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High-harmonic generation by interaction of frequency-spaced laser
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The features of the high-harmonic generation under conditions of simultaneous action of two laser pulses with

different frequencies on graphene are investigated. For this purpose, a model based on a non-perturbative quantum

kinetic equation was used. The normal incidence of short linearly polarized pulses with photon energies of 0.25 eV

and 1.0 eV on the sample surface is considered. The polarization planes are chosen orthogonal to clearly identify

nonlinear interaction effects. It is shown that under such conditions, the spectrum of high-frequency harmonics

should be enriched and the efficiency of conversion of the energy of radiation incident on the sample to the

high-frequency region should increase.
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Introduction

High-harmonic generation is a nonlinear optical phe-

nomenon that is used not only for laser radiation frequency

conversion in itself, but also for examining the ultrafast dy-

namics of electrons in various media. It has been observed

for the first time in atomic gases [1]. As the capabilities for

generation of high-intensity laser pulses expanded, the study

of nonlinear regimes of interaction of condensed media with

light has also become feasible [2,3]. The specifics of its

band structure make graphene a standout material among

those considered as candidate media for high-harmonic

generation. The effect in this material has been observed

experimentally in both terahertz [4,5] and mid-infrared [6,7]

ranges. Various methods and approaches are used to

characterize the observed processes theoretically [8–10].

Their refinement and development provides an opportunity

to gain an insight into the complex physics of interaction

of the electron subsystem of a material with an external

electric field within a wide range of parameters and to

model such processes. Nonlinear effects of mutual influence

of fields with different characteristics and manifestations of

such influence in secondary radiation spectra are of current

interest [11–14].

The production and evolution of electrons and holes

in two-level models of condensed matter have much in

common with the processes associated with the production

of electron–positron pairs from physical vacuum of quantum

electrodynamics in strong electric fields. A non-perturbative

kinetic formalism was developed [15–17] in order to

characterize such processes. It allows one [18], e.g., to

tackle the issue of
”
vacuum“ harmonic generation by laser

radiation of an extreme intensity, which is important for

nonlinear quantum electrodynamics [19–21].
A formalism of the quantum kinetic equation in the mass-

less fermion approximation was developed for graphene

based on the noted similarity [22–24]. Its capabilities for

reproducing the spectral characteristics of induced radiation

under the influence of short high-frequency pulses were

demonstrated in [24,25]. A generalization for a more

rigorous model with an exact account of the interaction of

nearest neighbors in a two-dimensional hexagonal lattice has

already been implemented [26]. This lifts the restrictions on

parameters of the considered processes: the strength of the

influencing electric field and its frequency.

In the present study, the quantum kinetic equation is used

to study the specifics of high-harmonic generation under

separate and combined influence of infrared frequency-

spaced laser pulses on a sample.

1. Theoretical model

In order to reproduce the dynamics of the electron

subsystem of graphene under a time-dependent external

perturbing influence, one needs to solve the non-stationary

Schrödinger equation in one of its representations. The

main simplifying assumption used below is that the medium

under study is regarded as a two-level system with a certain

given dependence of the energy of states on their position

in reciprocal space ε(p). The dispersion law itself is

determined from the stationary Schrödinger equation after

specifying the explicit form of the Hamiltonian. Another

simplifying factor is the assumption of spatial homogeneity

of the perturbing effect at the interatomic scale, which is

valid under the stated conditions. Since the system is two-

1010



High-harmonic generation by interaction of frequency-spaced laser pulses with a... 1011

dimensional, all vector quantities under consideration are

specified by two components.

Limiting ourselves to these two simplifications and defin-

ing the Hamiltonian in general form as

H(p, t) =

(

0 B ′(p, t) + iB ′′(p, t)

B ′(p, t) − iB ′′(p, t) 0

)

(1)
and the sought-for wave function in terms of the amplitudes

of two pseudospin states

8(p, t) =

[

a(p, t)

b†(−p, t),

]

(2)

we may obtain [23], without additional simplifying assump-

tions, a system of equations for the distribution functions of

quasiparticles (electrons in the conduction band and holes in

the valence band). To do this, one performs a transition to

the occupation number representation with the substitution

of amplitudes a†(p, t), a(p, t), b†(p, t) b(p, t) with the

operators of creation and annihilation of the corresponding

quasiparticles, which satisfy the canonical anticommutation

relations

{a(p, t), a†(p′, t)}+ ={b(p, t), b†(p′, t)}+ =(2π)2δ(p−p′).
(3)

In the presence of a perturbing effect introducing an explicit

time dependence into (1), the Fock space on which these

operators act is defined on time-dependent vacuum states.

We assume that it is always possible to determine time

tin of the onset of perturbation. Prior to this moment,

the system was in a stationary state with eigen spectrum

ε(p) and vacuum state |in〉 that are set by the material

characteristics. The distribution functions of electrons and

holes are defined and considered in this initial basis:

f e(p, t) = 〈in| a†(p, t)a(p, t) |in〉,

f h(p, t) = 〈in| b†(−p, t)b(−p, t) |in〉. (4)

Introducing auxiliary functions

u(p, t) =
i
2
{〈in| a†(p, t)b†(−p, t) |in〉

− 〈in| b(−p, t)a(p, t) |in〉},

v(p, t) =
1

2
{〈in| a†(p, t)b†(−p, t) |in〉

+ 〈in| b(−p, t)a(p, t) |in〉}, (5)

which characterize the polarization effects of inter-

band transitions, and taking into account explicitly

the condition of electrical neutrality of the medium

f e(p, t) = f h(p, t) = f (p, t), we obtain a closed system of

equations for (4) and (5) [23]

ḟ (p, t) =
λ(p, t)

2
u(p, t),

u̇(p, t) = λ(p, t)
(

1− 2 f (p, t)
)

− 2ε(p, t)
~

v(p, t), (6)

v̇(p, t) =
2ε(p, t)

~
u(p, t).

Here,

ε(p, t) =
√

B ′(p, t)2 + B ′′(p, t)2

is the current positive eigen value of time-dependent

Hamiltonian (1) and

λ(p, t) =
Ḃ ′(p, t)B ′′(p, t) − B ′(p, t)Ḃ ′′(p, t)

ε2(p, t)
. (7)

Let the reason for the transition of a system with

Hamiltonian H(p) to a non-stationary regime be the in-

fluence of an external classical homogeneous electric field

E(t). Introducing vector potential A(t) of this field by the

E(t) = −Ȧ(t) condition in the Weyl gauge, which ensures

that the scalar potential is equal to zero, we perform

substitution

p → P(t) = p − eA(t), (8)

where e = −|e| is the electron charge. Substitution

H(p) → H(p, t) = H
(

P(t)
)

(9)

will then yield an explicit form of this Hamiltonian under

non-stationary conditions.

The explicit stationary form of the Hamiltonian is defined

using the model of strong interaction of nearest neighbors.

With substitution (9) taken into account, it takes the

following form in the coordinate system with its origin at

the center of the first Brillouin zone [27]:

B ′
(

P(t)
)

+ iB ′′
(

P(t)
)

= −γ
∑

l

exp

(

i
~
P(t)δl

)

, (10)

where transition energy γ ≈ 2.7 eV and vectors δl specify

the position of the three nearest neighbors for atoms of one

of the sublattices. They following form may be chosen for

them:

δ1 =
a√
3

(−1, 0), δ2 =
a√
3

(

1

2
,

√
3

2

)

,

δ3 =
a√
3

(

1

2
,−

√
3

2

)

. (11)

Here, a ≈ 0.246 nm is the lattice constant of graphene.

A coordinate system with its origin at the center of a

primitive cell of the reciprocal lattice is more convenient

for further analysis. The expressions for real and imaginary

components of the Hamiltonian may then be reduced to the

form

B ′
(

P(t)
)

= γ

[

sin

(

P1(t)a√
3~

+
π

6

)

+ sin

(

P1(t)a

2
√
3~

+
P2(t)a
2~

− π

6

)

+ sin

(

P1(t)a

2
√
3~

− P2(t)a
2~

− π

6

)]

, (12)
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B ′′
(

P(t)
)

= γ

[

cos

(

P1(t)a√
3~

+
π

6

)

− cos

(

P1(t)a

2
√
3~

+
P2(t)a
2~

− π

6

)

− cos

(

P1(t)a

2
√
3~

− P2(t)a
2~

− π

6

)]

. (13)

In this case, the coefficients of system of equations (6) are

determined explicitly:

ε
(

P(t)
)

=
2~VF√
3a

×

√

3−4 cos

(

√
3aP1(t)
2~

)

cos

(

aP2(t)
2~

)

+2 cos
(

aP2(t)/~
)

,

(14)

λ
(

P(t)
)

= − 4e~V 2
F

9aε2
(

P(t)
)

[

E1(t)
√
3

(

cos

(

√
3aP1(t)
2~

)

× cos

(

aP2(t)
2~

)

+ cos

(

aP2(t)
~

))

+ E2(t)3 sin

(

√
3aP1(t)
2~

)

sin

(

aP2(t)
2~

)]

.

(15)
Fermi velocity VF =

√
3 aγ/2~ ∼= 106 m/s.

The characteristics of induced radiation are set by the

surface density of currents generated in the sample by an

external field. The components of surface current density

for Hamiltonian (1) are expressed through the solutions of

system (6) as [25]

jk(t) =

∫

d2p
(2π~)2

1

ε
(

P(t)
)

{

∂B ′
(

P(t)
)

∂Pk

×
[

2B ′
(

P(t)
)

f (p, t) + B ′′
(

P(t)
)

u(p, t)
]

+
∂B ′′

(

P(t)
)

∂Pk

×
[

2B ′′
(

P(t)
)

f (p, t) − B ′
(

P(t)
)

u(p, t)
]

}

, k = 1, 2.

(16)

Using expressions (12) and (13), we find

j1(t) = jcond1 (t) + jpol1 (t) = e
8V 2

F ~

3a

∫

d2p
(2π~)2

√
3

×
[

1 + 2 cos

(

aP1(t)√
3~

)]

sin

(

aP1(t)

2
√
3~

)

cos

(

aP2(t)
2~

)

× f (p, t)

ε
(

P(t)
) − e

4V 2
F ~

3a

∫

d2p
(2π~)2

1√
3

[

cos

(

√
3aP1(t)
2~

)

× cos

(

aP2(t)
2~

)

+ cos

(

aP2(t)
~

)]

u(p, t)

ε
(

P(t)
) ,

(17)

j2(t) = jcond2 (t) + jpol2 (t) = e
8V 2

F ~

3a

∫

d2p
(2π~)2

×
[

cos

(

√
3aP1(t)
2~

)

sin

(

aP2(t)
2~

)

− sin

(

aP2(t)
~

)]

× f (p, t)

ε
(

P(t)
) − e

4V 2
F ~

3a

∫

d2p
(2π~)2

[

1 + 2 cos

(

aP1(t)√
3~

)]

× sin

(

aP1(t)

2
√
3~

)

sin

(

aP2(t)
2~

)

u(p, t)

ε
(

P(t)
) .

(18)
Each current component is represented as a sum of two

terms. The first term is specified by distribution function

f (p, t) and represents the conduction current caused by in-

traband charge dynamics. The second term is characterized

by function u(p, t) and represents the polarization current

sustained by the balance of creation and annihilation of

pairs of electrons and holes. Integration must be performed

over the entire Brillouin zone or its equivalent with the

periodicity of the model’s behavior in reciprocal space taken

into account correctly.

System of equations (6) with explicitly defined coeffi-

cients (14) and (15) provides an opportunity to reproduce

numerically the evolution of population of any state of the

Brillouin zone under the influence of an electric field with

an arbitrary time dependence. Observable currents (17)
and (18) may be calculated by solving the kinetic equation

in a sufficiently representative set of states. By virtue of the

assumed spatial homogeneity of the model used, current

density components jk(t) depend on time only.

The electric field produced at distance z from an infinite

plane with a uniform current density is given by [28]

Ek(t, z ) = −µ0c
2

jk

(

t − z
c

)

, (19)

where µ0 is the permeability of vacuum and c is the speed

of light. In a real-word environment, the dimensions of the

region in which the influencing field remains uniform are

limited, and expression (19) is applicable only in the near-

field zone. However, the spectral composition of induced

radiation is preserved in the process of propagation in free

space.

High-harmonic generation is achieved in experiments

with the use of short laser pulses with high en-

ergy density. Upon completion of such a pulse, the

quantum system returns to a stationary state, although

with a different population of bands. In the simplest

case, the initial state may be a quasiparticle vacuum

f (p, tin) = u(p, tin) = v(p, tin) = 0 or an equilibrium ther-

modynamic distribution f (p, tin) 6= 0 with uncorrelated

(decoherent) states u(p, tin) = v(p, tin) = 0.

The solutions of system (6) reflect the dissipativeless

quantum evolution of states. In real samples, relaxation

processes may play a significant role even on a time scale

of tens of femtoseconds [29,30]. These processes may be

taken into account in the used approach in the relaxation

Optics and Spectroscopy, 2024, Vol. 132, No. 10
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time approximation or by introducing two different time

scales for the relaxation of population of excited states τr

and decoherence τd [25,31]

ḟ (p, t) = −
(

f (p, t) − f (p, tin)
)

τr
+

λ(p, t)
2

u(p, t),

u̇(p, t) = −
(

u(p, t) − u(p, tin)
)

τd
+ λ(p, t)

(

1− 2 f (p, t)
)

− 2ε(p, t)
~

v(p, t),

(20)

v̇(p, t) = −
(

v(p, t) − v(p, tin)
)

τd
+

2ε(p, t)
~

u(p, t).

2. Problem formulation

We used the following definition of field components to

identify and study the effects of nonlinear interaction of two

laser pulses with different frequencies:

E1(t) = E10e
−t2/(2τ 2

1 )

[

cos(2πν1t) −
t

2πν1τ
2
1

sin(2πν1t)

]

,

(21)

E2(t) = E20e
−t2/(2τ 2

2 )

[

cos(2πν2t) −
t

2πν2τ
2
2

sin(2πν2t)

]

.

(22)
This provides an opportunity to specify them in a form

close to that established in actual experiments and to set the

components of vector potential for (9) by expressions

A1(t) = − E10

2πν1
e−t2/(2τ 2

1 ) sin(2πν1t), (23)

A2(t) = − E20

2πν2
e−t2/(2τ 2

2 ) sin(2πν2t), (24)

which ensure its equality to zero in both the initial and

final states. The result is that the external electric field

becomes a superposition of two pulses (each with its own

frequency and duration) incident on the sample surface at

a right angle and polarized linearly in orthogonal planes.

The field components reach their maxima simultaneously

at time point t = 0. The values of ν1 = 6.045 · 1013 Hz
and ν2 = 2.418 · 1014 Hz corresponding to photon energies

of 0.25 and 1.0 eV were chosen. One needs to use an

accurate model of interaction between nearest neighbors

in order to obtain a correct description of processes pro-

ceeding under the influence of an external field with such

frequencies. A four-fold frequency difference was chosen

for the fact that, owing to isotropy of graphene, only odd

harmonics are observed in the induced emission spectrum

for single-frequency pulses, and the specified frequency

spread provides an opportunity to separate the contributions

of two pulses. The orthogonality of polarization directions

serves the same purpose. The pulse durations were

specified by τ1 = 3.16 · 10−14 s and τ2 = 1.58 · 10−14 s (a

shorter high-frequency pulse is superimposed onto a low-

frequency pulse). The amplitude values of field strength

E10 and E20 used in modeling are given in the table.

These values are set by conditions eVFEk0/2πν = 0.05

and eVFEk0/2πν = 0.5 eV, which are estimates of the

maximum change in energy of states in the vicinity of

Dirac points in an external field due to substitution (9).
The influence of both individual pulses with the given

parameters and their combinations was considered. It was

assumed that the f (p, tin) initial state is an equilibrium ther-

modynamic distribution corresponding to 20◦C. Dissipative

processes were taken into account by introducing relaxation

time τr ≈ 100 fs of non-equilibrium state population and

decoherence time τd ≈ 10 fs.

3. Results and discussion

Modeling was performed on 3-dimensional adaptive grids

with a variable step in reciprocal space and a constant time

step. Grids covering the reciprocal space were generated

individually for each set of perturbing effect parameters

in accordance with the procedure outlined in [32]. To

ensure correct reproduction of integrals (17) and (18), the
values of functions f (p, t) and u(p, t) were calculated for

≈ 6 · 104−4 · 105 states and 2.4 · 103 time steps.

At the first stage, the response of the model to indepen-

dent action of individual pulses with frequencies ν1 and ν2
was calculated for two indicated values of each of the

amplitudes E10 and E20. The resulting time dependence

of the current density under the influence of only the first

external field component (21) is shown in Fig. 1, a. The

result corresponding only the second component (22) is

presented in Fig. 1, b. The values of E10 and E20 differ; they

are indicated in the figures and listed in the table. The pulse

with higher frequency ν2 is two times shorter. A linear scale

is used, but the current density values are scaled by a factor

of 10 at the lower field strength for clarity. This corresponds

to the ratio of electric field strength values and provides a

clear illustration of nonlinearity of the dependence of the

surface current density on this parameter. In both cases,

the current components perpendicular to the influencing

field are zero (within the calculation errors of the numerical

procedures used).

To estimate the spectral composition of induced radiation,

discrete series of j1 and j2 values were analyzed directly

with account for (19). The frequency dependence of the

squared Fourier transform modulus of current density com-

ponent k (power spectrum, which is hereinafter denoted as

Sk(ν)) was calculated. Since the simulated process was of a

finite duration, the periodogram method with the Hann win-

dow function and averaging of the results over a sequence

of overlapping samples (Welch’s method) implemented in

the Wolfram Mathematica package was used. The obtained

power spectrum values were converted to a logarithmic

scale via the Sk(ν) → 10Lg
(

Sk(ν)
)

transformation (with

the Sk(ν) designation preserved) and expressed in arbitrary

Optics and Spectroscopy, 2024, Vol. 132, No. 10
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Amplitude values of the electric field strength components, the corresponding peak energy flux densities, and estimates of the energy

spectrum perturbation

E10, peak energy flux density at frequency ν1, E20, peak energy flux density at frequency ν2,

variation of energy of states eVFE10/2πν1 variation of energy of states eVFE20/2πν2

1.899 · 105 V/cm, 4.78 · 107 W/cm2, 0.05 eV 7.59 · 105 V/cm, 7.65 · 108 W/cm2, 0.05 eV

1.899 · 106 V/cm, 4.78 · 109 W/cm2, 0.5 eV 7.59 · 106 V/cm, 7.65 · 1010 W/cm2, 0.5 eV
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Figure 1. Time dependence of the first component of current density j1 for external field pulses of the form (21) and E2(t) = 0 (a).
Time dependence of the second component of current density j2 for external field pulses of the form (22) and E1(t) = 0 (b).
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Figure 2. Power spectrum of surface currents in the case of independent action of pulses with frequencies (a) ν1 (external field is

directed along the first coordinate axis) and (b) ν2 (external field is directed along the second coordinate axis).

units. Figure 2 presents the results for pulses with

frequencies ν1 and ν2 acting independently on the sample.

The response of the electron subsystem of the material at

the carrier frequency (ν1 in Fig. 2, a and ν2(4ν1) in Fig. 2, b)

is manifested clearly at all parameter combinations. At

minimum external electric field strengths, third harmonics

at frequencies 3ν1 and 3ν2 (12ν1), respectively, may be

distinguished. When the electric field strength increases by

an order of magnitude, a series of odd harmonics emerge:

3ν1, 5ν1, 7ν1, 9ν1, and 11ν1 in Fig. 2, a and 3ν2 (12ν1)

and 5ν2 (20ν1) in Fig. 2, b. This agrees with the published

estimates and results [6–10].

The effect of mutual influence of two pulses (Fig. 3) is

manifested already at the minimum examined electric field

strength. In the spectrum of the first current component j1,
no noticeable changes are found in the vicinity of frequen-

cies ν1, 3ν1, and 5ν1; in the region of the fifth harmonic,

the values remain at the background level. However, as one

moves further to frequencies that may be associated with

the seventh (7ν1) and ninth (9ν1) harmonics or defined

as 2ν2 ± ν1, distinct bursts in the power spectrum with

its values increasing by two orders of magnitude emerge

(Fig. 3, a). Significant changes are also observed in the

spectrum of the second current component j2. The shape of
response at the carrier frequency is preserved, but this line

Optics and Spectroscopy, 2024, Vol. 132, No. 10
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acquires two symmetrical satellites at frequencies ν2 ± 2ν1.

The corresponding peaks are as much as five orders of

magnitude above the initial individual pulse level (Fig. 3, b).
One may also note the emergence of the zeroth harmonic.

Figure 4 presents the results obtained with the field

strength of a low-frequency pulse increased by an order of

magnitude. With the low-frequency pulse being dominant,

the j1 spectrum reveals no clear response to the presence or

lack of an orthogonal high-frequency component (Fig. 4, a),
featuring a well-pronounced series of odd harmonics. At

the same time, the j2 spectrum is transformed into a series

of lines with a constant spacing of 2ν1, which includes the

zeroth harmonic. The values for the closest carrier satellites,

ν2 ± 2ν1, increase by as much as eight orders of magnitude

(Fig. 4, b).

Figure 5 shows the results obtained in the opposite

case (with the high-frequency component being dominant).
The most profound changes are seen in the j1 spectrum

(Fig. 5, a). They may be interpreted as the emergence

of additional lines with frequencies 2ν2 ± ν1 and 4ν2 ± ν1
with the observed values increasing by up to seven and five

orders of magnitude, respectively. The formation of satellites

with ν1 ± 0.5ν1 in the immediate vicinity of carrier ν1 may

also be identified. As for the j2 spectrum, it does not reveal

a clear response to the presence or lack of an orthogonal

low-frequency component (Fig. 5, b).

The last pair of figures (Figs. 6, a and b) present the

results obtained in the case of interaction of pulses with

maximum parameters. In this case, the spectra of both

current components undergo significant changes attributable

to mutual influences and become saturated with high-

frequency harmonics through to 20−25ν1.

The above results may be regarded as mutual stimulation

of the process of high-harmonic generation under the

combined influence of pulses with different frequencies.

This is attributable both to an increase in the non-

equilibrium population of states and to coherent coupling

between transitions induced by the fields with different
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frequencies [14]. The relative proximity of frequencies of

the two pulses in the case under consideration enables the

observation of harmonics with frequencies ν2 ± 2ν1 and

other similar combinations. It should be noted that nu-

merical experiments with other frequency ratios are needed

for an unambiguous determination of the frequencies of

new harmonics through ν1 and ν2. The emergence of new

harmonics outside the odd series may also be interpreted as

a sign of violation of isotropy of the material properties.

4. Conclusion

The results of simulation of the response of the electron

subsystem of graphene to the influence of an external

electric field performed with the use of the quantum

kinetic equation formalism based on a rigorous model

of strong interaction of nearest neighbors were presented.

It was demonstrated that the surface current reproduced

using this approach for linearly polarized pulses with the

considered parameters is parallel to the polarization plane

and may feature a number of odd high harmonics alongside

with the dominant contribution at the carrier frequency.

This determines the characteristics of secondary induced

radiation. The result is in close agreement with theory and

experiment.

A significant mutual influence, which is manifested as

an increase in the contribution of high-frequency harmonics

to the surface current, was observed in modeling of the

simultaneous action of two pulses with different parameters

polarized linearly in orthogonal planes. A number of new

harmonics emerged in the surface current spectrum both

above the carrier frequency outside the odd series and in the

low-frequency region. The obtained results are indicative of

an increased efficiency of nonlinear conversion of laser pulse

energy into the high-frequency region under the examined

conditions.
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