 1, we obtain a soliton solution

Ez = Easech
2[�(t − z/vg) + F0]. (16)

Amplitude Ea of soliton (16) depends on its velocity

vg , which is included in the expression for �. Let us

find the velocity of a plasmonic soliton for an excitation

electromagnetic pulse potential of the form

A = A0 exp(−t2T−2
0 ) sin(ω0t), a (∂A/∂t)0 = A0ω0.

Expression k̃ =
√
2ωas/� = 1 yields

vgs = c

(

1 +
32e2γAA′

a~2ω2
0

1− sin Ā0

Ā2
0

)

−1/2

,
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Figure 5. Dependences of (a) velocity vg and (b) duration Ts of a plasmonic soliton pulse in a CNT on normalized amplitude Ā0 of the

excitation electromagnetic pulse potential; here, γAA′ = 0.54 eV, ω0 = 1.216 · 1015 s−1 (λ0 = 1.55 µm), a = 0.246 nm.

i.e., the velocity of soliton (16) depends on potential

amplitude Ā0 = (ea/~c)A0.

It follows from the analysis of dynamics of pulses in

CNTs that, in the case at hand, when an excitation

electromagnetic pulse interacts with conduction electrons,

oscillations at the harmonics of the electromagnetic field

of the excitation pulse vanish upon its transformation into

a plasmonic soliton. An electromagnetic pulse with a

Gaussian envelope of the longitudinal optical mode is then

transformed into a plasmonic soliton propagating along the

longitudinal nanotube axis. Duration

Ts = �−1 = (ω2
0 Ā2

0 + 2ω2
as sin Ā0)

−1/2

of plasmonic soliton pulse (16) depends on the values

of electromagnetic field potential amplitude Ā0 and its

derivative (dĀ/dτ )0 at τ = 0, on the energy density of

interaction between nearest-neighbor atoms γAA′ in a CNT,

and on frequency ω0 of the carrier mode of an excitation

electromagnetic pulse.

The dependences of velocity

vg = c

(

1 +
32e2γAA′

a~2ω2
0

1− sin Ā0

Ā2
0

)

−1/2

and duration

Ts = (ω2
0 Ā2

0 + 2ω2
as sin Ā0)

−1/2

of a plasmonic soliton pulse in a CNT on the amplitude of

dimensionless potential Ā0 are shown in Fig. 5. It follows

from the analysis of the dependences of soliton velocity

vg (Fig. 5, a) and duration Ts (Fig. 5, b) in a CNT that

when the initial amplitude of potential A0 of an excitation

electromagnetic pulse increases 10-fold, the velocity of a

soliton grows and tends to the speed of light in vacuum,

while its duration decreases by a factor of 8.

Conclusion

The dispersion relation specifies the dependence of

energy on the azimuthal and longitudinal components of

quasi-momentum of conduction electrons in CNTs. Periodic

boundary conditions for CNTs allow one to introduce a rela-

tion between these azimuthal and longitudinal components,

which simplifies the dispersion relation.

The introduction of a dependence of the electron distri-

bution function on the vector electromagnetic field potential

makes it possible to characterize the nonlinear effects of

interaction of the electromagnetic field and conduction

electrons in CNTs. The semiclassical approach provides

an opportunity to obtain nonlinear differential equations

characterizing the dynamics of a plasmonic cnoidal wave

and a plasmonic pulse in CNTs.

When a CNT with an armchair atomic configuration is

excited by an electromagnetic pulse at a telecommunication

frequency, either a plasmonic cnoidal wave or a plasmonic

soliton is generated in this nanotube as a result of nonlinear

interaction of the field of the excitation electromagnetic

pulse with conduction electrons in the CNT. An ultrashort

electromagnetic pulse with a Gaussian envelope is trans-

formed into a plasmonic soliton pulse with its amplitude

and velocity depending on the parameters of the field of the

excitation electromagnetic pulse and the CNT parameters.
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