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Introduction

Superradiant light scattering from a Bose–Einstein con-

densate (BEC) of a rarefied atomic gas has been ob-

served for the first time by Ketterle et al. in MIT [1–
3]. In experiment [4], a BEC of Rb atoms held in a

magnetic trap was irradiated by a pair of counterpropagating

laser beams. Following multiple scattering events, BEC

atoms acquired translational motion momenta close to j~k0

( j = ±2,±4, . . .), where k0 is the magnitude of the pump

field wave vector. This resulted in the emergence of a series

of moving atomic clouds. The authors of [4] paid special

attention to the accuracy of measuring the photon recoil

momenta imparted to atoms and to their deviations from

values that are multiples of double the photon momentum.

The theory of superradiant scattering from a BEC was

discussed in [5–25]. The present study is focused on the

influence of a harmonic trap potential on the kinetics of

atomic clouds and demonstrates how close the quantum

states of atoms produced as a result of light scattering

are to the quantum coherent states that were proposed by

Schrödinger [26] and later examined in detail and applied

successfully by Glauber [27] in the field of quantum optics.

The coherent properties of atomic waves were used in [4] to
measure the photon recoil momentum via the interference

effect.

Formulation of the problem. Main
equations

An atom from a BEC is modeled as a two-level Bose

particle with ground |a〉 and excited |b〉 electron states

that is engaged in translational motion along the direction

of counter laser pumping (as in the experiment in [4]).
In what follows, we limit ourselves to a one-dimensional

model of the condensate, assuming that the dependence on

coordinates orthogonal to the direction of laser excitation is

uniform inside a harmonic trap.

The single-atom wave function is sought in the form

9(x , t) =
∑

j=0,±2,...

{

a j(x , t)ei jk0x |a〉

+ e−iω0tb j+1(x , t)ei( j+1)k0x |b〉
}

, (1)

where x is the coordinate of translational motion of an atom

along the direction of laser pumping; ω0 and k0 = ω0/c are

the frequency and the wave vector of the laser field,

respectively; and a j(x , t) and b j(x , t) are the sought-for

amplitudes of wave functions of the ground and excited

atomic states, respectively.

In the ideal gas model, the wave functions of all BEC

atoms may be assumed to be identical and satisfying the

Schrödinger equation:

i~
∂

∂t
9(x , t) =

[

Ĥ0 − ~
2

2m
∂2

∂x2
− d̂ · E(x , t)

+
1

2
m�2x2

]

9(x , t). (2)

Here, Ĥ0 is the Hamiltonian of the electron state of a

free atom, m is the atom mass, d̂ is the atomic dipole

moment operator, E(x , t) is the vector of the total electric

field (the exciting laser field and the
”
secondary“ field

produced by the induced condensate polarization) strength,

and m�2x2/2 is the potential energy of an atom in a one-

dimensional harmonic trap with natural frequency �.
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The exciting laser field is written as

E0(x , t) = E+
0 (t) exp

(

−iω0

(

1− x
c

)

)

+ E−
0 (t) exp

(

−iω0

(

1 +
x
c

)

)

+ c.c. (3)

Following [4], we assume that the field polarization vector

is perpendicular to the direction of laser excitation.

The condensate polarization is defined as the quantum-

mechanical average of operator

P̂(x , x ′) = Nd̂δ(x − x ′), (4)

where N in our one-dimensional model is the number of

condensate atoms per unit area of the irradiated face of the

trap. The quantum-mechanical average of the condensate

polarization is then given by

P(x , t) =

∞
∫

−∞

9∗(x ′, t)Nd̂δ(x − x ′)9(x ′, t)dx ′

= Ndab

∑

j=0,±2,...

∑

m=0,±2

b j+1(x , t)a∗
m(x , t)

× exp[−iω0t + ik0x( j + 1− m)] + c.c., (5)

where dab is the dipole moment of electron transition

a ↔ b. By virtue of Maxwell equations, the
”
secondary“

electromagnetic field induced by this polarization obeys the

non-homogeneous wave equation

(

∂2

∂x2
− 1

c2

∂2

∂t2

)

E ′(x , t) =
4π

c2

∂2P(x , t)
∂t2

(6)

and may be written as [28]

E ′(x , t) = −2π

c

∞
∫

−∞

dx ′ ∂

∂t
P

(

x ′, t − |x − x ′|
c

)

. (7)

Using the expression for polarization (5) in the approxi-

mation of slow amplitude variation, we obtain the following

relation for the total field with the use of (3) and (7):

E(x , t) = E+(x , t) exp

[

−iω0

(

t − x
c

)

]

+ E−(x , t) exp

[

−iω0

(

t +
x
c

)

]

+ c.c., (8)

where

E+(x , t) = E+
0 (t) + i2πk0dabN

x
∫

−∞

dx ′

×
∑

j=0,±2,...

b j+1(x
′, t′)ā j(x

′, t′), (8a)

E−(x , t) = E−
0 (t) + i2πk0dabN

∞
∫

x

dx ′

×
∑

j=0,±2,...

b j−1(x
′, t′)ā j(x

′, t′). (8b)

In what follows, we use a system of units with
”
width“

L = 2(~ ln 2/m�)1/2 of the ground state of a harmonic

oscillator set to be the unit of length,
”
superradiant time“

τR = ~/(πd2
abk0N) being the unit of time, and ~τ −1

R taken

to be the unit of energy.

With retardation neglected, the Maxwell–Schrödinger
system of equations (1), (2), (8) may be written as

(

∂

∂t
+ v j

∂

∂x

)

a j

= −iε j a j − iux2a j + b j+1Ē++b j−1Ē−, (9a)

(

∂

∂t
+ v j+1

∂

∂x

)

b j+1 =

= i

(

1− ε j+1 − ux2 + i
γ

2

)

b j+1 − a jE
+ − a j+2E

−,

(9b)
E+(x , t) = E+

0 (t)

+ 2

x
∫

−∞

dx ′
∑

j=0,±2,...

b j+1(x
′, t)ā j(x

′, t), (9c)

E−(x , t) = E−
0 (t)

+ 2

∞
∫

x

dx ′
∑

j=0,±2,...

b j−1(x
′, t)ā j(x

′, t). (9d)

Here, ε j = ~ j2k2
0τR/(2m) and ν j = ~ jk0τR/(mL) are the

kinetic energy (in units of frequency) and the velocity of

an atom with mass m and momentum j~k0, respectively;

1 = (ω0 − ωab)τR is the detuning of pump frequency ω0

from resonance frequency ωab of the optical transition; the

electric field strength amplitudes are expressed in units of

~/(dabτR); γ = ŴτR , where Ŵ is the radiation constant of an

excited electron state; and u = 0.5mτR(�L)2/~.

Scattered atomic waves

The values of problem parameters of the same order

of magnitude as in the experiment in [4] were used

to solve system (9): cyclic frequency of laser radia-

tion ω0 = 2.4 · 1015 s−1, radiation constant of the electron

transition Ŵ = 0.38 · 108 s−1, wavelength λ = 780 nm and

dipole moment dab = 2.53 · 10−29 C ·m of this transition,

N = 1.4 · 1010 cm−2, natural frequency of the harmonic

trap �/2π = 20Hz, and Rb atom mass m = 1.44 · 10−22 g.

Under these conditions, the superradiant time is estimated

as τR ∼ 5 ns, and the parameters in Eqs. (9) then as-

sume the following approximate values in our system
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Figure 1. Dashed and solid curves represent the |a2(x, t)|2 · 10
population distribution at time points t = tp and t = 350tp, respec-

tively. The dotted curve corresponds to initial BEC population

distribution |a0(x, t = 0)|2 .

of units: ε j = 1.2 · 10−4 j2, v j = 7.5 · 10−6 j , γ = 0.19,

u = 8.62 · 10−7. The condensate excitation was modeled by

two counterpropagating laser pulses with duration tp ∼ 4µs

(in our units, tp ∼ 800). System (9) was solved with

account for the formation of 11 atomic states: a0, b±1, a±2,

b±3, a±4, b±5. Pump amplitudes E+
0 = E−

0 were chosen

(depending on the detuning) so that the fraction of atoms

in the ground state of the condensate remained at 0.9 within

the excitation time. The only non-zero initial condition in

Eqs. (9) was set for amplitude a0 as the wave function of

the ground state of a harmonic oscillator.

We limit ourselves here to presenting the results ob-

tained with detuning 1ab/2π = −50MHz (in our units,

∼ −1.6) for the most populated scattered atomic states

a±2. According to the experimental data from [4] and our

calculations, the populations of atomic states a±4, a±6, . . . ,

corresponding to 2-fold, 3-fold, and higher multiplicities of

scattering events turn out to be negligibly small. Specifically,

the populations of states a±4 at time tp when the pumping

is switched off turn out to be less than 1% of the population

values of states a±2.

The spatial distributions of the a2 cloud population at two

points in time are shown in Fig. 1.

The a2 atomic cloud shifts with time due to the fact

that photon recoil momenta are imparted to atoms. The

distribution for the a−2 cloud is displaced symmetrically in

the opposite direction. The shape of these atomic clouds

remains roughly unchanged and is close to the shape of

the ground state of a harmonic oscillator. The velocity of

displacement of the a2 cloud maximum corresponds roughly

to the estimate of photon recoil, 2~k0, which was taken

into account in the expression (1) for the wave function.

The cloud velocity value may be refined by calculating the

Fourier transform of amplitudes a± j(x , t) exp(±i jk0x):

ã± j(k, t) =
1√
2π

∞
∫

−∞

exp(−ikx)

× a± j(x , t) exp(±i jk0x)dx . (10)

The obtained results for cloud a2 are presented in Fig. 2.

As we have found out, the positive shift of the distribution

maximum relative to the 2~k0 value, which is observed

at time point t = tp, is attributable to the influence of

secondary field E ′ induced by the polarization of the

medium on the condensate. The slowdown in the velocity

of cloud a2 movement by the time t = 350tp is due to the

influence of the trap potential.

Estimation of coherence of scattered
atomic states

Let us compare scattered atomic states with coherent

states of a harmonic oscillator [27].

It is worth reminding that quantum coherent states of an

oscillator are the eigenfunctions of lowering operator

â =

√

m�
2~

(

x +
~

m�
∂

∂x

)

,

âψa(x) = aψa(x), (11)

where m is the oscillator mass, � is the natural frequency of

a harmonic trap, and a = α + iβ — is a complex eigenvalue.

It is easy to verify by direct substitution that the solution

of Eq. (11) may be expressed through the wave function

of the ground state of a harmonic oscillator with a shifted

2.0 2.11.91.8 2.2
0

0.03

0.06

k/k0

2
|a

(k
, 
t)

|
2

Figure 2. Shape of the momentum distribution of cloud a2 at two

points in time: t = tp — dashed curve, t = 350tp — solid curve.
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argument value:

ψa(x) =

(

m�
~π

)1/4

e−β2e−[( m�
2~

)1/2x−a ]2

=

(

m�
~π

)1/4

e−[( m�
2~

)1/2x−a ]2e2iβ[( m�
2~

)1/2x−a ]. (12)

Applying the Fourier transform to function (12), we

obtain the wave function of the coherent state of a harmonic

oscillator in the momentum representation:

8a(p) = (π~m�)−1/4e−β2e−[ p
√

2~m�
+ia ]2e−a2

= (π~m�)−1/4e−[ p
√

2~m�
−β]2e−2iα[ p

√

2~m�
]
. (13)

If an atom in the ground state of a harmonic trap acquires

additional momentum p0, its state may be characterized by

wave function

8(p − p)) = (π~m�)−1/4e−[
p−p0

√

2~m�
]2
. (14)

It is evident that this state matches the coherent state at

ia = − p0√
2~m�

, (15)

i.e., α = 0, β = p0√
2~m�

and e−a2

= eβ
2

).

To characterize the time evolution of a coherent state, one

performs the a → ae−i�t substitution [27]. In the present

case,

a =
i p0√
2~m�

→ i p0e−i�t

√
2~m�

=
p0 sin�t√
2~m�

+ i
p0 cos�t√
2~m�

. (16)

Therefore, parameters a and b at time point t assume the

values of

α(t) =
p0 sin�t√
2~m�

,

β(t) =
p0 cos�t√
2~m�

, (17)

and wave functions (12) and (13) take the form

ψ(x , t) =

(

m�
~π

)1/4

e−
m�
2~

[x− p0
m� sin�t]2

× ei
p0x
~

cos�te−i
p2
0

~m� sin�t cos�t, (18)

ϕ(p, t) = (π~m�)−1/4

× e
(p−p0 cos�t)2

2~m� e−i
p0 p sin�t

~m� . (19)

The squared moduli of these functions are

|ψ(x , t)|2 =

(

m�
~π

)1/2

× e−( m�
~

)[x− p0
�m sin(�t)]2, (20)

|ϕ(p, t)|2 = (π~m�)−1/2e−
[p−p0 cos(�t)]2

~m� , (21)

indicating that distributions (20) and (21) undergo harmonic

oscillations along the abscissa axes with frequency �

without altering their shape.

Let us determine the extent to which states a j ob-

tained as a result of solving the Maxwell–Schrödinger
system of equations resemble coherent ones. This pos-

sibility arises due to the fact that these atomic states,

which emerge as a result of light scattering from a

BEC, are, as we have seen, close to the ground state

of a harmonic oscillator with recoil momentum im-

parted to it. However, the momentum is transferred

not instantly, but within a finite time of interaction

of the BEC with the laser field. This is the rea-

son why the a j states found here differ from coherent

states (18), (19).
To assess the degree of coherence of the obtained states,

we compare their coherence lengths with coherence length

Lcog = λ2/1λ of state (19). This quantity is used in

optics to determine the maximum path-length difference

allowing for interference at a given wavelength uncertainty

1λ [29]. Expression Lcog = 2π
1k is derived from obvious

relation 1k = 2π
λ2
1λ. Taking the root of the momentum

distribution variance as an estimate of uncertainty 1k ,

we find 1k =
√

m�
2~

for coherent state (19). Note that

the uncertainty of the wave number and the coherence

length do not depend on time in this case. Inserting the

chosen system parameters, we obtain 1k/k0 = 0.0364 and

Lcog/λ = 27.5.

Calculations of these characteristics based on the ob-

tained solutions of the Maxwell–Schrödinger equations

revealed that the uncertainty of the atomic momentum

increases with observation time, while the coherence

length of the scattered atomic wave decreases in the

process. However, they still remain close to the corre-

sponding values for the coherent state. Specifically, at

time point t = tp, 1k/k0 = 0.0417 and Lcog/λ = 24.0 were

obtained for state a2; at t = 350tp − 1k/k0 = 0.0422 and

Lcog/λ = 23.7.

Conclusion

The formation of moving atomic clouds in the pro-

cess of scattering of light from a Bose–Einstein con-

densate of a rarefied gas confined in a harmonic trap

was characterized by solving the system of Maxwell–
Schrödinger equations. Our findings revealed how close

the atomic states produced this way are to the coherent

Optics and Spectroscopy, 2024, Vol. 132, No. 10
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quantum states of a harmonic oscillator with a momen-

tum shifted by the value of the photon recoil. The

obtained coherence estimates suggest that these atomic

states hold promise for application in atomic interferome-

try.
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