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Introduction

Reflection of a relativistic intense short laser pulse from

a solid-state target results in generation of several ultra-

short pulses of attosecond duration (atto-pulses), consisting
mainly of higher order harmonics of laser frequency [1].
Such pulses are generated due to vibrations of the reflective

electron layer in the target with a relativistic velocity [2].
Atto-pulses are promising for use in X-ray imaging of

ultrafast processes, therefore, it is relevant to study the

formation and propagation of such pulses from the laser

target to the studied object without increasing the duration

and decreasing the intensity. One of the ways to implement

such capabilities is to focus the radiation reflected from the

target at large (hundreds of micrometers) distances. It is

known that a laser pulse of relativistic intensity leads to

penetration through a plasma target and formation of a

concave reflective surface [3]. With the appropriate selection

of parameters, the focal distance of such a mirror can be

large enough to allow localization (focus) atto-pulses in

a small area of space at a great distance from the laser

target [4]. In paper [4] normal incidence of a laser pulse with

a plane phase front onto a target is discussed. The present

study is aimed at determining the focusing conditions of the

reflected pulse with an oblique incidence and displacement

of the focus point of the incident laser beam relative to the

target surface (curved phase front).

Spatial profile of the reflecting surface

High laser intensities are achieved by focusing the

propagating laser beam in a vacuum chamber. Ideally, the

target is positioned in the middle of the focal waist, thereby

achieving maximum possible laser intensity on the target. In

real conditions (as well as in order to change the intensity),
the focus point can be located in front of or behind the

target at a distance of units and tens of micrometers. In this

case the pulse with a curvature similar to the phase front will

be reflected from the target. By changing the distance from

the focus point to the target, different values of the front

curvature radius may be obtained, which, in combination

with the target curvature radius, allows
”
adjusting“ the

reflection process to different focusing distances. The

shape of the target’s reflecting surface is determined by

the balance of forces of the ponderomotive pressure of

laser pulse and ambipolar plasma field. The profile of the

reflecting surface (critical density profile) is influenced by

such laser parameters as intensity, transverse profile, phase

front curvature and angle of incidence of the laser beam, as

well as the density and scale of spatial heterogeneity of laser

plasma. All these factors may be thoroughly considered in

numerical PIC modeling of the density profile of a laser

target.

An example of spatial distribution of electron density

obtained through numeric 2D PIC-modelling with the

use of PSC code [5], is shown in Fig. 1, a. The

following modelling parameters were used: laser intensity

6.7 · 1019 W/cm2, duration τL = 33 fs, target SiO2, target

density ni0 = 2 · 1022 cm−3, levels of ionization Si+12, O+8,

scale of plasma heterogeneity L = 0.25µm, laser beam

radius wL = 1.5µm. Incident angle 45◦, P-polarization.
The axis of laser beam corresponded to y0 = 20µm in

Fig. 1, a. The initial front of the laser pulse was planar

(z = const). The moment of time in Fig. 1, a corresponded

to reflection 8 and 13 of laser pulse periods. Fig. 1, a

shows that electron density is penetrated in the direction

of the ponderomotive pressure force of a laser pulse, where

the asymmetry of the reflecting surface is observed, which
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increases with the growth of intensity, and Fig. 1, b shows

an option of the model approximation of the numerically

computed blue curve in Fig. 1, a.

Taylor expansion of the density profile Fig. 1, a represents

a parabola:

z (y) = −z e

(

1−
(y − y0 − y e)

2

(wL/ cos θ − y esign(y − y0 − y e))2

)

.

(1)
We assume that: kz e ≪ 1, kL ≪ 1, where

k = ωL/c = 2π/λL — wave vector of laser pulse with

a frequency of ωL. The shifts z e, y e of electron density

profile can be found from the equations of force balance

and momentum flow. The ponderomotive pressure force

of laser pulse on the electron density of the target has a

non-zero time average component: F = (e[ve × B]/c (on
the target surface B = (a0(1 + R)meωc/e, where R —
amplitude reflectance factor). The components of this force

are balanced by the ambipolar forces that arise due to the

shift in electron density. Dimensionless z -component of

ambipolar field

Ez = Zk

Ze
∫

−∞

(ni(z )/ncr)dz

is balanced by z -component of the light pressure force:

(R + 1)a0 cos θ = k

Ze
∫

0

(ni(z )/ncr)dz .

Where at ni(z ) = ncr exp(z/L), z ∈ [0; L ln(Zni0/ncr)];
ni(z ) = Zni0, z ∈ [L ln(Zni0/ncr);+∞) we obtain the esti-

mate of the target surface penetration depth:

kz e = kL ln

(

1 +
(R + 1)a0 cos θ

kL
nc

Zni0

)

at kL ≥

(

nc

Zni0

)2

(R + 1)a0 cos θ, (2)

kz e =

(

nc

Zni0

)(

(R + 1)a0 cos θ − kL
Zni0

nc

)

at kL ≤

(

nc

Zni0

)2

(R + 1)a0 cos θ.

Since usually Zni0/nc > 102, a0 < 102, top line (2) corre-

sponds to the range of heterogeneity scale L from tens of

nanometers and above, and only for L ∼ a few nanometers,

the bottom line is valid (2). Further, we’ll assume the upper

inequality fulfilled. The dimensionless y component of the

light pressure force is balanced by y component of the

ambipolar electric field:

(R + 1)a0 sin θ = ky eZni(z e)/ncr,

from where

ky e =
(R + 1)a0 sin θncr

Zni(z e)
. (3)

Formulae (1)−(3) define the modelled profile of the

reflection surface in the form of an asymmetric parabola.

The top line of the formula (2) up to replacement

(R + 1) cos θ ↔ 2(1 + sin θ) coincides with the evaluation

of [4], which considered the symmetrical shape of the

reflection surface (y e = 0). For sufficiently long pulses

(≥ 100 fs), there will be a significant shift in the ion density

along with the electron density. To estimate the shift of the

ion density profile, consider the momentum flow balance

equation for the pulse incident on a laser radiation target

with a time-average intensity of IL:

2ni miv
2
i = (1 + R)IL cos θ/c.

From the balance equation, a differential equation is ob-

tained that determines the position of the boundary of

moving ions:

v i(t)
c

=
∂z i(y, t)

∂t
=

√

(a2(0, y, t))TL

√

(1 + R)mencr cos θ

2Ami ni(z i(y, t))
,

where the brackets 〈 〉TL denote an averaging of the squared

field over the laser period TL. For the exponential density

profile in the vicinity of the critical concentration (radiation
reflection point) ni(z ) = (ncr/Z) exp(z/L), the differential

equation is written as follows

z i = 2L ln

(

1 + a0τL

√

Zmec2(R + 1)

16AmpL2 cos θ

)

. (4)

Total penetration depth of the target is composed by

summing up the formulae (2) and (4): z T = z e + z i , while

the formula of the reflecting surface is defined by the

ratio (1) with replacement of z e → z T .

Reflection of a laser pulse with a curved
phase front from a concave target

It is convenient to describe an obliquely inci-

dent laser pulse in an inclined coordinate system:

z̃ = −z cos θ + y sin θ, ỹ = y cos θ + z sin θ, the axes of

which are shown in Fig. 1, b. The dimensionless vector

potential of the laser field propagating along the axis z̃ in

Fig. 1, b, in the paraxial approximation near the focus point

z̃ = z̃ ∗ is expressed as

a(z̃ , ỹ , t) = a0 exp

(

−
(z̃ − ct)2

c2τ 2
L

)
√

wL

w(z̃ − z̃ ∗)

× exp

(

−
ỹ2

w(z̃ − z̃ ∗)2

)

cos

(

k(z̃ − z̃ ∗) − ωt

−
kỹ2

2σ (z̃ − z̃ ∗)
+ η(z̃ − z̃ ∗)

)

, (5)

w(z̃ ) = wL

√

1 +
z̃ 2

z 2
R

, σ (z̃ ) = z̃ +
z 2

R

z̃
,
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Figure 1. a — numerical modelling of the electron density profile when the laser pulse is reflected from a plane target; b — model

profile of the reflection surface.

η(z̃ ) = 0.5 atan

(

z̃
z R

)

.

Here wL = w(z̃ = z̃ ∗) — minimal half-width of the laser

beam, z R = (kw2
L)/2 — Rayleigh length, a0 = eEL/mωc ,

τL — , respectively, the dimensionless amplitude and

time duration of the laser pulse. Function w(z̃ ) de-

scribes the local (in point z̃ ) half-width of the laser

beam, function σ (z̃ ) — local radius of the phase front

curvature. When a laser pulse (5) impacts the opaque

quasi-neutral plasma with an initial particle density profile

ne(z ) = Zni(z ) = Zni0 exp(−z/L), the electron and ion

densities become penetrated, as a result of which electrons

are displaced by distances z e, y e along the axes (z , y), and
reflection occurs from the density profile (1). When a P-
polarized laser pulse obliquely falls on a target, a periodic

structure of sections appears on its surface where the normal

component of the electric field extracts electrons from the

surface into vacuum [6]. As a result, electron jets appear,

observed, for example, in Fig. 1, b, and the reflection surface

itself becomes wavy. The density profile consisting of the

two branches of parabola (1) has two focusing distances

f p1,2, specific average focusing distance f pt and inter-focus

distance δ f p :

f p1,2 =
(wL/ cos θ ± y e)

2

4z T
, f pt =

f p1 + f p2

2
,

δ f p = f p1 − f p2 ≈
y ewL

z T cos θ
. (6)

Formulae (6) for estimating the focusing parameters

of a curved surface will be valid up to a numerical

multiplier for a reflecting surface of arbitrary shape,

since the angles α1,2 in Fig. 1, b are estimated as

α1,2 ≈ z T /(wL/ cos θ ± y e), and f p1,2 — respectively as

(wL/ cos θ ± y e)α1,2 = (wL/ cos θ ± y e)
2/z T , and only nu-

merical factor in this estimate depends on the surface shape.

In Appendix 1, the case of a triangular plasma recess is

considered more carefully and the focusing distance for such

a profile is calculated.

In Fig. 2, a the curve (6) is shown in orange color

for a0 = 2.2, blue color — curve for a0 = 0.7. The

circles and squares of the corresponding color stand for the

computation data [7], when z T ≈ z e , θ = 0 and z ∗ = 0. It

can be seen that for a0 > 1, the estimate (6) of the focusing

distance adequately describes the numerical modelling data,

and the focusing distance for small deflection angles α1,2,

with an accuracy of a unit multiplier, does not depend

on the choice of the functional type of the plasma density

profile. In Appendix 1, the triangular profile of the reflection

surface is considered and it is shown that formula(6) for

the focusing distance is also valid for such a profile. In

Fig. 2, b it is also shown that the focusing distance f pt

versus incident angle θ in formula (6) also corresponds to

the numerical modelling data.

Focusing of the generated harmonics

The reflected pulse, unlike the incident pulse, con-

tains a set of high-frequency harmonics with wavelengths

λn = λL/n. Harmonics arise due to the relativistic motion of

the reflecting electronic surface. The harmonics are summed

up in a sequence of short intense pulses (atto-pulses)

shown below. The numbers of harmonics lie within the

interval n ∈ [1; nmax]. Number nmax of the maximal reflected

harmonic may be obtained from [8], where the duration

τatto of the atto-pulse reflected from a sharply bounded

bulk target is estimated. Obviously, nmax ≈ TL/2τatto; having

taken from [8] the formula for τatto, we’ll get the following

Optics and Spectroscopy, 2024, Vol. 132, No. 9
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Figure 2. (a) Focusing distance f pt versus the heterogeneity scale of the laser target plasma Si+12O+6 with a density of Zni0 = 50nc for

the laser pulse intensities 1018 W/cm2 (a0 = 0.7) — blue curve and 1019 W/cm2 (a0 = 2.2) — orange curve, circles and squares — data

of PIC-computation [7]. (b) Focusing distance f pt versus incident angle θ: solid line — formula (6) for f p1, dots — computation results

for the laser intensity 1022 W/cm2, target Au+50, ni0 = 6 · 1022 cm−3 , L = 0.25 µm, wL = 2.5 µm.

estimate:

nmax ≈
a2
0N(1 − sin θ)

2C cos2 θ

(

sin θ + 4 cos3 θ

√

N2

a2
0

−
a2
0 sin

2 θ

N2(1− sin θ)2

)

, (7)

N =
ne

ncr

, a0 > 1,
a0

N
< 1,

where C ∼ 1 — numerical constant. The applicability of the

sharp boundary condition limits the scale of plasma hetero-

geneity: kL ≤ ( nc
Zni0

)2(R + 1)a0 cos θ (bottom line (2)). If

the sharp boundary condition is not fulfilled (our case), the
dimensionless concentration of N in formula (7) is taken on

the reflection surface:

N =
ne(z e)

ncr

=

{

exp(z e/L, z e ≤ L ln(Zni0/ncr),

Zni0/ncr, z eL ln(Zni0/ncr),

as a result of which the dependence of nmax on the

heterogeneity scale nmax(L) appears. Formula (7) is valid

for a plane surface, curvature makes a small contribution

and can be taken into account by introducing a local angle

of incidence θ̃(y) = θ + atan(dz (y)/dy) and subsequent

averaging along the coordinate y within the laser spot on

the plasma surface:

(2wL/ cos θ)
−1

wL/ cos θ
∫

−wL/ cos θ

nmax(θ̃(y))dy.

Since the incident angle is small dz (y)/dy < 1∀y , the

procedure of averaging at θ ∼ 1 practically will not change

the value (7). At θ ≪ 1 Taylor’s series (7) expansion is

written as

nmax ≈
2a0N2

C

(

1 + θ

(

a0

4N
− 1

)

+ . . .

)

,

and the angle averaging procedure will include only change

of the coefficient of θ linear summand, i.e. will not

change the value (7) either. It should be noted that

there’s an optimal ratio a0/N, at which the harmonics

amplitudescn ∼ nmax are maximal. In paper [8] it was

demonstrated that the interval 1/4 < a0/N < 1 and incident

angles 45◦ ≤ θ ≤ 70◦ are optimal from the standpoint of

amplitude and duration of the atto-pulse formed by the high-

frequency harmonics.

Size 2wrn of the focal waist of n-th atto-pulse harmonic

differs from the size 2wL of the incident pulse waist and

is sensitive to the functional profile z (y) of the reflecting

surface. For the parabola profile the focusing diffraction

limit wrn may be attained: f ptλn/wL. With a profile

shape other than parabolic, the size of the focal waist will

exceed the diffraction limit, for example, for a triangular

density profile, the size of the focal waist is 2wrn: wL + y e

(Appendix 1 (p9)).
The amplitude of the n-th harmonic of the atto pulses

at the focus point of the reflected laser pulse can be

estimated as follows. From (5) it follows that the

amplitude of the incident pulse on the target surface is

a0(1 + 4k2z ∗2/k4w4
L cos

2 θ)−1/4 . Distribution by number n
of amplitudes a rn of the atto pulse on the target surface is

expressed exponentially [8]:

a rn|z≈0 ≈ Ra0

n−p/4+1(1 + 4k2z ∗2/k4w4
L cos

2 θ)−1/4

√

nmax
∑

n=1

n−p/2+1

, (8)

where the exponent p of the spectrum depends on the

target parameters, including the heterogeneity scale. The

denominator in (8) ensures the correct normalization of

harmonic amplitudes so that

R2 =

nmax
∑

n=1

a2
rn(1 + (4k2z ∗2/k4w4

L cos
2 θ)1/2/a2

0

Optics and Spectroscopy, 2024, Vol. 132, No. 9
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was the reflectance from the target in terms of power.

For the sharply-bounded bulk targets similar estimates

have been given in various papers p ∈ [2.5; 3] [9,10].
Further, we’ll use p ≈ 2.5. In paper [4] it was demon-

strated that the characteristic radius of the spot gen-

erating the atto pulse harmonics for n (nmax ≫ 1) is

wef ≈ 0.7w(z ∗) = 0.7wL

√

1 + z ∗2/z 2
R . At a distance of

f pt the spot area of n-th harmonic will make Srn = πw2
rn

(wrn — spot radius of n-th harmonic in the point of focus).
Accordingly, the amplitude a rn of the harmonic of the

reflected pulse at the focus point will be determined by

the areas ratio and will be

a rn

a0

=
Rwef

wrn

n−p/4+1(1 + 4k2z ∗2/k4w4
L cos

2 θ)−1/4

√

∑nmax

n=1 n−p/2+1

≈
0.7RwL

√

1 + z ∗2/z 2
Rn−p/4+1

(1 + 4k2z ∗2/k4w4
L cos

2 θ)−1/4wrn

√

∑nmax

n=1 n−p/2+1

.

(9)
The formula (9) allows estimating the amplitude of n-th
harmonic of the atto pulse at the focus point at a given

position of the laser beam focusing point z ∗ in front of the

target and the heterogeneity scale L of laser plasma ( taking

into account nmax(L)). The intensity of reflected harmonic

radiation (n > n∗) in the point of focus I focus(n∗) is defined

by the formula:

I focus(n∗)

I0
=

∑nmax

n∗ (a rn)
2

a2
0

, (10)

where I0 = m2
ec3ω2

La2
0/4πe2 — intensity of the incident

pulse.

To clarify wrn, it shall be emphasized that the pro-

file of the reflecting surface corresponds to a local

equality at the points of hot electrons pressure surface

ne(y, z )Te and the ponderomotive pressure surface of laser

field. When estimating the temperature of hot electrons

Te ≈ mc2
(

√

1 + 〈a2(y, z , t)〉TL − 1
)

, it turns out that the

electron density profile repeats the profile of the laser field

distribution on the plasma surface:

ne(y, z )

ncr

≈
〈a2(y, z , t)〉TL

4π
(

√

1 + 〈a2(y, z , t)〉TL − 1
)

→

√

〈a2(y, z , t)〉TL

4π
at a2 ≫ 1. (11)

It should be noted that the field and electron density

are self-matched and 〈a2(y, z , t)〉TL in (11) depends on

the density distribution ne . For the estimates we may

take 〈a2(y, z , t)〉TL of the incident pulse (5) (Gaussian
profile in the system y ′, z ′), and then the estimate of

profile ne(y, z ) will also be of Gaussian type. Near the

maximum, the Gaussian distribution is approximated by a

parabola, when focusing, the diffraction limit of focusing is

0.1 1 10

I
(n

/2
)I

m
ax

0

–410

10

1

0.1

0.01

L, µm

–310

Figure 3. Dimensionless intensity of the high-frequency harmon-

ics in focus I focus(n∗ = nmax/2)/I0 versus heterogeneity scale L
at laser intensity I0 = 1022 W/cm2, wL = 2.5 µm, target Au+50,

ni0 = 6 · 1022 cm−3 , wrn ≈

√

δ f pλn. Other parameters of the

target and laser pulse are shown in Fig. 2.

reached wrn: 2π f pt/nkwef. The possibility of focusing into

a small region wrnmax
∼ λL/nmax (at f pt ∼ wef) on an arti-

ficially prepared parabolic reflecting surface and obtaining

at nmax ≫ 1 the intensities I focus reaching Schwinger limit

(vacuum breakdown) is outlined in [4.10]. The oblique

incidence during self-focusing leads to an asymmetry of

the parabola branches (a shift by y e (3) of the parabola

bottom point relative to the axis of the incident beam),
which leads to a blurring of the focusing distance by δ f p .

If the value δ f p is less than Rayleigh distance of n-th
harmonic, δ f p < π f 2

ptλn/w
2
ef, then, the diffraction limit of

the focusing spot radius estimate is preserved. Otherwise,

δ f p > π f 2
ptλn/w

2
ef minimal radius of the focusing spot of

n-th harmonic is wrn ≈
√

δ f pλn.

Fig. 3 illustrates the dimensionless intensity of the high-

frequency harmonics in focus I focus(n∗ = nmax/2)/I0 as

a function of the heterogeneity scale L for the laser

intensity I0 = 1022 W/cm2, wL = 2.5µm, target Au+50,

ni0 = 6 · 1022 cm−3 in case when wrn ≈
√

δ f pλn. It can

be seen that focusing with an asymmetric parabola makes

it possible to increase the intensity of the
”
tail“ of the

reflected pulse spectrum (n > nmax/2) up to the intensity of

the incident pulse I0. It should be noted that when focusing

with a symmetric parabola (wrn: 2π f pt/nkweff) maximal

value I focus(n∗ = nmax/2)/I0 in Fig. 3 would be increased

up to ≈ 40.

Away from the maximum of the incident Gaussian

pulse (5), the approximation of Gaussian distribution is

close to linear. Thus, the intensity distribution in the focal

waist of the reflected pulse should contain a bright spot in

the center and a periphery where the intensity is several

Optics and Spectroscopy, 2024, Vol. 132, No. 9
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times higher than the intensity of the incident laser pulse.

It should also be stressed that the angular divergence of

individual harmonicθn ∼ wrn/ f pt ∼ λL/nwL, similar to the

half-width wrn, coincide with the growth of n. Accordingly,
the highest frequency harmonics composing the atto pulses

propagate closer to the axis of the reflected beam. If there

is a selection based on the angle of the reflected pulse, it is

possible to separate the high-frequency part of the spectrum.

A similar selection was carried out in the study [11], where

the suppression of low-frequency harmonics due to angular

selection led to a planer spectrum for the part of the

reflected pulse propagating directly along the reflected beam

axis as shown in Fig. p1.

To check and calibrate formulae (9), (10) the Appendix 2

provides the numerical modelling data [6]I focus(n∗ = 1)/I0
of the dimensionless laser intensity at the focus point of

all harmonics of the reflected laser pulse as a function

of plasma heterogeneity scale L for the parameters of the

laser pulse and target shown in Fig. 2. These data were

compared with the model formulae (9), (10), triangular

and trapezoidal (with equal link lengths) profiles of the

target surface were used. The dependence of the reflected

radiation intensity on the heterogeneity scale L, as in Fig. 3,

has a local maximum, which is explained as follows. At

L = 0 the reflection surface is plane and no focusing occurs,

wrn ≈ wL (at that I focus(n∗ = 1)/I0 = R2). As L grows, the

focusing occurs andwrn ≪ wL. At higher L the value N
drops in (7), which leads to decrease of nmax (number of

summands in the sum (10)) and lower intensity in the point

of focus. As a result in Fig. 3 and Fig. p3 the dependence

is formed with a maximum.

Numerical modelling of laser beam
focusing with a curved phase front

2D PIC computations were performed to verify the

above estimates of the focusing distance and focusing

parameters of the reflected pulse. Note that 2D computation

includes only a narrow range of values of the unused

third coordinate, according to which in a real situation

(3D-computation) focusing also takes place. Accordingly,

the focusing degree in 2D-computation will be a priori

reduced compared to the 3D-computation. It is possible to

estimate the degree of focusing in 3D-computation (which

is unavailable due to limited computational capabilities) as

a squared degree of focusing in 2D computations. In 2D-

computation the laser intensity was 1022 W/cm2, wavelength

800 nm, target Au+50, with a density of 6 · 1022 cm−3.

The scale of the exponential density heterogeneity on the

front side was selected 0.25µm, and the target thickness

3.5µm. Radius (half-width) of laser beam wL = 2.5µm.

The computation step was 4 nm in spatial coordinates

and 1.3 as in time, number of particles was 30 in the

cell for ions and 90 for electrons. Pulse duration was

∼ exp(−(z − ct)2/z 2
L) with z L = 5.25µm. In total the

pulse contained 2× 5.25/0.8 = 13 periods. Rayleigh

distance in formula (5) used to set the pulse value was

z R = πw2
L/λL ≈ 9µm. Incident angle on the target was

θ = 45◦, p-polarization. At the initial moment of modelling,

the center of the pulse was located at a distance of

|z ∗| = 9µm in front of the target. Thus, the parameter was

z ∗/z R ≈ −1 in Fig. 1. If the pulse was propagating freely

(ideally reflected), its half-width at the running distance l
would be w(l) = 1.5

√

1 + l2/92 µm. If the pulse has run

9µm to the target and 9µm after, then its half-width would

rise more than twice as much. In real reflection, due to

penetration through electron density, a focusing
”
mirror“ is

formed, capable of reducing the width of the pulse and

even focusing it. According to formulae (6) of the model,

the focusing distance of such mirror is f pt ≈ 5µm for

the heterogeneity scale L = 250 nm in formulae (2), (4).
The target’s density profile at the moment of reflection of

intensity maximum of the incident pulse (t = 32 fs) is shown

in Fig. 4, a. Fig. 4, b illustrates laser pulses — incident at

t = 0 (bottom insert) and reflected at t = 42 fs (moment

when the pulse center is reflected). Efficient focusing

distance in Fig. 4, b is ≈ 4µm which is consistent with the

above-mentioned estimate f pt ≈ 5µm. Also, in Fig. 4, b the

lateral size of the focusing region is 2µm at initial lateral

size of the beam 2wL = 5µm. Figure 4, b shows that the

reflecting surface is displaced during reflection: the
”
head“

and
”
tail“ of the reflected focused pulse in Figure 4, b are

shifted along the axis z relative to each other. The dynamics

of the reflecting surface generates intersecting fronts from

different areas of the reflection surface, as seen in Fig. 4, b.

Because of this, the half-width of the focusing region

exceeds the diffraction limit (reflection by an ideal parabola)
and is most adequately estimated by the triangular density

profile model — formula (p9) of Appendix 1. This formula

gives |CD| ≈ 2.8µm, which is close to 2µm Fig. 4, b. The

intensity of the reflected radiation in the focusing region in

Fig. 4, b makes ∼ 3 of the incident radiation intensity. In

the 3D-computation, the degree of focusing would increase

to ∼ 10, which is comparable to the 3D modeling data

in paper [12] obtained with comparable laser pulse and

target parameters. It should be noted that estimation by

methods of geometric optics assumes the ideal quality of

the reflecting surface and does not take into account the

reflection other than specular and present in our case. In

Fig. 4 formula (10) gives for parameters nmax ≈ 350 and the

pulse duration of several attoseconds.

Two-pulse reflection scheme

Computations show that formation of a concave
”
mirror“

continues at long distances after reflection of the first

pulse because the density wave is moving inside the target.

Figure 5 shows the electron density profile at a time of

90 fs for computation of Figure 1, a, when the reflected

pulse left the modelling box. Fig. 5, b shows that at

y = 30µm the second pulse has run 57µm from the start

point, and its diffraction divergence corresponds to the blue

Optics and Spectroscopy, 2024, Vol. 132, No. 9
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Figure 4. a — electron density profile, density scale in units of initial density Zni0, the negative sign corresponds to the negative charge

of the electron; b — electric field of the incident pulse at t = 0 (insert below) and the reflected pulse at t = 42 fs for a target with a

thickness of 3.5 µm and heterogeneity scale of 0.25 µm. The scale of the field strength on the right in units of the incident pulse amplitude.
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Figure 5. a — the electron density profile at time 90 fs (45 fs after the first laser pulse has been reflected from the target), the density

scale in units of initial density Zni0, the negative sign corresponds to the negative charge of the electron, the dark line highlights the

surface of critical density (reflecting surface), IL = 6.7 · 1019 W/cm2, τL = 33 fs, target SiO2, ni0 = 2 · 1022 cm−3 , Si+12, O+8, L = 0.25 µm,

wL = 1.5 µm; b — the electric field of the second pulse (parameters coincide with the parameters of the first one) incident on the target

at time t = 108 fs and fully reflected at t = 160 fs. The scale of the field strength on the right in units of the incident pulse amplitude.

lines. By comparing Fig. 1, a and Fig. 5, b we see that

the surface of local density increase for a time ∼ 100 fs is

featuring a smoother profile and is remained concave with

a sharp boundary in Fig. 5, a. The electron jets shown

in Fig. 1, a and Fig. 4, a, are dissipating after completion

of the first pulse and the reflection surface is smoothed.

Accordingly, if a second laser pulse is applied to the target

again in Fig. 5, its degree of focusing can be improved.

Fig. 5, b shows the focusing of the second pulse, which

lags behind the first by 108 fs and is reflected from the

density profile Fig. 5, a. A comparison of Fig. 4, a and

Fig. 5, b demonstrates that the second pulse is broadened

(compared to the first pulse) when it approaches the target

because of the diffraction divergence and it also has a

convex front. Focusing shown in Fig. 5, b causes the front

of the reflected second pulse to become plane (concave).

The maximum amplitude of the reflected second pulse is

1.3 in units of the amplitude of the incident second pulse.

The scattered radiation of the second pulse in Fig. 6 has a

strict periodic structure and does not contain the chaotic

part visible in Fig. 4, b. To estimate the parameters of

the reflecting surface profile in Fig. 5, a, formula (4) can

be used, while in (4) the duration of the laser pulse τL

should be replaced by the delay time 1τ = 108 fs between
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Figure 6. Electric field in the axis of the second reflected pulse

(z = 19 µm in Fig. 5, b). Duration of the field half-period at half

maximum is 54 nm. Field strength scale in units of the incident

pulse amplitude along the ordinate axis.

pulses, and the ”drop” depth of the profile z T ≈ z i . Here,

according to formula (6), the focusing distance is estimated

as f pt ≈ 13µm, which corresponds to the focusing distance

∼ 10µm in Fig. 5, b. Electric field in the axis of the

second reflected pulse (z = 19µm in Fig. 6) is shown in

Fig. 6. Comparison of the atto pulses generated by the

first and second laser pulses shows that the maximum

amplitude of the atto pulses of the second laser pulse is

higher and the duration is shorter by ∼ 4 times. Thus,

the profile of the focusing surface can be controlled not

only by changing the scale of the density heterogeneity on

the front side or by changing the laser intensity of a single

pulse, but also by using a two-pulse scheme. In this scheme,

the first pulse forms a curved reflection surface with high

density, and the second pulse generates a set of atto pulses

and becomes focused. Figure 6 illustrates that the two-

pulse scheme generates atto pulses of greater amplitude and

shorter duration, i.e. it is characterized by a higher quality

of atto pulses.

Conclusion

The atto pulse reflected from a plasma target containing

high-frequency harmonics can be focused not only using a

pre-formed concave surface, but also due to self-consistency.

In the latter case, the deflection of the surface occurs due

to the laser radiation pressure, and the focusing parameters

of the resulting concave mirror depend on the scale of laser

plasma heterogeneity, the focus point of the incident pulse,

and the laser intensity. The scale of plasma heterogeneity

depends on the intensity and duration of the laser pre-

pulse, and by selecting these parameters, it is possible to

change the curvature of the reflecting surface, compensate

for the diffraction divergence (curvature of the front) of

the main pulse, and assign the reflected pulse focus to the

given distance. Instead of changing the heterogeneity scale

(changing the parameters of the pre-pulse), you can change

the position of the focus point of the incident beam relative

to the target surface (i.e., move the target) and also obtain

the given position of the focus point of the reflected beam.

By focusing, it is possible to obtain the intensity of the

high-frequency harmonics of the reflected pulse at the level

of the intensity of the incident laser pulse. High-frequency

harmonics are featuring lower diffraction divergence, and

angle selection is possible at large distances: separation of

the low-frequency and high-frequency parts of the reflected

pulse. The high-frequency harmonics are combined into

a sequence of short intense pulses (atto pulses), so it is

possible to separate the atto pulses for the purposes of X-ray

methods with high time resolution. The concave reflective

surface continues to form even after the first laser pulse

has been reflected. The quality of such a surface is better

than during the action of the pulse. The mirror formed

in this way has a ready-made dense thin electronic layer,

optimal for repeated generation of atto pulses. As a result,

the second pulse reflected from the target is characterized

by better focusing (higher amplitude and shorter duration

of the atto pulses).
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tersburg Polytechnic University was used for numerical

computations.

Appendix 1

An obliquely incident pulse (5) with a curved front

is focused by a non-ideal concave mirror with a blurred

focusing distance at δ f p, as shown in Fig. p1. Let’s

approximate the numerically modelled reflection surface in

Fig. 1, a with a triangular profile, as shown in Fig. p2, a, b.

The values of the angles in Fig. p2 are determined by

obvious formulas, in particular, the angles of inclination of

the surface

α1 ≈ tanα1 =
z T

wL
cos θ

+ y e
,

α2 ≈ tanα2 =
z T

wL
cos θ

− y e
. (A1)

Angle β of the laser beam divergence after the waist

β ≈
z ∗

z R cos θ
, (A2)

where z ∗ — the height of the laser beam focusing point

above the target surface. After reflection the AF and BF

rays are propagating at angles θA, B to the normal line as

defined from the formulae

θA = θ − β + 2α1,

θB = θ + β − 2α1. (A3)

Point F of AF and BF rays intersection has the coordinates

z F =
wL(cot θA tanα2 − cot θB tanα1)

cos θ(cot θA − cot θB)

+
yA cot θB(cot θA− tanα1) − yB cot θA(cot θB + tanα2)

cot θA − cot θB
,

yF =
wL(tanα2 − tanα1)

cos θ(cot θA − cot θB)

+
yA(cot θA − tanα1) − yB(cot θB + tanα2)

cot θA − cot θB
,

yA ∈

[

−
wL

cos θ
; y e

]

, yB ∈

[

y e ;
wL

cos θ

]

. (A4)

Here yA,B — coordinates of points A, B on the axis y .
When changing the position of points A and B on the

reflecting surface independently (i.e., if the coordinates yA,B

are independently changed in the specified range (A4)), the
point F will fill in the caustic region shown in Fig. p2, b in

purple color. The reflected beam has the smallest transverse

dimension at a point O with coordinates

zO =
wL

cos θ(tan θA − tan θB)
,

yO =
wL

2 cos θ
+

wL

cos θ
(

tan θA
tan θB

− 1
) . (A5)

Consequently, the focusing distance of a triangular profile

mirror will be

f pt =
√

z 2
O + y2

O =
wL

√

1 + (tan θA + tan θB)2/4

cos θ(tan θA − tan θB)
. (A6)

Given θ ≫ α1,2, β and α1,2 ≪ 1, β ≪ 1 the formula to

find the focusing distance is simplified and Taylor expansion

with respect to small α1,2 ≪ 1, β ≪ 1 is written as follows

f pt ≈
wL

2(α1 + α2 − β)
=

wL
2(z T /(wL/ cos θ+y e)+

z T /(wL/ cos θ−y e)−z∗/z R cos θ)

.

(A7)
For X-ray methods with attosecond time resolution, the

focusing distance f pt should be large and reach at least

hundreds of micrometers. In this case, formula (A7) allows

us to determine the range of focus points of the incident

beam z ∗, which ensures that the set focusing distance f pt

of the reflected beam exceeds the set value. In the interval

of the incident pulse focusing points

z ∗ ∈

[

2wLz T z R

w2
L/ cos

2 θ − y2
e

−
wLz R cos θ

2 f pt
;

2wLz T z R

w2
L/ cos

2 θ − y2
e

]

(A8)
the reflected laser pulse will be focused on distances higher

than f pt . The focus point is located on the axis of the

specularly reflected pulse at a distance determined by the

ratio (A7) from the target surface.
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Fig. it.3. Dimensionless intensity at the point of focus f pt

versus plasma heterogeneity scale for the intensity of laser

pulse 1018 W/cm2 (a0 = 0.7) — blue curve and 1019 W/cm2

(a0 = 2.2) — orange curve. Circles and squares — data of PIC-

computation [7]. The solid curve corresponds to the triangular

density profile in model (9), (10), dashed curve —corresponds

to the trapezoidal profile with the same length of links. Other

parameters of the target and laser pulse are shown in Fig. 2.

At y e = 0 and laser pulse focusing on the surface of

target (z ∗ = 0) formula (A7) leads to f pt ≈ w2
L/4z T cos θ,

which corresponds to the estimates made in this paper

and estimates from [1]. To estimate the intensity of

the reflected focused beam let’s find the size |CD| in

Fig. p2, b. The coordinates of points C,D in Fig. p2, b

are defined by the system (A4), where the coordinates pf

point F will coincide with the coordinates of point D, if

yA = −wL/ cos θ, yB = y e . Accordingly, for the point C

yA = y e , yB = wL/ cos θ. The transverse size |CD| of the
focused laser beam will be

|CD| = 2wrn =
√

(zD − zC)2 + (yD − yC)2

≈ wL

(

1 +
tan(α1+α2−β

2
)

cot(θ + α1 + α2 − β) cos θ

)

. (A9)

Appendix 2

The solid and dashed lines in Fig. p3 show the results of

the model (9), (10) respectively, for the triangular profile of

the reflecting surface (solid lines) and for the trapezoidal

profile with the same length of all links (dashed lines).

Comparison of (10) with a numerical computation [7]
(circles and squares in Fig. p3) shows that for a0 > 1,

the triangular density profile has a better matching with

the numerical computation, and for a0 = 0.7, the trapezoid

profile (dashed lines) gives the best consistency. Thus,

the numerical modelling data shows that the shape of

the surface profile depends on parameters of the problem

(I0, L). The intensity of harmonics (10) of the focused

reflected pulse, in its turn, depends on the type of the

surface profile.
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