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Vacuum birefringence and dichroism are investigated in the setup involving a probe photon traversing a strong

standing electromagnetic wave formed by two counterpopagating plane-wave laser beams. The analysis is based on

the evaluation of the polarization tensor. We consider both the regime of relatively low laser frequency and photon

energy and the domain where the energies are of the order of the electron rest energy. In the former case, if the

external field is sufficiently weak, one can obtain very accurate predictions by means of the local values of the

leading-order contribution to the Heisenberg-Euler effective Lagrangian. However, to address the high-energy and

strong-field domains, one has to employ different methods. Here we utilize the locally-constant field approximation

(LCFA) and compute the real and imaginary parts of the polarization tensor varying the propagation direction of

the probe photon. It is demonstrated that if the propagation axis of the photon is parallel to that of the laser beams,

then the effects are governed entirely by the counterpropagating beam, while the copropagating one is irrelevant.

If the photon travels perpendicularly to the laser beam axis, the two plane waves are equally significant. In this

case, within the Heisenberg-Euler approximation, it is sufficient to multiply the corresponding single-wave result

by a factor of two, whereas the LCFA predictions are less trivial as they incorporate the higher-order nonlinear

contributions.
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1. Introduction

According to quantum electrodynamics (QED), the phys-

ical vacuum state cannot be reviewed as a trivial void space

because of vacuum fluctuations which manifest themselves,

e.g., as some non-linear phenomena occurring in the

external electromagnetic fields. Classical Maxwell theory

is added with quantum corrections leading to non-trivial

polarization properties of vacuum [1–8] and to the effects

of vacuum birefringence and dichroism. In this study,

we investigate these phenomena in a superposition of two

opposing laser beams forming a standing electromagnetic

wave.

From the experimental standpoint, in the laser low-

frequency mode and at low frequencies of the probe

photon (compared with the rest energy of the electron

divided by the reduced Planck constant), we may try to

use the high-precision experimental methods in the relevant

area [9–19]. To obtain the exact theoretical predictions

in such a mode it is enough to review only external

field as a locally constant field and use the confined

expression for the efficient Heisenberg-Euler Lagrangian. If

the external field is relatively low, we can consider only the

higher-order quantum correction included in the effective

Lagrangian [20]. If the external field is high, so that the

Heisenberg-Euler approximation is no longer valid in the

leading order, then a computation can be made based on the

local values of the polarization operator obtained in constant

crossed fields [21–25]. Such nonperturbative approach is

called a locally-constant field approximation (LCFA). It

turned out that LCFA also allows partially investigate the

domain of high laser frequencies and high-energy probe

photons [26]. From an experimental point of view, this

mode may also prove to be very promising, since generally

it corresponds to higher values of the signal [25,27,28].
Moreover, LCFA also predicts non-zero imaginary part of

the polarization operator, and, thus, allows for the vacuum

dichroism effect. According to the optical theorem, the

imaginary part determines the total probability of the photon

disintegration into an electron-positron pair, which can be

considered as a probability of photon absorption. If this

value depends on the polarization of the probe photon,

then, the quantum vacuum exhibits dichroic properties in

the presence of an appropriate electromagnetic background.

In this study well use both, LCFA and Heisenberg-

Euler approximation to study the vacuum birefringence and

dichroism phenomena in the field of standing electromag-

netic wave. Our aim — is to compare two theoretical

approaches in a wide range of the field parameters for

various energy (frequency) values of the probe photon. To

obtain new information about the nonlinear effects under

consideration, we will also change the direction of photon

propagation and compare the standing wave with a scenario

where only one plane electromagnetic wave is included.

908



Birefringence and dichroism of the vacuum in the field of a standing electromagnetic wave 909

This study is structured as follows. Section 2 outlines the

task in whole. In Section 3 it is discussed how to study the

vacuum birefringence using the efficient Heisenberg-Euler

Lagrangian. In Section 4 the LCFA-based approximation

method is formulated. Section 5 contains the results of our

computations. In Section 6 conclusions are provided.

In the article we use the following units of measurement

~ = c = 1, α = e2/(4π) (α — fine structure constant),
e < 0.

2. Parameters of external field and probe
photon

The task setting includes a probe photon with an energy

q0 = q0 and a standing electromagnetic wave expressed as

a vector potential of the following kind:

AA(t, z ) =
E0

ω
sinωt cosωz ex , (1)

where ω — wave frequency, E0 — field strength amplitude,

and the unit vectors along the Cartesian axes are denoted

as {ei} (x = xex + yey + zez ). Scalar potential A0 is equal

to zero. Vector potential (1) corresponds to the following

expressions for the components of electric and magnetic

fields:

E(t, z ) = −(∂tAx )ex = −E0 cosωt cosωz ex , (2)

B(t, z ) = (∂zAx )ey = −E0 sinωt sinωz ey . (3)

A standing electromagnetic wave is formed by two counter

linearly polarized laser beams propagating along the z axis:

AA(t, z ) =
(E0/2)

ω

[

sinω(t + z ) + sinω(t − z )
]

ex . (4)

In the task under consideration, there are no constant

components of the electromagnetic field (the possibility of

experimental observation of birefringence in a magnetic field

has been studied, for example, in papers [29,30]).
The probe photon is propagating in an arbitrary direction

defined by angles θ and ϕ, i.e. 4-momentum qµ is

selected as qµ = q0 (1, sin θ cosϕ, sin θ sinϕ, cos θ)
t
. Let us

designate the final 4-pulse of photon as kµ .

Later, it will be convenient to use the following dimen-

sionless parameters:

ξ =
|eE0|
mω

, χ0 =
|eE0|q0

m3
. (5)

The first parameter is called the relativistic field amplitude

parameter (it is also often referred to as a0). If ξ & 1, then,

the external field accelerates the electrons to the relativistic

energies. Planck constant is not included in the expression ξ .

The second parameter in (5) — is the so-called parameter of

quantum nonlinearity which plays central role in the analysis

of QED-effects in strong external fields (it is proportionate

to ~).

In the leading order for the fine structure constant α

effects of vacuum birefringence and dichroism are observed

in Feynman diagram shown in Fig. 1. The initial and final

states of the photon (wavy lines) may differ due to the

presence of a vacuum loop containing electronic Green’s
functions in a given external field. In the right part of the

Figure the high-order contributions for the external field

strength E0 are shown. These terms will be calculated

approximately using an approach based on the use of one-

loop effective Heisenberg-Euler Lagrangian. The diagram

on the left side will be calculated by locally constant field

approximation (LCFA).
In accordance with Feynman rules in QED, the amplitude

corresponding to the diagram on the left side of Fig.1 can

generally be represented as

S(q, k) =
i√

4q0k0

εµ(q)5µν(q, k)ε∗ν (k), (6)

where 5µν — polarization tensor in the external field, and

εµ(q) and εν(k) — 4-vectors of polarization standing for

the initial and final states of the photon, respectively. Well

discuss only the field-dependent part of this tensor, which

describes the effects under consideration. Despite the fact

that a fermionic loop in the Feynman diagram can lead to

a nonzero transfer of the energy-momentum, i.e. kµ may

differ from qµ, and further well focus on the elastic process
(k = q), that corresponds to the birefringence and dichroism

phenomena.

3. Heisenberg-Euler approximation in the
leading order

In this section, we will consider an approach based on the

perturbative expansion of the polarization tensor over the

field strength. It can be derived from a single-loop effective

Lagrangian in the presence of a constant electromagnetic

field (see [20]). Three Feynman diagrams shown on the

right side of Fig. 1 can be approximately calculated using a

closed expression for the corresponding Lagrangian of the

leading order. Within the framework of this approach, the

polarization tensor can be represented as follows [20]:

5
µν
HE(q, k) =

α

45π

e2

m4

∫

d4x ei(k−q)x

× [4(qF)µ(kF)ν + 7(qG)µ(kG)ν ] , (7)

where x = (t, x), (kF)µ ≡ kλFλµ , while tensors Fµν and

Gµν depend on x . Here we use standard expression for the
electromagnetic tensor, Fµν = ∂µAν − ∂νAµ . Dual tensor

is defined as Gµν = (1/2)ǫµνλσ Fλσ , where ǫµνλσ — Levi-

Civita tensor. Calculating the integral in the equation (7)
leads to conservation laws that change the momentum and

energy of the photon by ±2ω or leave them unchanged.

Since only elastic scattering is of interest to us, we will save

only those terms that contain δ(4)(k − q). We may directly

get

5
µν
HE, elastic(q, k) =

16π3α

45
m2χ20δ

(4)(k − q)Pµν
HE, (8)
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Figure 1. Feynman diagram describing the effects of vacuum dichroism and birefringence, and its expansion with respect to the external

field strength. Zero order contribution is neglected. Double lines correspond to the electronic Green functions in the external field, single

lines — to propagators of free electrons, wavy lines — to the initial and final photon, and vertices with crosses — to interaction with the

external classical field.
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Figure 2. The real and imaginary parts of dimensionless values A(1), A(2) and 1, calculated within LCFA depending on the quantum

parameter of nonlinearity χ0 in case of θ = ϕ = 0. According to formulae (12)−(14), Heisenberg-Euler approximation gives A(1)
HE = 2,

A(2)
HE = 7/2 and 1HE = 3/2 irrespective of χ0 .
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
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










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sin2 θ
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−
7
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)






















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(9)
Physically observed quantities are determined by the am-

plitude of the process (6). To study the effect of vacuum
birefringence we need to compute a non-zero difference
of two amplitudes for the two perpendicular 4-vectors of

polarization ε
(w)
µ (w = 1, 2) of the probe photon. Let us

introduce

ε(1)
µ = (0, cos θ cosϕ, cos θ sinϕ,− sin θ)t

, (10)

ε(2)
µ = (0,− sinϕ, cosϕ, 0)t

. (11)

The amplitude (6) is proportional to εµ(q)Pµνε∗ν (k), so we
will discuss our results further in terms of the following
quantities:

A(1)
HE = ε(1)

µ P
µν
HEε

(1)
ν =

(

1 + cos2 θ
)

(

1 +
3

4
sin2 ϕ

)

, (12)

A(2)
HE = ε(2)

µ P
µν
HEε

(2)
ν =

(

1 + cos2 θ
)

(

1 +
3

4
cos2 ϕ

)

. (13)

We see that the dependencies on θ and ϕ are factorized.

The difference is written as

1HE ≡ A(2)
HE − A(1)

HE =
3

4

(

1 + cos2 θ
)

cos 2ϕ. (14)

It follows from this expression that, in the Heisenberg-

Euler approximation, the birefringence of the vacuum in

a standing wave is maximal if the probe photon propagates

along or against the direction z . The effect fades away, if

the probe photon is propagating along the bisecting lines of

plane xy (ϕ = π/4 + πn/2).

Further, we will also compare our results for a standing

wave with the results obtained when taking into account

only the first term in equation (4). This corresponds to the

plane wave propagating along the negative direction of axis

z . In case θ = ϕ = 0 see the results, e.g., in paper [26]. For
arbitrary angles the polarization tensor is written as

5
µν
HE, PW, elastic(q, k) =

16π3α

45
m2χ20δ

(4)(k − q)Pµν
HE, PW,

(15)
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P
µν
HE, PW =
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
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1
2
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(

3
4
sin2 ϕ − 1

)

− 1
2
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8
sin θ sinϕ(1 + cos θ) 1

2
sin2 θ

(

1 + 3
4
sin2 ϕ

)













.

(16)

Here

A(1)
HE, PW =

1

2
(1 + cos θ)

2

(

1 +
3

4
sin2 ϕ

)

, (17)

A(2)
HE, PW =

1

2
(1 + cos θ)2

(

1 +
3

4
cos2 ϕ

)

. (18)

1HE, PW ≡ A(2)
HE, PW − A(1)

HE, PW =
3

8
(1 + cos θ)2 cos 2ϕ.

(19)
When θ = 0 the results for the plane wave coincide with

results obtained for the standing wave (12)−(14).

4. Locally constant field approximation
(LCFA)

It turns out that when considering the external field as

locally constant, higher-order contributions in field strength

can be taken into account by estimating the diagram on

the left side of Fig. 1, i.e. without using the perturbative

expansion on the right side. For this purpose, we may use

the expression for the polarization tensor obtained in the

case of constant crossed fields [21–23], and then integrate it

over x , using real spatiotemporal dependence of the external

field [24]. For our case the contribution of the elastic process

is expressed as

5
µν
LCFA, elastic(q, k) =

16π3α

3
m2δ(4)(k − q)

×〈χ2/3 {(A−B)Fµν+(A+2B)Gµν)}〉t,z ,

(20)
where

χ =
|e|

√

−(kF)2

m3
(21)

represents a local value of the quantum parameter of

nonlinearity [(kF)2 ≡ (kF)µ(kF)µ]. In formula (20) we also
use the following definitions:

F
µν =

(kF)µ(kF)ν

(kF)2
, G

µν =
(kG)µ(kG)ν

(kG)2
, (22)

A =

1
∫

−1

dvw1/3 f ′(u), B =

1
∫

−1

dvw−2/3 f ′(u), (23)

w =
4

1− v2
, u =

(

w

χ

)2/3

, (24)

f (u) = i

∞
∫

0

dτ e−i(uτ +τ 3/3) = πGi(u) + iπAi(u). (25)

Here Gi(u) and Ai(u) — Scorers [31] and Airy functions,

respectively. The value of parameter χ is varied in space

and with time and defined by local values of the external

fieldFµν . Correspondingly, u also depends on time t
and spatial coordinate z . Average value over t and z
in expression (20) (angle-brackets) demonstrates that the

results shall be averaged in terms of temporal and spatial

period of standing wave. It follows from classical expression

z (t) = z 0 + t cos θ for
”
photon trajectory“, where we have

to make averaging over z 0 and t . A simple replacement of

variables with transition from z 0 to z leads to the technique

described above.

If the local values of χ are small, then the following

asymptotic expansions can be used:

A = − χ4/3
[

1

3
+

4

35
χ2 +

20

99
χ4 + O(χ6)

]

− iπ
2

√

3

2
χ1/3e−8/(3χ)

[

1 + O(χ)
]

, (26)

B = − χ4/3
[

1

15
+

8

315
χ2 +

20

429
χ4 + O(χ6)

]

− iπ
8

√

3

2
χ1/3e−8/(3χ)

[

1 + O(χ)
]

. (27)

We see that the imaginary part of the polarization tensor is

strongly suppressed in χ ≪ 1 regime. Expanding the expres-

sion (20), we find that the higher-order contribution exactly

coincides with the Heisenberg-Euler approximation (8), (9).
We also mention that local approximations in various

forms can be used to describe other QED phenomena in

high fields. For example, Sauter-Schwinger effect associated

with the vacuum generation of electron-positron pairs can

be investigated using LCFA [32–41].

5. Numerical results

Lets start our numerical analysis with the most simple

case θ = ϕ = 0, corresponding to the probe photon propa-

gating along the axis z and polarized either along direction

x (ε(1)), or along y (ε(2)). First, as mentioned above, in the

Heisenberg-Euler approximation, the result for a standing

wave (9) is exactly equal to the expression for a plane

wave (16), allowing for the amplitudes E0 and E0/2 selected

respectively for these two scenarios. This means that the

second term in equation (4) is absolutely non-essential, i.e.

the properties of the probe photon are in no way affected

by the associated laser pulse. Moreover, this is also true

for LCFA. Fig. 2 illustrates the real and imaginary parts

Optics and Spectroscopy, 2024, Vol. 132, No. 9
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Figure 3. The real and imaginary parts of the difference 1 computed within LCFA in the standing wave field (1) and in the field of a

single plane wave, propagating in the negative direction of the axis z . Values for the plane wave are multiplied by a coefficient of 2. The

probe photon is moving along the axis x (θ = π/2, ϕ = 0).

of values A(1), A(2) and 1 as functions χ0. In the case of

a plane-wave field, our numerical results turned out to be

exactly the same as those obtained for the standing wave

(1). Secondly, as seen from Fig. 2, it is clear that the

Heisenberg-Euler approximation is accurate only in the area

of small χ0; for χ0 = 0.5 the real part 1HE differs from

LCFA 1 prediction by 9%. The imaginary part is zero in

the leading order, therefore, to describe the effect of vacuum

dichroism, the contributions of higher orders, for example,

via LCFA (20), shall be taken into account.

Lets consider non-zero angles θ and ϕ in the mode of

low-field (low energies) χ0 ≪ 1. Now the expression for

a plane wave (16) and the result for a standing wave (9)
do not match, since both terms in the equation (4) give

non-zero contributions. For example, as θ increases, the

birefringence signals (14) and (19) begin to differ notably

from each other. For θ = π/2 the expressions for a standing

wave (12)−(14) are twice as much as the results for a plane

wave (17)−(19).
To make the analysis with the derivatives χ0, lets plot a

curve of 1 versus χ0 for θ = π/2, ϕ = 0, which corresponds

to the probe photon moving along the axis x (Fig. 3).
The results obtained for the plane wave scenario shall

be multiplied by a factor of 2. While for χ0 ≪ 1 the

configuration with one plane wave is equivalent to the

standing wave (1), for large χ0 this is not true. This

suggests that since the process is nonlinear, the effect of

two identical plane waves in equation (4) does not match

the result for one wave multiplied simply by a factor

of 2. In the leading order, the elastic process under

consideration involves absorption and emission of the same

photon. This is either the quantum of the first laser beam

or the quantum of the second beam. This means that the

two plane waves act independently, which is not observed in

higher-order contributions involving several acts of emission

and absorption. LCFA approximation includes all these

members and unambiguously indicates their significance

in the modeχ0 & 1. We emphasize once again that the

imaginary part is always absent in the higher terms as

illustrated in Fig. 1. Finally, lets stress that, in order to

quantify the effects of vacuum birefringence and dichroism,

the pre-factor in (8) should be taken into account, which

contains χ20 .

Since Heisenberg-Euler approximation in the leading

order represents the limit of small χ0 in LCFA, it is

reasonable to use it for describing vacuum birefringence if

LCFA itself and χ0 ≪ 1 are valid, as can be seen from

the analytical expressions and our numerical examples.

Although LCFA is inherently nonperturbative with respect

to the classical field, it is still an approximate method, since

in the framework of LCFA it is assumed that external field

can be considered as locally constant and locally crossed.

The precision of LCFA, apparently depends on ω, E0 and

energy of the probe photon k0. Thus, according to [26],
for instance, in case of the plane-wave field the application

of LCFA is justified, if ξ significantly exceeds χ0, which in

practice stands for ξ ≫ 1 or χ0 ≪ ξ . 1.

6. Conclusion

In this paper, the polarization tensor in the field of

a standing electromagnetic wave was calculated using

the locally constant field approximation (LCFA) and the

Heisenberg-Euler approximation. The real and imaginary

parts of this tensor stand, respectively, for vacuum birefrin-

gence and dichroism. It was demonstrated that for small

values of the quantum parameter of nonlinearity (χ0 ≪ 1),
the latter approach gives accurate and simple predictions:

the real part of the polarization tensor trivially depends

on χ0 and can be easily associated with the results for

a single laser beam (for example, in case of transverse

propagation, the obtained value should just be multiplied

by 2). If the condition χ0 ≪ 1 is not fulfilled anymore,

Optics and Spectroscopy, 2024, Vol. 132, No. 9
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then it is necessary to go beyond the Heisenberg-Euler

approximation. In this case, taking into account higher-order

contributions by LCFA, we obtain a nontrivial dependence

of both the real and imaginary parts on parameter χ0.

The results obtained for a standing wave start to differ

fundamentally from the computations in case of a single

plane-wave beam.

Since a standing electromagnetic wave is featuring a

much more intriguing configuration than a plane wave, it

is advisable to compare local approximations with accurate

results for this case. This issue is a critical line of our further

research.
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