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The effect of the shape of short electromagnetic pulses
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Within the first order of perturbation theory without using the electric dipole approximation, the probability of

quantum transitions of micro-objects under the action of extremely short electromagnetic pulses is analyzed. The

selection rules are discussed and the dependence of the transition probability on the pulse parameters is determined.
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1. Introduction

The progress in getting increasingly shorter radiation

pulses up to the attosecond level has made it possible to

observe the signs of electron motion in atoms, molecules

and condensed media [1]. This also necessitates the solution

of new theoretical problems concerning such duration

of pulse impact on objects and corresponding relations

between the object size and radiation packet. Besides direct

numerical calculations, from which it is difficult to derive

common patterns, two approaches are used in the literature.

The first approach is based on the sudden perturbation

approximation [2–4]; general expressions for the probability

of transitions induced by extremely short pulses can be

successfully derived on this way [5]. A disadvantage of

this approach is in ignoring the signs of pulse edges for

which field strength is insufficiently high to make this

approach applicable. Second approach is the involvement

of perturbation theory with respect to the field, as a matter

of fact, first-order theory. The literature uses electric dipole

approximation that is valid when the object dimensions

are much smaller than the central radiation wavelength or

radiation packet dimensions. Electric dipole approximation

applicability conditions are violated for certain important

cases. Rydberg atoms and molecules [6,7] whose sizes may

achieve 1mm, and quantum dots [8] can be mentioned here.

In [9,10], it is noted that this approximation does not provide

correct expressions for cutoff frequency during generation of

higher harmonics of intense laser radiation when it travels

through dilute gases.

The purpose of this report is to analyze the probability of

quantum transitions of microobjects induced by extremely

short electromagnetic pulses without involvement of the

electric dipole approximation. The next section contains

the statement of the problem and general relations for the

probability of transitions. Given that short pulse duration

is defined as the smallness of field packet dimensions that

are longitudinal with respect to the radiation propagation

direction, the discussion is limited to the plane-wave

approximation for the field. This is justified if the lateral

dimensions of the packet are much larger than those of the

object. These relations are examined hereafter with the

main focus made on detecting the dependence of transition

probability on pulse characteristics.

2. Statement of the problem and general
relations

Non-stationary non-relativistic Schrödinger equation is

taken as the basis [11,12]

i~
∂9

∂t
= (Ĥ0 + V̂ )9. (1)

Here, ~ is the reduced Planck constant. The unperturbed

Hamiltonian Ĥ0 is stationary (independent of the time t).
Wave functions of stationary states with unperturbed system

(particle or quantum microobject) energy ~ωn are written

as 9
(0)
n (r, t) = ψn(r) exp(−iωnt). The perturbation V̂ de-

scribes interaction between a particle with the charge e and

mass m and an electromagnetic pulse when spin effects are

not available or neglected [12]

V̂ = − e
mc

Ap̂ +
e2

2mc2
A2. (2)

In (2), c is the speed of light in vacuum, p̂ = −i~∇ is

the particle pulse and A is the field vector potential during

calibration with the zero scalar potential.

Perturbation theory is used on the assumption that the

perturbation is small. The wave function is expanded in

the basis of the stationary states of the unperturbed system

9
(0)
n (r, t) in a standard way. The probability of transition

induced by the finite duration pulse from the unperturbed

796



The effect of the shape of short electromagnetic pulses on the probability of quantum transitions 797

system state i to the state f at first order in perturbation

theory is generally given by [11]

w f i =
1

~2ω2
f i

∣

∣

∣

∣

+∞
∫

−∞

∂V f i

∂t
exp(iω f it)dt

∣

∣

∣

∣

2

. (3)

Here, ω f i = ωg f − ωi and the perturbation operator matrix

elements

V f i =

∫

ψ∗

f V̂ψi dr.

In first-order perturbation theory, the term in (2) that is

quadratic in the vector potential may be neglected. The

probability of transition (3) is written as [12]

w f i =
e2

m2ω2
f i

∣

∣

∣

∣

+∞
∫

−∞

ψ∗

f E∇ exp(iω f it)ψi drdt

∣

∣

∣

∣

2

, (4)

where

E = −1

c
∂A

∂t

is the electric field intensity during calibration with the zero

scalar potential. Note that expression (4) doesn’t use the

electric dipole (long-wavelength) approximation.

Let’s now consider that radiation is a linearly polarized

plane wave that travels along the x axis:

E = E
(

t − x
c

)

ez (5)

(ez is the unit vector along the z axis). The plane-wave

approximation is justified if the lateral dimensions of the

radiation structure exceed those of the object. Then

w f i =
e2

m2ω2
f i

∣

∣

∣

∣

+∞
∫

−∞

ψ∗

f
∂

∂z
ψi E

(

t − x
c

)

× exp(iω f it)drdt

∣

∣

∣

∣

2

=
e2

m2ω2
f i

I f i IE , (6)

where

I f i =

∣

∣

∣

∣

∫

ψ∗

f
∂

∂z
ψi exp

(

i
ω f i

c
x
)

dr

∣

∣

∣

∣

2

,

IE =

∣

∣

∣

∣

+∞
∫

−∞

E(t) exp(iω f it)dt

∣

∣

∣

∣

2

. (7)

Thus, the transition probability is factorized: besides the

transition frequency ω f i and radiation polarization direction,

the dependence on the radiation pulse characteristics is

completely concentrated in IE , while the dependence on

the microobject states between which the transition takes

place is concentrated in I f i .

3. Transition probability analysis

Let’s look first at the factor I f i . By introducing the

wavenumber k f i = ω f i/c , it can be seen that k f i |x ≪ 1

is satisfied for transitions between the
”
ordinary“ (not too

highly excited) states, so exp(ik f i x) ≈ 1 may be assumed.

Then we arrive at a conventional dipole approximation [12].
In this case, the conventional selection rules are certainly

kept.

For highly excited states (Rydberg atoms) and nanoparti-

cles, the value of k f i |x | may be much higher than 1. Then,

the following expansion may be involved

exp(ik f i x) = J0(k f i r sin θ) + 2

∞
∑

j=1

J j(k f ir sin θ) cos( jθ).

(8)
This expansion is suitable for an important centrosymmetric

(not necessarily Coulomb) potential case where the unper-

turbed Hamiltonian wave functions are written as [11]

ψnlm = Rnl(r)Ylm(θ, ϕ). (9)

Spherical (r, θ, ϕ), n, l coordinates and m —
integer principal orbital and magnetic quantum

numbers, n = 1, 2, 3, . . . , l = 0, 1, . . . , n − 1 and

m = l, l − 1, . . . ,−l are used here. The spherical functions

are additionally factorized: Ylm(θ, ϕ) = Q(θ) exp(imϕ).
The quantum numbers are denoted as n, l,m for the initial

state and as n′, l′,m′ for the excited state. By substituting

expansion (8) into the first equation (7) and integrating with

respect to ϕ, it can be seen that a non-zero value of I f i is

possible in case of any variation of the magnetic number (in
the range of values limited by the orbital quantum number):

m′ − m = ± j, j = 0, 1, 2, . . . , |m′| ≤ l′, |m| ≤ l. (10)

As indicated by two signs in the first equation (10), when

j > 0, two states with different magnetic numbers are

excited simultaneously.

Another selection rule states that the initial and excited

states shall have different parity with respect to z (or to

cos θ). Hence it follows that the orbital quantum number

variation l shall be an odd number:

l′ − l = ±1,±3,±5, . . . , 0 ≤ l′ ≤ n′ − 1, 0 ≤ l ≤ n − 1.

(11)
For transitions between non-highly excited states of the

”
ordinary“ atoms, the probabilities of

”
additional“ transitions

are low. In view of high accuracy of spectroscopic

measurements, additional measurement data analysis is

reasonable, however, this is not in the scope of this paper.

The main focus is made herein on the analysis of the

pulse waveform factor IE . For extremely short pulses having

the duration τP much less than the optical transition period,

ω f iτP ≪ 1, IE coincides with the squared electric area of

the pulse SE =
+∞
∫

−∞

Edt : IE = S2
E . Wherein the transition f i

may have an arbitrary multipolarity.
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Generally, IE is the squared absolute value of the spectral

component of the electric intensity at ω f i . Dependence

of this factor on the pulse duration can be conveniently

illustrated for a pulse with the waveform

E(t) = E0 exp(−t2/τ 2
p ) cos(ωpt + ϕp). (12)

For multicycle pulses, ωpτP ≫ 1, τp and ωp have the

meaning of a pulse duration and carrier frequency, for low-

cycle pulses - such terminology is tentative. The pulse is

purely unidirectional when ωp = 0. For the pulse with

waveform (12), the spectrum is

Eω =

∞
∫

−∞

E(t) exp(−iωt)dt

=

√
π

2
E0τp

{

exp

[

−1

4
(ωp − ω)2τ 2

p

]

eiϕp

+ exp

[

−1

4
(ωp + ω)2τ 2

p

]

e−iϕp

}

, (13)

Iω = |Eω|2 =
π

4
(E0τp)

2

{[

exp

(

−1

4
(ωp − ω)2τ 2

p

)

+ exp

(

−1

4
(ωp + ω)2τ 2

p

)]2

−
[

exp

(

−1

4
(ωp − ω)2τ 2

p

)

+ exp

(

−1

4
(ωp + ω)2τ 2

p

)]2

sin2 ϕp

}

,

(14)
the electrical area of the pulse is

SE = Eω=0 =
√
πE0τp exp(−ω2

pτ
2
p /4) cosϕp, (15)

the pulse energy (more precisely, a quantity proportional to

it) is

W =

+∞
∫

−∞

E2(t)dt

=

√
π

2
√
2

E2
0τp

[

1+ exp(−ω2
pτ

2
p /2) cos(2ϕp)

]

. (16)

Finally,

IE = Iω f i =
π

4
(E0τp)

2

{[

exp

(

−1

4
(ωp − ω f i)

2τ 2
p

)

+ exp

(

−1

4
(ωp + ω f i)

2τ 2
p

)]2

−
[

exp

(

−1

4
(ωp − ω f i)

2τ 2
p

)

+ exp

(

−1

4
(ωp + ω f i)

2τ 2
p

)]2

sin2 ϕp

}

.

(17)
Iω, S2

E and IE are maximum when sinϕp = 0, therefore

this condition is adopted hereinafter. Then, the spectral

T
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(a) Dependence of the field factor iE on the dimensionless pulse

duration T and pulse frequency �. (b) The same shown in the

form of lines of the level iE(T, �) = 0.3 (curve 1), 0.6 (2), 1 (3),
1.21 (4), 1.5 (5) and 3 (6).

density Iω and factor IE have their maximum when ω = 0,

if ωpτp < 1/
√
2, and minimum in the opposite case. It

is more correct to compare the efficiency of microob-

ject excitation by pulses with the coinciding energy W .

For this, dimensionless
”
pulse duration“ T = ω f iτp and

”
carrier frequency“ � = ωp/ω f i are introduced. Thus,

IE =
√
π/2(W/ω f i)iE . W/ω f i may be associated with the

number of photons with ω f i whose total energy is equal

to W . The dimensionless pulse waveform factor is

iE =
T

1 + exp(−�2T 2/2)

×
{

exp
[

−(�− 1)2T 2/4
]

+ exp
[

−(�+ 1)2T 2/4
]

}2

.

(18)

For multicycle resonance pulses � = 1, �T ≫ 1, hence

iE = T . This corresponds to the asymptotically constant

probability of object excitation in a unit of time. In other

cases, as the pulse duration increases, iE first grows reaching

its maximum and then decreases as shown in the figure.

Resonance excitation appears to be more effective than

in the purely unidirectional pulse case (� = 0), when

T > 1.1, while for shorter pulses the situation is reversed.
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Discussion

Under the assumptions made in the paper, the standard

dipole transition approximation is justified if the microobject

size is much greater than the wavelength associated with

this transition (λ f i = 2πc/ω f i) and for pulse durations that

are less than the transition period (2π/ω f i). It is reasonable
that for perturbation theory to be applicable, the transition

probability shall remain small, w f i ≪ 1. Moreover, the

pulse duration shall be lower than the relaxation times.

The described factorization of the role of quantum

microobject and exciting radiation packet characteristics

appears to be possible in the plane-wave pulse waveform

case (5). Deviations from this waveform are possible

for field packets focused into a region smaller than the

object dimensions, for example, of the Rydberg atom.

This would allow microobject tomography to be made.

However, then separation of the microobject and radiation

factors is no longer possible, which leads to removal of the

remaining prohibitions on quantum transitions. In this case,

only numerical calculations of these processes are probably

available. This entanglement is a sign of a pronounced

non-point-like nature of the microobject leading to the

spatiotemporal dispersion effects that are important at the

macrolevel for crystals [13,14].

The author deeply regrets the loss of Vladimir M.

Agranovich, a great scientist and remarkable man, and

remembers gratefully his wise judgement and advice.
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