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We consider tip-enhanced Raman scattering (TERS) on phonons in two-dimensional materials such as graphene

or transition metal dichalcogenides. The main question addressed here is what information about phonons at non-

zero wave vectors can be extracted from the dependence of the Raman spectrum on the tip position with respect

to the sample. It is shown that for single-phonon non-resonant scattering the measurable quantity is the convolution

of the phonon spectral function with respect to wavevector with a certain integral kernel, which is determined by

the geometry and dielectric properties of the whole structure. The explicit form of this integral kernel is calculated

in the simplest model, where the tip is represented by a point polarizable dipole.
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Introduction

Theoretical study of the optical properties of low-

dimensional structures was started in the pioneering work

by V.M. Agranovich and O.A. Dubovsky [1]. Ahead of its

time by decades, this work received the deserved attention

closer to the end of the 20th century when advances in

nanotechnology made it possible to grow structures with

predefined properties [2,3]. In the 21st century, production

of two-dimensional monolayers of graphene [4] and of tran-

sition metal dichalcogenides [5,6] gave a powerful impetus

to development of optics of low-dimensional structures.

One of the important optical methods of investigating two-

dimensional materials is the Raman scattering spectroscopy,

primarily involving scattering on phonons [7].

For translationally invariant samples, momentum conser-

vation in the sample plane imposes a restriction on the

total momentum of excitations emitted or absorbed in the

material during Raman scattering in its standard version:

since the photon momentum is negligibly small compared

to any typical scales in a solid, the total momentum of the

excitations may be taken equal to zero. The situation may

change significantly when scattering occurs in the presence

of a sharp metallic tip that enhances the local field of the

photon. If the field varies spatially on near-atomic length

scales [8,9], then probing of excitations with substantially

non-zero momenta becomes possible, which is of particular

importance for scattering on a single optical phonon.

Another advantage of such tip-enhanced Raman scatter-

ing (TERS) is the possibility of changing the distance z T

between the tip and the sample within the same experiment,

while in the standard version of Raman scattering the only

control parameters are the frequencies and the polarizations

of the incident and the scattered photons. The measured

dependence of the spectrum on the distance z T [10]
obviously contains information about the phonons emitted

in the sample. Theoretical studies [11,12] investigated in

detail the dependence of TERS spectra on the geometry

of experiment (in particular, on the distance z T), but the

question of which phonon-related quantity determined the

TERS spectrum, and how to deduce that quantity using the

measured dependence of the spectrum on z T was not fully

clarified.

In the present work, an answer to this question is

formulated for the case of one-phonon non-resonant Raman

scattering. Formally, this answer is expressed by equa-

tions (3) and (4) below. The quantity in question turns

out to be the phonon spectral function which depends

on frequency ω and wave vector q, and includes both

dispersion and decay of the phonon. The TERS spectrum

is determined by the convolution of this spectral function

in q with a certain integral kernel derived from solution of

Maxwell’s equations for the specific geometry of experiment

and depending on the distance z T. Knowing the measured

spectrum as a function of frequency and distance z T and

assuming the isotropic dependence of the spectral function

on q, one may in principle reconstruct the spectral function

by deconvolution. The integral kernel is calculated here

explicitly for the simplest model geometry where the tip is

represented by a polarizable point dipole.

General relations for non-resonant
one-phonon scattering

Let us consider a two-dimensional crystal in the z = 0

plane. Optical phonons is such crystal may be described
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by the phononic displacement field operator consisting of

a single scalar component û(r‖) for the scalar A1g-phonon

or two components ûx(r‖), ûy(r‖) for the degenerate E2g-

phonons (for example, in graphene). Here, r‖ = (x , y)
denotes coordinates in the crystal plane. Three-dimensional

photons are described by the electric field operator Ê(r),
where r = (x , y, z ).
The main contribution to Raman scattering comes from a

process where electronic excitations serve as intermediate

states [13]. In the case of non-resonant one-phonon

scattering where energies of these intermediate states are

far from the incident and scattered photon energies, depen-

dence of the photon-photon-phonon vertex on momenta and

frequencies may be neglected, so one may work with the

effective Hamiltonian describing the local photon-photon-

phonon interaction in the long-wavelength approximation,

Ĥint =
4i jµ

2

∫

d2r‖Êi(r‖)Ê j(r‖, 0)ûµ(r‖), (1)

where i, j = x , y are the Cartesian indices in the plane, and

the index µ labels the phonon field components. The form

of the tensor 4i jµ = 4 jiµ is determined by the crystal ge-

ometry: 4i jµ = 4δi j for the scalar A1g-phonons (for which

the index µ is absent), or 4xxy = −4yyy = 4xyx = 4yxx = 4

for the E2g -phonons (see [14,15] for graphene; here, the

component ûx is taken with the opposite sign). The effective
dimensionless coupling constant 4 may have a smooth

dependence on the incident photon frequency and electronic

doping level. It can be related to an observable quantity —
free-space Raman scattering efficiency η, i.e. the absolute

probability, for normally incident photon with a given linear

polarization and frequency ωi = ck i, of being scattered into

the full solid angle 4π with any polarization. Specifically, the

Fermi golden rule in the lowest-order perturbation theory

with respect to Hamiltonian (1) for the scalar phonons Ag

gives

η =
4π42

3

~ω2
i (ωi − ωph)

2

ρ0ωphc4
, (2)

where ρ0 denotes the mass density of the crystal. For the

doubly degenerate E2g -phonons, the expression is the same,

but with an additional factor of 2.

We will assume that the crystal is excited by

a classical monochromatic external field with fre-

quency ωi > 0, which may be represented by a

shift of the electric field operator, Êi(r) → Ê j(r) +
+E j(r)e−iωit + E∗

j (r)e
iωit , in Hamiltonian (1). The spatial

profile of the excitation field E j(r) should be found from

the solution of Maxwell’s equations in the given geometry

and in the presence of the tip. Intensity of the scattered

signal at frequency ωs > 0 measured in an arbitrary point r0
is proportional to the electric field correlator [16],

S(r, ωs) = lim
T→∞

T
∫

−T

dt
2T

∞
∫

−∞

dτ eiωsτ 〈Ê(r, t)Ê(r, t + τ )〉,

(3)

where the field operators are taken in the Heisenberg rep-

resentation including the interaction with phonons and with

the external oscillating field (the latter formally necessitates

time averaging because the correlator may depend not only

on the time difference). If detection is performed upon

focusing by a lens, then instead of the field in a given point,

an integral over the corresponding solid angle should appear.

Expansion of the evolution operator in the interaction

representation up to the second order in the coupling

constant 4 and in the pumping field gives the following

expression for the electric field correlator entering the

expression for the detected signal [3] (taken in different

spatial points for greater generality):

lim
T→∞

T
∫

−T

dt
2T

∞
∫

−∞

dτ eiωsτ 〈Ê j1(r1, t)Ê j2(r2, t + τ )〉

= 4i jµ4i′ j′µ′

∫

d2r‖d2r′‖GR
j2 j(r2, r‖, ωs)Eir‖)

× i~D<
µµ′(r‖ − r′‖, ωs − ωi)E

∗
i′(r

′
‖)G

A
j′ j1(r

′
‖, r1, ωs), (4)

where convolution with respect to all repeated indices

is implied. The Green’s functions of photons (G) and

phonons (D) are defined below.

The retarded photonic Green’s function GR
i j(r, r

′, ω)
defines the electric field response to an external three-

dimensional polarization Pext(r′, t′) oscillating at fre-

quency ω without accounting for the interaction (1), but

accounting for the whole dielectric/metallic environment,

including the tip. Assuming that this environment is fully

defined by the local dielectric function ε(r, ω), the retarded

Green’s function can be found from Maxwell’s equations,
[

ε(r, ω)
ω2

c2
− ∇ × ∇×

]

E(r, ω) = −4π
ω2

c2
Pext(r, ω),

(5a)

Ei(r, ω) = −

∫

d3r′GR
i j(r, r

′, ω) Pext
j (r′, ω), (5b)

i.e. GR
i j(r, r

′, ω) (up to a factor) is an operator in-

verse to the differential operator on the left-hand side

of equation (5a) with boundary conditions correspond-

ing to outgoing waves. The advanced Green’s function

GA
i j(r, r

′, ω) = [GR
ji(r

′, r, ω)]∗ .
The phonon Green’s function D<

µµ′ (r‖, ω) (correlator
of the phonon displacements) entering expression (4), is

related to the phonon spectral function or the imaginary

part of the advanced Green’s function DA
µµ′ (q, ω) in the

momentum representation,

i~D<
µµ′(r‖, ω) =

∫

d2q

(2π)2
eiqr‖

2~ImDA
µµ′(q, ω)

e~ω/T − 1
, (6)

where T is the crystal temperature. For example, for the

scalar phonons with dispersion ωq and amplitude decay γ ,

the advanced Green’s function is given by

DA(q, ω) =
1/ρ0

ω2 − 2iωγ − ω2
q

. (7)
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For the degenerate E2g-phonons, longitudinal and transverse

modes have different dispersion and decay. The key

result contained in equation (4) is the following: all

information about phonons that can be deduced from

the non-resonant Raman scattering spectrum is contained

in the phonon spectral function ImDA
µµ′ (q, ω). The

Bose−Einstein distribution included in equation (6) implies

only that a non-zero phonon population is necessary for

the anti-Stokes scattering (ωs > ωi), while for the Stokes

scattering (ωs < ωi), D<(ω < 0) is non-zero even at zero

temperature, which corresponds to phonon emission into

the crystal.

Equations (3) and (4) are the main result of this work.

They admit a simple physical interpretation. The field at

the point r0, whose intensity is included in equation (3),
is induced by polarization in the sample. The photon

Green’s function GR (or GA) gives the contribution to

the field induced by polarization at the point r‖ (or
contribution to the complex-conjugate field induced by

polarization at the point r′‖). The polarization in the

sample induced by the excitation field E is proportional

to the phononic displacement. The correlator of these

displacements (the phonon Green’s function D<), thus,

defines the correlator of the induced polarization in different

points.

As far as the photonic part is concerned, equations (3)
and (4) are equivalent to equation (6) of Ref. [11] (up to the

factor 4πω2/c2 in the photon Green’s function definition,

arising from the right-hand side of equation (5a)). However,
equation (6) [11] contains a phenomenologically introduced

object (polarizability correlator) whose relation with the

phonon properties of the sample was not traced down.

Here, this object is explicitly identified with the phonon

Green’s function. It is also obvious that such identification

is essentially based on the assumption of locality of the

effective photon-phonon interaction (1). In case of resonant

scattering, propagation of virtual electron-hole pairs that

serve as intermediate states for the Raman scattering breaks

this locality [14,17] leading to a more complex relation

between the Raman spectrum and the sample properties.

Investigation of this more complex case in beyond the scope

of the present study.

Explicit calculation using the simplest
model of the tip

According to equation (4), the possibility of probing the

spectral function ImDA
µµ′ (q, ω) at finite wave vectors q

(which would allow measurement of phonon dispersion and

decay) is defined by the spatial dependence of the excitation

field and phonon Green’s functions in the presence of

the tip. Let us determine this dependence for an axially

symmetric experimental geometry, while modelling the

tip as a point dipole with a given polarizability, placed

at the point rT = (0, 0, z T) (the z axis coincides with

the symmetry axis, the sample is placed in the z = 0

Figure 1. A sketch of the two-dimensional sample, sharp tip,

focused excitation light beam (solid lines), induced dipole at the

end of the tip, and light incident from the tip to the sample (dashed
lines).

plane). The distance z T ∼ 1− 10 nm is assumed much

smaller than the wavelength of light λ. For the axially

symmetric tip, the polarizability tensor αi j(ω) has only two

independent components: αxx(ω) = αyy (ω) ≡ α‖(ω) and

αz z (ω).
For excitation by a radially polarized focused light beam

(as in experiments [10,18]), the component of the beam’s

electric field in the plane of the two-dimensional crystal

vanishes strictly on the axis and grows slowly (at distances
of about λ) away from the axis. Consequently, the main part

of polarization induced directly by the focused beam field

is far from the tip and the scattered signal generated by this

polarization is insensitive to the tip position. At the same

time, the perpendicular component Ez of the focused beam

field is not small near the axis; though this component does

not act on the sample (Hamiltonian (1) contains only the

in-plane field), it induces a dipole moment in the tip, and

this dipole induces a field in the sample plane (Figure 1).
This field induces polarization in the sample in the vicinity

of the tip. Thus, the field of the excitation beam itself (S-
and TS-contributions according to [11]) can be neglected,

and the excitation field E j(r‖) can be taken as the field

of a point dipole αz z (ωi)E0z oscillating with frequency ωi

perpendicularly to the crystal plane at distance z T above

the crystal:

E j(r‖) = −αz z (ωi)E0z
3z Tx‖ j

(r2‖ + z 2
T)

5/2
. (8)
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Figure 2. A sketch of the two-dimensional sample, sharp tip, light

propagating from the sample directly to the detector (solid lines)
and light going to the detector after scattering on the tip (dashed
lines).

To account for the tip in the photon Green’s function,

it should be noted that the far field is produced both

directly by the polarization in the sample (oscillating at

frequency ωs), as well as by the tip where charges are

induced by the near field from the polarization in the sample

(Figure 2). Since scattered light is detected at distances that

are at least of the order of the wavelength of light, i.e. much

longer than the typical size of the tip and of the sample

area affected by the tip, the far field is determined by the

total dipole moment of the sample and the tip. Thus, if

the photon Green’s function without the tip is denoted by

ḠR
i j(r, r

′, ω), then one can approximately write

GR
j2 j(r0, r‖, ωs) = ḠR

j2 j3(r0, 0, ωs)

×
[

δ j3 j − α j3 j4
(ωs)Ḡ

R
j4 j

(rT, r‖, ωs)
]

. (9)

If the scattered light is focused by a lens at some spatial

point r0 = (0, 0, z 0) where the detector is placed, then

the tensor structure of the first factor in this expression is

simplified due to the axial symmetry:

ḠR
xx(r0, 0, ωs) = ḠR

yy (r0, 0, ωs) ≡ g‖,

ḠR
z z (r0, 0, ωs) ≡ gz .

In this case, the whole detection scheme is characterized

by two constants g‖ and gz . In the second factor in

equation (9) in ḠR
j4 j

(rT, r‖, ωs) one may neglect retardation

(i.e. take it in the static dipole-dipole approximation).

Then, expression (9) takes the form (where x‖ j2
, x‖ j

are

components of r‖ in the crystal plane, while the z -
component is treated separately):

GR
j2 j(r0, r‖, ωs) = g‖δ j2 j

[

1−
α‖(ωs)

(r2‖ + z 2
T)

3/2

]

+ 3g‖

α‖(ωs)x‖ j2x‖ j

(r2‖ + z 2
T)

5/2
, j2, j = x , y (10a)

GR
z j(r0, r‖, ωs) = −3gz

αz z (ωs)z Tx‖ j

(r2‖ + z 2
T)

5/2
. (10b)

By substituting these expressions into general equations (3)

and (4), we obtain an explicit result for the scalar phonon

case:

S(r0, ωs) = |2παz z (ωi)E0z |
242

×

∫

d2q

(2π)2
i~D<(q, ωs − ωi)

×

[

|g‖|
2

∣

∣

∣

∣

qe−qz T +
3α‖(ωs)

z 3
T

2J3,1(qz T) − J1,1(qz T)

z T

∣

∣

∣

∣

2

+ |gz |
2

∣

∣

∣

∣

3αz z (ωs)

z 3
T

3J2,0(qz T)

z T

∣

∣

∣

∣

2]

(11)

Here, integrals of the Bessel functions Jn(z ) are intro-

duced:

Jl,n(qz T) ≡

∞
∫

0

ξ l+1dξ
(ξ2 + 1)5

Jn(qz Tξ), (12)

some of which may be expressed in terms

of the modified Bessel functions: Jn,n(qz T) =

= (qz T)
4K4−n(qz T)/384.

For the doubly degenerate E2g -phonons, the calculation

can be done in the isotropic approximation, valid for

sufficiently small wave vectors (when, in fact, the effective

Hamiltonian (1) is only applicable). Then the phonon

Green’s function has an explicit tensor structure expressed

in terms of the longitudinal (L) and transverse (T ) compo-

nents:

Dµµ′(q, ω) =
qµqµ′

q2
DL(q, ω)

+

(

δµµ′ −
qµqµ′

q2

)

DT (q, ω). (13)
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In this approximation, we obtain

S(r0, ωs) = |2παz z (ωi)E0z |
242

∫

d2q

(2π)2

× [i~D<
L (q, ωs − ωi) + i~D<

T (q, ωs − ωi)]

×

[

|g‖|
2

∣

∣

∣

∣

qe−qz T +
3α‖(ωs)

z 3
T

J3,1(qz T) − 2J1,1(qz T)

2z T

∣

∣

∣

∣

2

+ |g‖|
2

∣

∣

∣

∣

3α‖(ωs)

z 3
T

3J3,3(qz T)

2z T

∣

∣

∣

∣

2

+
|gz |

2

2

∣

∣

∣

∣

3αz z (ωs)

z 3
T

3J2,2(qz T)

z T

∣

∣

∣

∣

2]

.

(14)

Qualitative discussion

The point dipole approximation used for the tip is valid

only at distances z T that are much longer than the typical

tip size RT. Since for a metal tip without resonances

the polarizability αi j(ω) ∼ R3
T, the cumbersome terms

with integrals Jl,n(qz T) proportional to α/z 3
T are beyond

the scope of the approximation and may be discarded.

In this case, the integral kernel takes a very simple form

∝ q2e−2qz T . However, if the scattered photon frequency

falls near a plasmon resonance in the tip, then a situation

with α ≫ R3
T is possible; then all terms in expressions (11)

and (14) become important.

In typical experiments, z T can be generally made ap-

proximately equal to or even smaller than the typical tip

size RT, so to describe such situation realistically, it is

necessary to go beyond the dipole approximation for the

tip. However, two other approximations used above (axially
symmetric geometry of experiment and smallness of the

tip size compared to the wavelength of light) remain quite

realistic. In this case, to generalize the above calculation,

it is necessary to solve numerically the Poisson equation

in the specified dielectric structure (substrate, tip) at each

value of z T. As a result, three scalar functions of the

radial coordinate r‖ should be calculated. First, one should

find the radial electric field produced by charges which

are induced in the tip by a homogeneous external field

along the z axis, to use it instead of Eq. (8). Second, to

generalize Eqs. (10), one should find the radial and the axial

components of the tip’s dipole moment induced by the field

of a point charge placed at a point (r‖, 0, 0). As a result, the
integral kernel, to be convoluted with the phonon Green’s

function, will be determined by one-dimensional integrals

of these functions and their derivatives with respect to r‖
with Bessel functions. Such calculation would be justified

for modeling a particular experiment and, thus, goes beyond

the scope of the present study.

Nevertheless, the obtained results give an insight into

the qualitative picture. In the realistic case, the inte-

gral kernel should have a smooth wave-vector depen-

dence on the typical scale q ∼ min{1/z T, 1/RT}. Thus,

measuring the dependence of the signal on z T enables

one to probe the phonon spectral function on the scale

q . 1/RT . Note that, if the dependence of this spectral

function on q at this frequency has some fine struc-

ture on scales smaller than q itself (for example, has

a narrow peak at some finite value of q defined by

the phonon dispersion, with a width defined by weak

phonon decay), then it might be difficult to reconstruct

this fine structure from the dependence of the signal

on z T .

Conclusion

Dependence of the TERS spectrum on the tip position

is determined by two main factors: the photonic factor

depending on the electric field configuration in the whole

structure (incident field, sample, tip and detector) and the

factor describing excitations in the sample and interaction

between these excitations and field. The photonic factor

is determined from the solution of Maxwell’s equations

in the given structure and was studied in detail for two-

dimensional materials in [11,12]. As for the sample

whose excitations at final wave vectors become available

for probing due to the tip’s near field, the situation is

more complicated. The corresponding factor obviously

depends on the type of excitations, their dynamics, and their

interaction with light.

The present study investigated the one-phonon non-

resonant Raman scattering on long-wavelength phonons in

two-dimensional materials when the interaction between a

phonon and photon may be taken as local and instantaneous

(in other words, dependence of the corresponding vertex on

momenta and frequencies may be neglected). It is shown

that the sample factor defining the TERS signal at a given

frequency reduces to the spectral function of the emitted

phonon. Its convolution in momentum with the photonic

factor gives the TERS signal at each frequency. Thus,

when the photonic factor for each of the tip positions is

known, information about the phonon spectral function may

be in principle extracted by deconvolution. For resonant

scattering, the assumption about locality of the effective

interaction may be substantially violated, therefore this case

requires a separate study.

The corresponding factors were calculated explicitly for

the simplest model geometry where the whole structure is

axially symmetric and small compared with the wavelength

of light, and the tip is represented by a polarizable point

dipole. It is necessary to go beyond this latter approximation

in order to describe experiments realistically (because
the distance between the tip and sample may be quite

comparable with the typical tip size), and the Poisson

equation should be solved numerically in a dielectric

structure corresponding to each given experiment. It may

be also useful to address a more general geometry (various

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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detector positions relative to the tip, light polarization

measurements) to obtain additional information about the

sample (for example, about the tensor structure of the

photon-phonon interaction), but it would require more

cumbersome calculations.
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concelos, A. Jorio, L.G. Cançado. Phys. Rev. B 105, 235414

(2022). DOI: 10.1103/PhysRevB.105.235414
[13] Max Born and Kun Huang. Dynamical Theory of Crystal

Lattices (Oxford University Press, 1954).
[14] D.M. Basko. Phys. Rev. B, bf78, 125418 (2008). DOI:

10.1103/PhysRevB.78.125418

[15] D.M. Basko. Phys. Rev. B, 79, 129902(E) (2009). DOI:

10.1103/PhysRevB.79.129902

[16] R.J. Glauber. Phys. Rev., 130, 2529 (1963).
[17] D.M. Basko. Phys. Rev. B, 79, 205428 (2009). DOI:

10.1103/PhysRevB.79.205428

[18] H. Miranda, V. Monken, J.L.E. Campos, T.L. Vasconce-

los, C. Rabelo, B.S. Archanjo, C.M. Almeida, S. Grieger,

C. Backes, A. Jorio, L.G. Cançado. 2D Mater. 10, 015002
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