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1. Introduction

Obtaining ultrashort electromagnetic pulses of up to

an attosecond duration in recent decades has become an

essential topic of modern optics [1–5]. Attosecond pulses

are widely used for the study and control of the electrons

dynamics in a matter [6–9]. The relevancy of the studies

in this area was proved by a awarding the Nobel prize in

physics [10]. Traditional pulse duration reduction methods

used in lasers with passive mode-locking and high-order

harmonic generation systems make it possible to obtain

bipolar pulses [1–9]. They contain several field half-waves

of the opposite polarity. Extremely short pulses in a given

spectral range are obtained if all half-waves are removed

from a multi-cycle pulse, except one. Such pulses are

called unipolar or half-cycle, see [11–19], papers [20-27]
and chapter in the multi-author monograph [28].

For the unipolar pulses critical physical value is their

electric area SE , defined as an integral of electric field

strength over time E(r, t) at a given point in space [29–31],

SE =

∫

E(r, t)dt. (1)

For conventional multicycle pulses, the electric area is

always close to zero, and, hence, may be ignored. To

date, the issue of existence, acceptance and effect of

unipolar pulses on microobjects has been well studied,

these issues are outlined in papers [20–27] and in the

monograph [28]. Half-cycle pulses are capable of rapid and

unidirectional excitation of electrons in atoms, molecules,

and nanoscale structures, which makes them promising

for ultrafast control of the quantum systems behavior [32–
39], ultra-high time resolution holography [40], and other

interesting applications [22–28,41].
In parallel with the interest in unipolar pulses in recent

decades, the so-called non-steady media with optical char-

acteristics (for example, dielectric constant) varying over

time, have attracted much interest in optics [42–45]. The

use of half-cycle pulses to control the properties of such

media, as outlined below, has only recently been discussed.

If changes in the optical properties of a medium occur

rapidly and periodically over time, then such media are

called temporary photonic crystals (TPC) [46]. If changes

in the optical parameters of a medium occur in space and

with time, these media are called spatiotemporal photonic

crystals (STPC) [47]. One the one hand, the interest to

such media is basically of academic nature. Thus, a rapid

change in the optical properties of the medium can lead to a

change in the reflectance and refraction propagating in such

test radiation media [48–50]. On the other hand, such media

can have many applications, for example, intensification of

light [51], creating a threshold-free laser source [52] and etc.

The urgent issue is to find suitable media where such

rapid changes in the refractive index can be implemented.

Today, conducting zinc-tin oxides are used as such me-

dia [49,53–56]. Such media near the point with zero

permittivity are featuring high nonlinearity. However, they

require the use of complex manufacturing technologies, so

there is a continuous search for more accessible media for

the implementation of TPC and STPC.

For various tasks of ultrafast optics, it is pivotal to

find faster ways to change the properties of the medium.

In recent years, ultrashort laser pulses (multi-cycle pulses
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with a duration of tens of femtoseconds) have been used

to rapidly modulate the parameters of such non-steady

media [49,54,55]. In this case, the switching of the medium

properties occurs at a time of several femtoseconds. For

a faster switching of the media properties the attosecond

pulses may be used [57]. To implement ultrafast attosecond

switching (
”
attosecond optical switching“), as shown below,

the half-cycle unipolar pulses can be used, since they

have the shortest duration in a given spectral range. For

example, when passing through a medium, a sequence of

long multi-cycle [58–61] and extremely short pulses [62–74]
can provide a distribution of quantum level populations of

a medium in space according to a harmonic or other law

(in this case, we usually talk about formation of a grating

of atomic populations in the medium); this distribution can

change with the passage of each subsequent pulse [63–65].
In the earlier studies [58-61] and cited literature the

gratings were described as created by long multicycle

resonance pulses that were not overlapped in the medium

instantaneously. The gratings created this way were

further applied in echo-holography [60,61]. Obviously, this

approach has no prospects in ultrafast optics, since it does

not allow fast changes in the state of the medium due to

the long pulse duration and is not considered below. The

gratings created in this case always have a harmonic shape

and actually appeared at a given resonance transition of

the medium, since the central frequency of the multi-cycle

pulse coincided with the frequency of the given resonance

transition.

Below, the new type of inharmonious shaped struc-

tures — dynamic microcavities (DM), which occur when

half-cycle pulses overlap in the medium, will be discussed;

this significantly distinguishes the tasks discussed below

from those previously discussed in [58–61]. It is the

extremely short single-cycle and subcycle pulses rather than

long multi-cycle pulses that contribute to the emergence

of such structures. Moreover, in our case, when unipolar

pulses without a carrier frequency are used, the interaction

with the medium is non-resonant, and the DM, as will be

seen below, emerges at each resonance transition of the

multilevel medium. Therefore, the case of multi-cycle pulses

is not of interest to us and is not considered below.

The problems of obtaining half-cycle pulses have also

led to the problem of controlling their temporal shape.

The possibility of obtaining unipolar pulses of unusual

shapes, such as square and triangular shape, was demon-

strated [16,17,75–78]. The pulses of unusual shape

may be used for the frequency-selective spectroscopy of

quantum systems [74] and superfast control of quan-

tum qubits [79,80]. Meanwhile, the issue of using

such pulses for superfast control of the medium prop-

erties in space and time, according to our data, has

not been raised or studied before. These issues have

been investigated and reviewed in papers published in

recent years. The results of recent articles that ad-

dress these issues will be discussed later in this re-

view.

Previously, the possibility of creating population differ-

ence gratings under the action of extremely short pulses

in the medium was studied [62–68]. The results of these

studies are summarized in the mini-review [73]. The

induced gratings were, primarily, of a harmonic shape. To

our knowledge, the possibility of obtaining other types

of structures, including non-harmonic shaped unipolar

pulses, has not been discussed or studied. And in the

performed studies the medium was simulated in a two-level

approximation. Other levels were taken into account for

the case of non-overlapping pulses, in the approximation

of low excitation, etc. [63–65]. A detailed study of the

dynamics of such structures under strong excitation and

taking into account the ionization of a multilevel medium

was not considered.

When further studying the interaction of half-cycle pulses

with a matter, a new phenomenon (that cannot be provided

using conventional multi-cycle pulses) was predicted and

studied — creation and control of dynamic microcavities

(DM) [81–91], which occur when a pair of the half-

cycle pulses simultaneously overlaps (
”
collides“) at some

point inside the environment. In this case, the population

difference at any resonance transition of the medium has

an almost constant value within the pulse overlap region

(with a size practically equivalent to the spatial size of the

pulse). Outside of the overlap region, it has a different

meaning or changes in space according to some law (a
population grating appears). The populations difference

between the media in the pulse overlap region and outside

of it indicates the formation of a
”
microcavity“. Parameters

of this microcavity can be changed if the pulses re-enter the

medium and collide in it. In this context, below we’ll use

the term
”
dynamic microcavity“ (DM), taking into account

possible fast change of its parameters under the action of

half-cycle pulses.

DM occurs when a sequence of half-cycle pulses coher-

ently interacts with the medium, i.e. the pulse duration

and delays between them are shorter than the relaxation

time of the polarization of the medium. T2 [92-98]. An

important issue is the applicability of the conventional

two-level approximation of the medium and consideration

of ionization in creating and controlling DM in coherent

interaction of the half-cycle pulses with the medium dis-

cussed below. These issues have been studied recently in

papers [86,89,95–97] and etc. in the studies described in

details below.

This paper summarizes the latest results of the studies

by authors [81–91], obtained by theoretical analysis and

numerical modeling, where for the first time a new phe-

nomenon was predicted and studied in detail - the possibility

of creating and superfast control of dynamic microcavities.

They emerge when the sequence of half-cycle attosecond

pulses is instantaneously overlapped (
”
collides“) at some

point of the resonance medium. The paper outlines the

theory of formation of such microcavities and the recently

proposed analytical approach jcite87,88,90, which predicts

the possibility of their creation and superfast control of
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their properties with an increase in the number of collisions

between pulses.

The results of numerical computations of DM for a three-

level medium, the parameters of which have values similar

to those for a hydrogen atom, are presented. Cases of strong

and weak excitations are considered. A criterion has been

established showing at which parameters of the excitation

pulses the shapes of the observed structures will be distinct.

Parameters of such microcavities are evaluated — Q factors

and reflectivity of mirrors.

The considered phenomena of DM creation demonstrate

one of the possibilities of the attosecond switching of

medium properties using half-cycle pulses and unipolar

pulses of unconventional shape (square and triangular),
which has not been discussed in the literature so far. Also,

when creating and controlling microcavities, there is a rapid

change in the optical properties of the medium both, in

space and with time. That is, such medium is a new type of

the spatiotemporal photon crystal (STPC). Finding the right

materials to create such media, as noted above, is an urgent

problem. A pivotal issue of the applicability of a two-level

approximation and the possibility of forming such structures

when taking into account the ionization of the medium in

such problems is discussed.

2. Formation of optical microcavities
in the resonance medium under the
action of half-cycle pulses

Let’s consider the physical principle of DM formation

influenced by the extremely short pulses that are instan-

taneously overlapped (
”
collided“) in the medium [82–92].

Passing through the resonant medium, the pulses leave

behind polarization oscillations at a resonance transition

frequency at each point of the medium’s thin layer. These

polarization oscillations propagate following the pulses. The

polarization waves are emerged [61–63], running towards

each other following the incident pulses. Thus, the pulses,

propagating towards each other, collide in the overlap region

and, passing on, interact with a polarization wave induced

by another pulse. At the same time, in some areas of the

medium, these polarization oscillations will be dampened by

the incident pulse, while in others, on the contrary, they will

be enhanced. When such a passing pulse interacts with the

polarization wave already existing in the medium outside

the pulse overlap region, this results in formation of
”
Bragg“

population difference gratings. Schematic representation of

this process is given in Fig. 1.

At the same time, in collision area of the medium, the

population difference has almost constant value; thus, we

may say that a microcavity arises in the medium, the

parameters of which can change with the passage of each

subsequent pulse. In this context, as mentioned earlier, it

can be said that there exists a DM induced and controlled

by a sequence of the half-cycle pulses. The studies in this

area begin with paper [81]. It illustrates unusual behavior

Pulse 1

Pulse 2

Pulse overlap
region

Polarization
wave

z

t

Figure 1. Interaction of the extended media with a pair of

extremely short pulses propagating towards each other.

of polarization of a two-level medium during passage of

a sequence of extremely short pulses overlapped in the

medium.

In the present study, it is shown that narrow, consecutive

sections with a size of less than the transition wavelength

may occur in the medium, with harmonic polarization

waves formed in these sections. These waves can run

in opposite directions in different parts of the medium

and are localized within these areas. At that, local

”
quasi-resonators“ with a size of less than the medium

transition wavelength for the polarization waves emerge in

the medium. These results are of interest, not only because

of the unconventional nature of the phenomenon itself, they

also clearly illustrate the possibility of both, switching the

properties of the medium and controlling its radiation, which

can be achieved by changing the direction of movement of

the polarization wave. [81].
However, in our opinion, DM based on changes in

the atomic populations of the medium in space are of

greater practical interest. In this case, this change may

have an non-harmonic shape if the incident unipolar pulses

have an unconventional shape, e.g., square shape. As

to out knowledge, the possibility of creating microcavities

during collision of unipolar pulses in a medium was first

theoretically shown in paper [82]. In this study, the

dynamics of polarization and population differences in the

collision of unipolar pulses were studied.

The pulses had a non-harmonic temporal shape (square)
and overlapped in a two-level medium. The first pulse acted

as a π/2 pulse, i.e. it transferred the medium to a state

with zero population difference. Computation demonstrated

unconventional dynamics of the system: in the pulse overlap

region, the population difference was almost constant, and

on the edges it either changed periodically in space (in this

case, a periodic grating of population differences emerged),
or had a value different from its value in the pulse overlap

region. In the first case, the dynamic microcavity with

Bragg-like mirrors emerged. In the second case, a quasi-

resonator of a different type also appeared due to an abrupt

change of refractive index between the pulse overlap region

and the regions of the medium located outside this region.

Optics and Spectroscopy, 2024, Vol. 132, No. 9



Optical microcavities created by unipolar light pulses in a medium (review) 875

In further study [83] the dynamics of DM during

collision of square pulses acting like 2π-pulses of self-

induced transparency (SIT) [98] in a two-level medium

was investigated. At that, during the pulse action, its first

half transfers the medium from the ground state to the

excited one, and the second half returns the medium to

the ground state. Numerical computations demonstrated

that population difference has an almost constant value in

the pulse overlap region (less than the wavelength of the

medium transition) and changes abruptly at the boundary of

the overlap region. Obviously, the formation of a DM also

occurs here. At that, the DM parameters can be controlled

by increasing the number of collisions between the pulses —
it can be activated and deactivated, its spatial characteristics

may be changed. The estimates have shown that Q-factor of

such microcavities can reach about 1000 in a dense medium.

An analytical approach allowing to calculate the dynamics

of such a microcavity in a two-level medium under the

action of square pulses was proposed in the study jcite84.

This approach is considered somewhat less trustworthy be-

cause it is impossible to predict the behavior of polarization

and population differences on the pulse edges based on

the pulses duration and steepness. Numerical computations

were carried out to study the role of the pulse edges in the

study.

In the first mentioned studies [82–84] the microcavities’

dynamics was investigated using square pulses and the

medium was simulated in a two-level approximation. The

dynamics of microcavities in the collision of half-cycle weak

Gaussian pulses in a two-level medium was studied in more

detail in paper [85]. The possibility of forming microcavities

with Bragg-like mirrors in the form of population difference

gratings has been shown. This study also demonstrates that

microcavities may be formed and controlled during collision

of Gaussian SIT pulses in a three-level medium.

The possibility of inducing of dynamic resonators in the

collision of single-cycle SIT pulses in a two-level medium

was theoretically studied in paper [86]. In this study,

in contrast to those mentioned above, microcavity and

”
mirrors“ appeared only in the pulse overlap region — the

population difference in this region had a constant value, and

at the edges the population difference grating contained a

small number of periods, much shorter than the wavelength

of the medium transition. With the growing number of

collisions between the pulses the amount of periods of this

structure increased.

The study [87] described the dynamics of DM in collision

of pulses that have a non-conventional shape — square and

triangular — by analysis for a multi-level medium and based

on numerical computations for a three-level medium. As the

number of collisions between pulses increased, the shape of

these microcavities was greatly distorted. The formation of

microcavities in the collision of Gaussian pulses in a three-

level medium was studied in article [89]. Whereas no SIT

pulses were used in the numerical computations. In this

study, it is shown that the investigated three-level medium

can be a STPC, since when pulses collide, the parameters

of the medium change rapidly both, in space and in time.

Thus, the results of numerical computations performed

for the two-level and three-level media clearly demonstrated

that its is possible to create DMs, the parameters of

which can be controlled with an increase in the number of

collisions between pulses. These studies have set the task of

an analytical description of such structures. This approach

was offered for the first time in [87,88] and discussed in

detail in [91]. The fundamentals of this approach and

conclusions made are discussed in the next section.

3. Analytical theory of microcavities
formation

Let’s briefly discuss the analytical approach suggested

earlier [87,88,91]. Considering the medium to be sparse,

which makes it possible to neglect the change in pulses

shape during propagation, to calculate the population of

bound states, a well-known expression for an approximate

solution of Schrodinger equation in the first order of

perturbation theory may be used [99]:

w1k =
d2
1k

~2

∣

∣

∣

∣

∫

E(t)eiω1k tdt

∣

∣

∣

∣

2

. (2)

Here ω1k — frequency of the medium transition from its

ground state to level k , d1k — dipole moment of this

transition. It should be emphasized that w1k means the

k- level of population when only the ground state is initially

populated.

Then, the effect of a sequence of pulses on an extended

medium is reduced to the effect of a pair of pulses with a

variable delay 1 per single atom [62–65,73]. In case of an

extended medium the delay 1 ∼ 2z/c (for a pair of pulses

running towards each other) defines the difference between

the moments when pulses come into a given point of the

medium with a coordinate z . Consequently, the expressions

obtained describe the distribution of populations at each

point in the medium.

Let the system be effected by a pair of half-cycle pulses

having a Gaussian shape, the expressions for which are

written as

E(t) = E1 exp⌊−t2/τ 2
1 ⌋ + E2 exp⌊−(t − 1)2/τ 2

2 ⌋

and electric areas of which are given as SE,1,2 = E1,2τ1,2
√
π

(from this point onward τi — duration of each pulse, and

Ei — amplitude, i = 1, 2). The delay between pulses is

denoted as 1. Then, using (2) we may obtain an expression

for the states population [73,74,78]:

w1k =
d2
1k

~2
S2

E1 exp

[

−ω2
1kτ

2
1

2

]

+
d2
1k

~2
S2

E2 exp

[

−ω2
1kτ

2
2

2

]

+ 2
d2
1k

~2
SE1SE2 exp[−ω2

1k(τ
2
1 + τ 2

2 )/4] cos(ω1k1).

(3)
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This expression is similar to the corresponding formula

for the total emission intensity during the interference of

two monochromatic light waves [100]. In this context,

with low fields, we can say that the effect of half-cycle

pulses on a quantum system occurs due to interference of

pulses’ electric areas or interference of amplitudes of bound

states [74,101,102] (the concept of area interference was

first introduced in these studies).
To calculate the media bound states populations in the

pulse overlap region we need to put a delay 1 = 0 into

expression (3) which results in the next simple expression

for a population:

w1k =
d2
1k

~2

(

SE1 exp

[

−ω2
1kτ

2
1

4

]

+ SE2 exp

[

−ω2
1kτ

2
2

4

])2

.

(4)
Outside the pulse overlap region, the population is

calculated using the expression (3). It shows formation of a

harmonic grating of population differences on both sides of

the pulse overlap region. Thus, a Bragg-mirror microcavity

appears in the medium in the form of atomic populations

gratings with every resonance transition of the multilevel

medium.

An expression similar to (3) and (4) can also be obtained

when a pair of unipolar pulses of non-conventional shape,

e.g., square shape, impacts the multilevel medium. The

expression for the field strength of pulses can be written as

E1(t) =

{

E01, 0 < t < τ1,

0, else,
(5)

E2(t) =

{

E02, τ1 + 1 < t < 1 + τ1 + τ2,

0, else.
(6)

By introducing an electric area of pulses Si = E0iτi and

taking the case of identical duration pulses for convenience,

τ1 = τ2 = τ , we’ll obtain the following expression for the

states population [65,87]:

w ik = 2
d2

ik

τ 2ω2
ik~

2
(1− cosωikτ )

×
(

S2
1 + S2

2 + 2S1S2 cosωik(τ + 1)
)

. (7)

In this expression, the population of states is also deter-

mined by the sum of the squares of the electric areas and

periodically depends on the delay between them, which is

completely identical to the expression for the total intensity

at the interference of two monochromatic light waves.

An analytical theory of microcavities formation, showing

the possibility of their creation and ultrafast control when

impacted by half-cycle pulses of Gaussian shape, was

considered in details in the article [91]. The results of

analysis of the quantum level populations performed in the

low-field approximation in the first order of perturbation

theory are in good consistence with numerical solution of

the system of equations for the density array. In high fields,

when the perturbation theory is not applicable, numerical

computations of microcavities dynamics during collision of

Gaussian SIT pulses in a two-level medium were carried out.

The result significantly depends on the polarity of pulses:

when the pulses of the same polarity collide, the medium is

practically not excited and the gratings are not formed.

The situation changes dramatically when pulses of oppo-

site polarity collide — a microcavity with Bragg-like mirrors

appears in the medium only in the pulse overlap region.

In the rest of the region, the medium remains unexcited, as

it should be after the passage of the SIT pulses. With growth

of collisions between the pulses the spatial frequency of

these gratings increased.

Thus, the proposed analytical approach predicts an

important result — formation of an optical microcavity

with Bragg-like mirrors in the form of harmonic population

gratings with every resonance transition of a multilevel

medium. At that, the physical mechanism of DM formation

in a low-field is based on the interference of electric areas

of pulses. This result is universal, since no specific type

of medium was described in this approach. It has a

heuristic value. The results of numerical computations for

a three-level medium, the parameters of which have values

similar to those for a hydrogen atom, are presented below.

However, the analytical approach is valid in low fields, and

it neglects the polarization dynamics of the medium and

ionization of the system. A more thorough investigation

of DM requires numerical computations. This also raises

the issue of validity of a two-level approximation in such

problems, which is discussed below.

4. Validity of using the two-level
approximation and allowing for
ionization of the medium

It is worth noting that all of the above-mentioned

concerning the possibility of forming a DM in a two-

level medium is also true for the multi-level media. Let’s

discuss in detail the results of the latest research in this

area. The study [95] was focused on dynamics of coherence

(polarization) of the five-level resonance media under the

action of a pair of half-cycle pulses with a delay between

them. Additionally, we found that the response of the

multilevel medium has good quantitative matching with the

results for a two-level model when the amplitude of the

exciting pulses is below a certain threshold.

A more precise quantitative criterion is that the electric

area of the pulse should be less than the atomic measure

of the system introduced in [36,37]. It is valid when

the duration of the excitation pulses is shorter than the

inverse frequencies of atomic transitions, which is true

for the parameters used in numerical computations with

results discussed below. This criterion is discussed in details

below. This conclusion is proved by numerical solution

of Schrödinger equation obtained allowing for the quantum

well [103].

Optics and Spectroscopy, 2024, Vol. 132, No. 9
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In particular, creation of atomic populations gratings

in a three-level media by the non-overlapped pulses was

described in papers [90,93,96]. The conclusion from the

study jcite90 turned out to be interesting: it studied

numerically the dynamics of population gratings under the

action of half-cycle pulses that do not overlap simultaneously

in a three-level medium. The parameters of the medium

(transition frequencies, dipole moments) were the same as

for a hydrogen atom. The system dynamics was demon-

strated to be different at various transitions of the three-level

media. The formation of quasi-harmonic population gratings

was observed at one transition, and the formation of a DM

similar to that described above was observed during other

transition. Thus, DMs may emerge also in the multi-level

media.

The effect of ionization was taken into account based

on the numerical solution of temporal Schrödinger equation

for a rectangular quantum well [97]. In this study

the peculiarities of the non-linear interference of pulses’

electric areas were examined. Numerical computations

have demonstrated that the curve of the particle’s bound

state population in a quantum well versus change in the

pulses delay has a characteristic form of
”
beatings“ in case

when the electric area of the pulse is comparable and larger

than the atomic measure of the system. This result differs

from simple harmonic dependence of populations on delay,

see (3) and (7), as predicted by perturbation theory for

a small field amplitude of exciting pulses. These results

show the possibility of controlling the probability of particle

ionization in a quantum well until its complete suppression

at a certain delay between pulses. It is shown that DM

and gratings of populations difference may also occur in a

multi-level media, even taking into account ionization. [97].

Gratings are saved in a multilevel medium due to the

fact that a short pulse passing through the medium always

leaves behind the coherence oscillations of the medium

with each resonance transition [61,90,91,93,96]. These

oscillations exist for a period when the medium polarization

is relaxed T2. Each subsequent pulse coherently interacts

with polarization oscillations, which leads to emergence of

a microcavity populations grating at each medium transition.

Thus, the use of a two-level model seems justified here.

It is also interesting to note the results of other recent

studies confirming the presence of a number of coherent

effects, such as Rabi oscillations (predicted earlier in two-

level media) under the influence of attosecond pulses in

multilevel media. Papers [104,105] outline the spectrum

of high-order harmonics of helium atom excited by XUV-

attosecond pulses. In this case the changes in the atomic

populations of Rabi frequency were observed on of the

resonance transitions. Experimentally, Rabi oscillations have

been observed in semiconductors [106] and in a helium

atom excited by femtosecond pulses generated by free

electron lasers [107].

5. Numerical simulation results

In this section, we will briefly discuss the issue of

formation and control of optical microcavities and
”
Bragg“

population difference gratings. Let’s consider two cases

when the pulses may be considered
”
weak“ and

”
strong“

in relation to their effect on the studied three-level medium.

To demonstrate the dynamics of the population difference

gratings and DMs emerging during collision of a sequence

of pulses, the Maxwell-Bloch system of equations was

numerically solved for the density matrix of a three-level

medium, its polarization P, as well as the wave equation for

the electric field E [108]:

∂

∂t
ρ21 = − ρ21/T21 − iω12ρ21 − i

d12

~
E(ρ22 − ρ11)

− i
d13

~
Eρ23 + i

d23

~
Eρ31, (8)

∂

∂t
ρ32 = − ρ32/T32 − iω23ρ32 − i

d23

~
E(ρ33 − ρ22)

− i
d12

~
Eρ31 + i

d13

~
Eρ21, (9)

∂

∂t
ρ31 = − ρ31/T31 − iω13ρ31 − i

d13

~
E(ρ33 − ρ11)

− i
d12

~
Eρ32 + i

d23

~
Eρ21, (10)

∂

∂t
ρ11 =

ρ22

T22

+
ρ33

T33

+ i
d12

~
E(ρ21 − ρ∗

21)

− i
d13

~
E(ρ13 − ρ∗

13), (11)

∂

∂t
ρ22 = − ρ22/T22 − i

d12

~
E(ρ21 − ρ∗

21)

− i
d23

~
E(ρ23 − ρ∗

23), (12)

∂

∂t
ρ33 = −ρ33

T33

+ i
d13

~
E(ρ13 − ρ∗

13) + i
d23

~
E(ρ23 − ρ∗

23),

(13)
P(z , t) = 2N0d12Reρ12(z , t) + 2N0d13Reρ13(z , t)

+ 2N0d23Reρ32(z , t), (14)

∂2E(z , t)
∂z 2

− 1

c2

∂2E(z , t)
∂t2

=
4π

c2

∂2P(z , t)
∂t2

. (15)

In this system of equations, the parameter values have the

following meaning: ρ21, ρ32, ρ31 — off-diagonal elements of

the density matrix associated with the polarization of the

medium; ρ11, ρ22, ρ33 — populations of the 1-st, 2-d and

3-d states of the medium, respectively, ω12, ω32, ω31 — fre-

quencies of resonance transitions of the three-level medium,

d12, d13, d23 — dipole moments. Equations (8)−(15)
also contain relaxation members Tik . System of equa-

tions (8)−(15) was solved numerically; equations of density

matrix (8)−(13) were solved by the 4th order Runge-Kutta
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method, the wave equation (15) was solved by method of

finite differences.

At the initial moment, a pair of unipolar pulses with a

Gaussian shape were sent from the edges of the integration

region into the medium:

E(z = 0, t) = E01e
−t2/τ 2

, (16)

E(z = L, t) = E02e
−t2/τ 2

. (17)

Total length of the calculated region was L = 12λ0.

The medium was located between the pointsz 1 = 2λ0 and

−z 2 = 10λ0. The pulses reached the boundary of the

integration region, reflected from it, and returned to the

medium, each time overlapping in the center at point

z c = 6λ0. A three-level medium modeled similar to the first

three levels of hydrogen atom was considered. Parameters

used in the numerical computation are given in the table.

The model parameters were taken from [109].
In computations the unipolar pulses are considered which

have only one half-wave of the field strength. The effect

of the trailing edge of opposite polarity on the system as

described in paper [78], in some cases may be neglected,

and this issue is not discussed further.

The degree of excitation of the system bound states,

depending on the parameters of the impacting pulses, can

be described by comparing the electric area of the pulse SE

with the characteristic atomic scale of the system Sa (atomic

measure of area) [36–39]. SE is a quantitative measure of the

incident pulse effect on the system; the values for the pulses

parameters given in the table are SE1 = 2.38 · 10−8 V·s/cm
and SE2 = 1.19 · 10−7 V·s/cm, respectively.

Let’s estimate for the examined system (hydrogen atom)
the characteristic sizes, having taken the radius of the

first Bohr orbit asaB = 0.053 nm. Using the atomic

measure for electric area determined in [36] we’ll obtain

Sa = 2~/eaB = 2.48 · 10−7 V·s/cm. Thus, for the selected

systems Sa relates to SE as Sa/SE1 ≈ 10 and Sa/SE2 ≈ 2.

Hence, the first case may be considered as
”
weak“,

and the second — as
”
strong“ effect of pulses on the

system.

The results of numerical modeling of system (8)−(15)
are shown in Fig. 2 and 3 for pulses with amplitudes E01

and E02 respectively; other parameters are given in the table.

As can be seen in Figs. 2 and 3, in both cases, after

the first pulse collision, the dependence of the populations

difference for all transitions takes the form of Bragg gratings

with a constant plateau in the overlap region (microcavity

localized in the region (5.7−6.3)λ0). Instantaneous values

of the populations difference distribution after the first

pulse collision (t = 6 fs) are shown in Fig. 4, a for the

”
weak“ excitation case; in Fig. 2 and in Fig. 5, b for the

”
intense“ excitation case (case in Fig. 3), respectively. As

expected, the modulation depth of the gratings is inversely

proportional to the ratio Sa/SE1 only with weak excitation.

It should be stressed, that only for
”
weak“ excitation in

Fig. 2 a distinct harmonic grating with a period of λ0/2

Parameters used in numerical computation

Frequency (wavelength λ0) ω12 = 1.55 · 1016 rad/s

transition 1 → 2 (λ12 = λ0 = 121.6 nm)

Dipole moment of transition 1 → 2 d12 = 3.27D

Frequency (wavelength) ω13 = 1.84 · 1016 rad/s

transition 1 → 3 (λ13 = 102.6 nm)

Dipole moment of transition 1 → 3 d13 = 1.31D

Frequency (wavelength) ω23 = 2.87 · 1015 rad/s

transition 2 → 3 (λ23 = 656.6 nm)

Dipole moment of transition 2 → 3 d23 = 12.6D

Concentration of atoms N0 = 1 · 1014 cm−3

Filed amplitude 1,2 E01 = 3.2 · 105 V/cm

E02 = 1.6 · 106 V/cm

Parameter τ τ = 140 as

may be observed (however, the beatings with a structure

peculiar to the multi-level systems are observed); for strong
excitation as seen from Fig. 4, b, the structures of the

populations difference have a more complicated nature: the

beatings are prevailing.

As seen in Fig. 2, a−c, with every following pulse the

shape of the grating is varied, yet, its base period remains

the same. In Fig. 5, a and b the instantaneous values

of the populations difference after the fourth collision of

pulses (t = 20.5 fs) are presented for
”
weak“ and

”
strong“

excitation, respectively. By comparing Fig. 4, a and 5, a, it is

clearly seen that the microcavity in the center is deepened,

and, simultaneously, the structure of the gratings on both of

its sides becomes more complicated: thus, on the sides in

the regions (3.4−4)λ0 and (8−8.6)λ0 the
”
channels“, occur

the depth of which is comparable with the depth of the

microcavity.

At the same time, as can be seen in Fig. 3, a−c, although

for the case of
”
strong“ pulses we may almost immediately

create the regions with an almost complete inversion of

populations with every transition of the medium, the shape

of the gratings on the sides degrade with the growing

number of injected pulses. So, after the fourth collision, as

can be seen in Fig. 5, b, we may talk neither about periodic

structure, nor about preservation of the microcavity shape.

Therefore, in this section we’ve briefly summarized the

two opposite scenarios of microcavities formation — with

involvement of
”
weak“ and

”
strong“ pulses for a three-

level medium with parameters similar to the hydrogen

atom [109]. As can be seen, although for strong pulses

(Fig. 3) we manage to create a microcavity and gratings

with significant population inversion after the first collision,

their structure and period are not preserved during further

pulses injecting. At the same time, in case of
”
weak“ pulses

(Fig. 2), the inversion for each of the system transitions

remains small even after repeated passage of pulses through
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The amplitude of pulses was E01 = 3.2 · 105 V/cm, ratio Sa/SE1 ≈ 10; other computation parameters are provided in the table.
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text. The amplitude of pulses was E02 = 1.6 · 106 V/cm, ratio Sa/SE2 ≈ 2; other computation parameters are provided in the table.

the medium, but the overall structure of the resonators and

gratings does not collapse. To monitor the high-quality

gratings and microcavities, it is necessary that the medium

is not strongly excited by incident half-cycle pulses, i.e.,

the electric area of the pulses should be less than its

atomic measure, SE ≪ Sa . Also, the results of numerical

modeling clearly show the possibility of switching the state

of the medium in attosecond time scale using the half-cycle

pulses [57].

It should be noted that this mechanism differs from

the traditional method of grating formation based on the

interference of monochromatic light beams overlapping in
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the medium [110]. In our case, the half-cycle pulses collide

in the medium and their direct interference, in the ordinary

sense, is impossible. Then creation of gratings, as shown

above, occurs due to interference of the electric areas of

pulses [74,101,102] (this is true in case of weak pulses).
In case of stronger fields, the creation of gratings occurs

due to the interference of polarization waves induced by

the transmitted pulse with the incident pulse [61–64,90,91].
Once again, we emphasize that creation of these struc-

tures in the form of DM is possible only with the help

of extremely short pulses that overlap in the medium, and

is not possible with the use of long multi-cycle pulses.

This distinguishes the problems considered here from the

previously considered cases of harmonic population grat-

ings, which were created using long quasi-monochromatic

multi-cycle pulses that do not overlap in the medium [58–
61], although physical mechanism of Bragg gratings arising

here is based on the coherent interaction of pulses with the

medium, similar to the case of long pulses.

It should also be noted, that the results of numerical

computations in [90] for a three-level medium based on

a hydrogen atom have shown that microcavities can be

induced only at one of the medium transitions when the

half-cycle pulses do not overlap in the medium.

6. Estimation of Bragg gratings
reflectivity

Such gratings of population difference and, consequently,

refractive index can serve as Bragg mirrors in optical

fibers [111,112], various sensors jcite113, etc. To estimate

the reflectivity of the grating, let’s assume that the grating

was created in a waveguide, i.e. there is a modulation of

the refractive index in the fiber (for simplicity, we assume a

harmonic dependence) according to the expression

n = n0 + 1n cos
2π

3
z ,

n0 — some average refractive index, 1n — modulation

amplitude, 3 — structure period. The reflectivity R of

grating can be found using expression [112]

R(L, λ) =
�2(sinh sL)2

1k2(sinh sL)2 + s2(cosh sL)2
,

where L — length of the structure, λ — wavelength of

test pulse, s =
√
�2 − 1k2, � ∼= π1n/λ, 1k = k − π/3 —

frequency tuning, k = 2πn0/λ — wavenumber.

Obviously, an increase in the depth of modulation, which

is varied using parameters of incident pulses, leads to an
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increase in reflectivity. Therefore, the induced gratings can

serve as Bragg mirrors with rapidly changing parameters

or may be used as highly reflective mirrors in dynamic

microcavities.

Let’s review the case of a primitive two-level resonance

medium as a more specific example. Then, frequency

dependence of the modulation of refractive index 1n can be

expressed through the medium parameters as follows [114]:

1n(ω) =
1

~

4πω0d2
12N0(ω

2
0 − ω2)

(ω2
0 − ω2)2 + 4ω2

T 2
2

1ρ,

where d12 — dipole moment of transition, N0 — concen-

tration of atoms of the medium, T2 — time of the medium

phase relaxation, ω0 — frequency of resonance transition,

1ρ — depth of modulation of the levels’ populations

difference.

Figure 6 shows an example of dependence of

reflectivityR(L, λ) for a periodic grating induced in a layer

of a two-level medium.

As can be seen in Fig. 6, the reflectivity of the Bragg

grating can reach quite high values even at relatively small

concentrations of atoms corresponding to gaseous media.

With this value, the Q factors of microcavities formed

by a pair of such Bragg mirrors for example in Fig. 6

may vary within ≈ 1−10. A further increase in the

reflectivity of Bragg mirrors and, consequently, the Q-

factor of microcavities is limited due to strong distortion

of exciting pulses in the medium with a higher density

of atoms. In this case, the resulting structures have a

more complex and non-periodic shape, which also results

in lower values of reflectance. Thus, in practice, it becomes

necessary to maintain a balance between a sufficiently large

amplitude of the refractive index modulation, on the one

hand, and the regularity and periodicity of the structure of

the gratings themselves, on the other hand. It should be

stressed again that the main advantage of such microcavities

is primarily their dynamic nature, i.e. the possibility of

superfast switching of their parameters at a times of units

of femtoseconds or even hundreds of attoseconds. Note

that the estimates made above are approximate, as they are

performed for stationary structures. In our case the induced

structures like resonators are dynamic, they exist for a

period of the medium’s phase memory timeT2. Therefore,

the obtained estimates of reflectivity and Q factor of DM are

true for the time shorter than T2 until the atomic coherence

is not destroyed.

7. Other methods of creation of gratings
and quasi-resonators and a
discussion of possible applications of
DM

It is also interesting to note the possibility of creating a

quasi-resonator when a single powerful single-cycle pulse is

propagating in a resonant medium [115]. In this case, the

nonlinear self-action of such a pulse in the medium leads

to its complete stop and emergence of a bound structure of

field and matter (oscillon).
Recently, the possibilities of inducing plasma periodic

structures using high-power focused femtosecond laser

pulses have been examined and possible mechanisms for

the occurrence of these structures have been discussed,

see [116–120] and literature below. Such structures made,

for instance, in a fused quartz are interesting in terms of

creation of optical memory [121].
Also the possibility of creation of atomic populations

(electromagnetically induced photonic lattice, EIPL) emerg-

ing due to electromagnetically induced transparency in

the alkali metal pairs and the properties of such atomic

populations are actively studied. But at the same time,

long multi-cycle powerful light beams with a spatially

periodic intensity profile are used to create the gratings,

see paper [122]. When creating such structures the atomic

coherence also plays an essential role. Such structures may

be of interest for topological photonics [123].
Atomic coherence is also important for creating quantum

optical memory on atomic assemblies, which has been

widely discussed recently [124–126]. The creation of such

a memory is possible based on the phenomenon of slow

light and photonic echo emerging due to effect of the long

multi-cycle light pulses.

Note that, in our opinion, the above-mentioned DMs

induced by half-cycle pulses can also be used to create

optical memory due to atomic coherence. The results of

numerical computations carried out in [115] have shown

the possibility of stopping and saving of light in such quasi-

resonators for a period of time about the time of the phase

memory of the medium T2.

The advantage of the DM discussed above is that such

structures can be induced at each resonance transition of
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the medium, in contrast to the resonant multi-cycle pulses.

Also, the use of half-cycle pulses makes it possible to control

these structures superfast at times of about half the field

period, which provides extensive capabilities for their use

to create optical memory, study the dynamics of ultrafast

processes in matter and other interesting applications.

8. Conclusion

Progress in reducing the electromagnetic pulses duration

has led to the task of obtaining pulses of maximum duration

in a given spectral range — unipolar half-cycle pulses

containing only one half-wave of the field. Thus, the new

effects in the interaction of such pulses with a matter could

be predicted and investigated. These phenomena occur at

time intervals of about half the oscillation period of the light

wave and are impossible in case of conventional multi-cycle

pulses. In the review we’ve summarized the results of recent

studies showing that DMs may be formed during collision

of the unipolar half-cycle attosecond pulses.

In the given analysis we’ve summarized the micro-

resonators inducing and controlling options with each

resonance transition for a multi-level media. Although

the dynamics of a system in a multi-level medium may

differ slightly from the dynamics of a two-level medium, the

studies conducted show the possibility of such structures

in a multi-level medium, which expands the applicability

of the results of early research obtained in a two-level ap-

proximation. Due to the universality of the results obtained

above, such structures seem to be real in any medium, the

relaxation times of populations T1 and polarization T2 of

which exceed the duration of subcycle attosecond pulses

and the delay between them. We may expect differences in

the shapes of these structures and their depth of modulation

in different media, depending on the parameters of a

particular media.

In case of low fields such structures emerge physically

due to the interference of electric areas of the incident

pulses. In case of high fields, the pulses induce polarization

waves in the medium, which interact with each subsequent

pulse resulting in appearance of Bragg-like gratings of

population differences on the edges from the pulse overlap

region. With the growing number of collisions it is

possible to control characteristics of such structures —
their activation, deactivation, variation in reflectivity, spatial

frequency of gratings for a time of about hundreds of

attoseconds. Q-factor of such microcavities can reach about

1000 in a dense medium [83,91].
During the passage of pulses, a rapid change in the

characteristics of the medium occurs both, in space and

in time due to the appearance of subwavelength gratings

of atomic populations. Therefore, such medium represents

itself a new type of spatiotemporal photon crystals [84,96]
being extensively studied today [47]. The conducted studies

show that parameters of a medium may be changed

superfast if subcycle pulses are used in addition to the

conventional methods of changing the refractive index

described in the literature [127]. They also show the

possibility of attosecond optical switching at subcycle time

scales [57]. The DMS discussed above may be of interest

for creating optical memory systems based on atomic

coherence, the parameters of which can be controlled in

an superfast manner by using half-cycle attosecond pulses.

The described phenomena open up new research directions

both, in the optics of unipolar pulses and in the optics of

unsteady media, physics of spatiotemporal photonic crystals

and attosecond physics. This review is an expanded version

of an early mini-review [128].
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