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Transportation of unipolar electromagnetic pulses in a coaxial waveguide
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The possibility of efficient passage of a unipolar pulse through a coaxial waveguide has been confirmed. During

the demonstration experiment, it was shown that when the potential is excited on the waveguide plates by short

pulses, the unipolarity of the pulses passing through the cable is maintained. The problem of the passage of a field

of a uniformly moving charge through a waveguide is numerically simulated. It is shown that the main wave passes

through the coaxial waveguide almost without loss. The pulse area remains non-zero not only inside the coaxial

waveguide, but also near the outer boundary of the ideal waveguide.
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1. Introduction

Extremely short electromagnetic pulses find application

in diagnostics and control of ultrafast processes in micro-

objects (down to the atomic level), data transmission,

and other fields [1,2]. The issues of both genera-

tion of such pulses and their transport to the object

of interest remain relevant. Since a coaxial waveg-

uide has no cutoff frequency for principal waves, waves

of any frequency may propagate in it at the speed

of light in vacuum [3]. This makes them promising

for transport of unipolar electromagnetic pulses, which

act on micro-objects unidirectionally (and thus more

efficiently than bipolar ones) [4]. However, as far

as we know, systematic studies into the transport of

unipolar electromagnetic pulses have not been conducted

yet.

The aim of the present study is, first, to verify the

passage of unipolar pulses through a coaxial waveguide

experimentally. The second goal is related to the fact that

the field of an electric charge moving in a straight line at

a constant velocity represents a unipolar pulse moving at

the velocity of this charge together with it [5]. In this

connection, the problem of detachment of a pulse part

associated with the charge upon its entry into a coaxial

waveguide and its subsequent propagation at the speed of

light and exit from the waveguide is solved theoretically.

2. Experimental demonstration of
retention of unipolarity in propagation
of short unipolar pulses in a coaxial
waveguide

A coaxial waveguide consists of two metal cylinders of

different diameters. The smaller cylinder is centered inside

the larger one. In radio engineering, the inner cylinder is

often just a solid wire with a dielectric around it, which

insulates it from the outer cylindrical sheath.

The passage of short pulses without loss of unipolarity

may be demonstrated in a simple experiment: if a galvanic

contact of the source of an electric pulse with the central

conductor and the sheath of a cable is provided, it has the

capacity to transmit short unipolar pulses. A high-speed

photodiode was connected to coaxial cables of various

lengths and illuminated by short pulses from a titanium-

sapphire laser. Acting as a square-law detector recording

the intensity of laser radiation, the photodiode became a

source of short unipolar electric pulses. The other end of

the cables was connected to the DC input of a high-speed

digital oscilloscope with a 0–1GHz frequency band. The

oscilloscope recorded voltage as a function of time. The

coaxial cables were imperfect and introduced distortion.

Figure 1, a shows example oscilloscope records obtained

with the photodiode connected to the oscilloscope input

directly (a) and via a cable 3m in length (b). The half-

amplitude pulse duration in the case of direct connection

(panel (a)) is 300 ps. This corresponds to a pulse length in

space of 9 cm. Estimating the pulse duration based on the

specified photodiode bandwidth of 3GHz, which is three

times greater than the oscilloscope bandwidth, we find a

value three times shorter than 100 ps, which corresponds

to a pulse length in space of 3 cm. The cable length

(3m) exceeds this value by a factor of 100. This example

demonstrates that the shape of pulses changes after passage

through the cable. Their amplitude decreases (and duration

increases), but pulses remains unipolar. According to the

results of oscilloscope record processing, the electric area

SE =

∫

Edt,
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Figure 1. (a) Pulses from the photodiode connected to the oscilloscope input directly (curve a) and via a 3-meter coaxial cable (curve b).
(b) Diagram of field passage through a coaxial waveguide; the arrangement of cylinders in a coaxial waveguide with cylindrical symmetry.
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Figure 2. Frequency spectrum of a E field pulse for z = z 0 at two points along r = b = 2 and a = 3 (curves 1 and 2) and for the

velocity (a) and (b). The cutoff frequency for the chosen parameters is ω1 ≈ π.

of a pulse passing through the cable (E is the electric field

strength) remains virtually unchanged.

3. Charge field diffraction at the open
end of a coaxial waveguide

In the second problem, the inner cylinder of a coaxial

waveguide of a finite length was hollow, and the charge

moved along its axis at a constant velocity. In view of axial

symmetry of the problem, the charge field at the waveguide

entrance and the scattered field have the same symmetry

(Fig. 1, b). A uniformly moving charge produces one orbital

magnetic field component:

Hϕ,in = r−18in, H̃ϕ,in(T, r) = q
V
ηr2

(1 + T 2)−3/2,

T =
Vt − z
ηr

, 8in = qeikV z |�|K1(|�|), � = ηkV r,

(1)

where kV = k/V0, V0 = V
√
εµ, η =

√

1−V 2
0 , ε = 1 is

the permittivity of the transparent medium, µ = 1, and

q = 1 [5]. Here, H̃ϕ,in is the temporal field amplitude,

Hϕ,in is its Fourier transform for spectral parameter

k = ω
√
εµ, and the system of units with a unit speed of

light is used. The electric field has two components the

amplitudes of which are expressed through the magnetic

field amplitude:

Er = −i
√

µ/ε(kr)−1 ∂

∂z
(rHϕ),

Ez = i
√

µ/ε(kr)−1 ∂

∂r
(rHϕ). (2)

We write the boundary-value problem of diffraction for

amplitude

ψ(z , r) = rHϕ = 8− 8in,

where 8(z , r) = rHϕ,tot is the total magnetic field ampli-

tude for a given k that is regular at r → 0:

(

∂2

∂z 2
+ k2

)

φ +

(

∂2

∂r2
− r−1 ∂

∂r

)

φ = 0. (3)

The boundary condition on metal surfaces of the waveg-

uide for an ideal metal is vanishing of the longitudinal
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Figure 3. Distribution of scattered magnetic Hϕ (a and e) and electric Er fields for two waveguide lengths: 2d = 180 and 2d = 1800,

(b−d) and(f−h). Arrows indicate the waveguide boundaries along z . The lines extending along z in (b) indicate the position of cylindrical

plates of the coaxial waveguide. The top row (panels a−d) corresponds to k = 0 (electric field area distribution), while the bottom

row (panels e−h) corresponds to the first resonant value k = π/2d.

component of the total electric field, Ez ,tot = 0 (or, as

follows from (2), ∂8/∂r = 0):

∂

∂r
ψ(z , r) +

∂

∂r
8in(z , r) = 0,

r = a, b, z m0 < z < z m1. (4)

Condition (4) is also justified for a non-ideal metal at

k → 0, since the Drude permittivity of metal in this case is

Reεm = 1− ω2
p/ω

2 → ω, (5)

and reflection from the metal boundary may be regarded as

reflection from free-electron plasma [6] without absorption

in the skin layer for a thin layer of metal.

The derivation of the boundary condition at the waveg-

uide edge was detailed in [7]. It is most convenient to use

it for the magnetic field amplitude:

ψ(z , r) + 8in(z , r) = 0, z = z m0, z m1, r = a, b. (5)

The electric field at the waveguide edge is, in the

general case, irregular, Er,tot ∼ |r − b|−1/2 → ∞; however,

it is regular for select values of the spectral parameter

corresponding to the resonant values of a finite waveguide

(kn = πn/2d), and so Er,tot → const.

Incident charge field 8in satisfies Maxwell’s equations, but

does not satisfy Sommerfeld’s conditions at r → ∞, since

a free charge does not radiate and the field is localized

near it. However, a waveguide induces scattered field ψ the

equation for which (3) should be supplemented with Som-

merfeld’s boundary conditions at R(z , r) =
√

z 2 + r2 → ∞
(Fig. 1, b):

∂

∂R
ψ = ∓kψ, z → ∓∞,

∂

∂r
ψ = ikψ,

z = const, r → ∞. (6)

Boundary-value problem of diffraction (3)−(6) specifies

completely the scattered field that propagates with the phase

velocity of light: kz = k . The phase velocity of the incident

field is equal to the charge velocity: kz = k/V0.

The total field inside the waveguide may be expanded in

a spectrum of longitudinal and transverse modes satisfying

the boundary conditions:

8 =
∞
∑

n,l=0

eiωt+kz z8(κ1)
n (z , r).

Here, kz =
√

k2 − κ2l is the longitudinal wave number, and

transverse wave number κl corresponds to the spectrum of

zeros of the Bessel and Neumann functions, specifying the

cylindrical wave profile. Outside the waveguide, the field is

expanded in a continuous spectrum of cylindrical waves, and

harmonics with κl > 0, l > 0 decay inside the waveguide.

Harmonics with κ0 = 0 correspond to the principal wave

with transverse polarization (Ez = 0). Waves at spectrum

point k = κl , l > 0 correspond to waves with longitudinal

polarization (Ez 6= 0).
The depth of penetration of E-waves into the waveguide is

determined by the spectrum of incident radiation. Figure 2

shows the charge field spectrum for two values of charge

velocity. It can be seen that the spectrum width is small at

V = 0.1, and high-frequency harmonics decay over length

a/10. If the waveguide radius is a = 3, this is much smaller

than its length, 2d = 180. In contrast, harmonics with

resonant longitudinal modes k = kn for the principal wave

are most sensitive to the part of the spectrum containing

them.

A direct numerical solution of boundary-value problem

(3)−(6) without the expansion in harmonics of longitudinal
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(k = kn) and transverse (k = κl) modes (as is commonly

done when an analytical solution is obtained [7]) for

different values of k from the charge field spectrum

demonstrates that the transport of a pulse with a non-zero

electric field area (k = 0) is possible, and it is concentrated

near the output aperture of the coaxial waveguide not only

at b < r < a , but also outside the waveguide at (Fig. 3, b,

where the field magnitude at k = 0 is small for 0 < z < 2d
compared to the field magnitude at z > 2d).

The pulse area decreases over distances on the or-

der of the aperture width of the coaxial waveguide,

z − 2d ≥ a − b. This quantity does not depend on the

waveguide length, but a 10-fold increase in the waveguide

length leads to an order-of-magnitude increase in the pulse

area at the same distance from the output (see Figs. 3, c and

d). The magnitude of magnetic field inside the waveguide

for the resonant mode (Fig. 3, e) is large compared to

the peripheral regions and oscillates, which is associated

with interference of two oppositely directed principal waves

reflected from the waveguide ends. Faster oscillations of the

electric field inside the waveguide (Fig. 3, f) are attributable

to the compensation of oscillations of the charge field

moving at velocity V0 = 0.1, which results in variation of

the field phase at rate kV = k1/V0.

Conclusion

The possibility of efficient long-distance transmission of

a pulse with a non-zero electric field area through a

coaxial waveguide was demonstrated experimentally and

theoretically.

The amplitudes of magnetic and electric fields at the

waveguide output were determined via numerical calcula-

tion of the boundary-value problem of diffraction of the field

of a uniformly moving charge. It was demonstrated that

the fraction of waves with frequencies exceeding the cutoff

frequencies for non-principal waves is small at low charge

velocities. As the velocity increases, the fraction of the

field with subcritical frequencies (at which propagation is

possible only in the form of principal waves) decreases. As

the waveguide length increases, the number of longitudinal

resonant modes falling within the charge field spectrum

increases, thus enhancing the efficiency of pulse area

transport.
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