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The problem of scattering of a multiphoton electromagnetic field of arbitrary statistics by resonant atoms has

been described by methods of the theory of integrable quantum systems. Using a full set of exact eigenstates of

the integrable model
”
quantum field + two-level atoms“, we have derived an exact expression for the multiparticle

wave function of scattered photons. The general formalism has been illustrated in the particular case where the

incident field is in a stationary coherent state. The results for the spectrum and the second order correlation function

of the scattered field for this case coincide with the known ones, but they have been derived without using the

Lindblad’s approach, the quantum regression theorem, and all that. The developed formalism is applicable to an

arbitrary (including non-classical - not coherent) state of incident photons.
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1. Introduction

Nonlinear resonance media optics has become one

of the objects of application of the classical integrable

system theory [1,2]. However, the quantum nature of

field is of critical importance in such phenomena as

spontaneous emission and resonance fluorescence, and their

consistent description is, strictly speaking, possible only

in the framework of the quantum field theory. Both

of the above-mentioned phenomena can be formally de-

scribed as the quantum Cauchy problem with various

initial conditions:
”
incident photons + atoms in the

ground state“ (resonance fluorescence) or
”
field vacuum

+ atoms in the excited state“ (spontaneous emission).
The problem of incident quantum field scattering was first

formulated and solved (for a weak field — in the single-

photon approximation) by Weisskopf [3] (see also [4]).
Weisskopf’s theory was made applicable to a strong

field case using various approaches and approximations

in many studies that formed the resonance fluorescence

theory [5–9].

Nevertheless, description of resonance fluorescence as

a dynamic problem in the framework of the theory of

integrable quantum systems, i.e. direct construction of

an exact solution of the quantum Cauchy problem for

the multiparticle Schrödinger equation of the
”
photons +

atoms“ system, is of obvious interest. A similar program

was implemented earlier [10] to describe spontaneous

emission of excited compactly arranged atoms (Dicke
configuration [11]) into photonic vacuum. Using a similar

approach for a problem of multiphoton scattering, an exact

expression is derived for the multiparticle state of scattered

photons in case of an arbitrary state of the incoming

field (fundamentals of the approach were formulated in

early work [12] that was not brought to regular journal

publication). The derived expression for the out-state

contains full information about quantum statistics and

scattered field correlation functions. In particular case

when the incoming field is in a stationary coherent state,

the scattered photon spectrum corresponds to a well-

known Mollow triplet [7]. In the approach described

below, this result is obtained through a regular quantum-

mechanical calculation without involvement of sophisticated

approaches with the Lindblad equation, regression theorem,

etc. [13].

Section 2 contains a description of the model and formal

statement of the scattering problem. In Section 3, a full

set of system Hamiltonian eigenstates is used to derive

the out-state of the multiphoton scattering problem. The

developed general formalism is illustrated in Sections 4

and 5 as a particular case where the incoming field is

in the stationary coherent state; scattered field correlation

functions are calculated.

2. Description of the model and
statement of the scattering problem

Hamiltonian of the
”
quantum field + two-level atom“

system in the dipole resonance approximation can be
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written as: H0 + Hint , where

H0 =
∑

j,m

∫
dω
2π

(ω − ω12)c
†
jm(ω)c jm(ω) + ω12

(
s3 +

1

2

)
,

(1)

Hint =
√
γ

∫
dω
2π

[c†(ω)s− + c(ω)s+] (2).

Here, γ = 4ω3
12d

2/3, ω12 and d are the radiation-induced

relaxation rate, atomic transition frequency and dipole

moment (speed of light and Planck’s constant are taken

equal to 1). Spin operators s = (s1, s2, s3) with commu-

tation relations [s j , sk ] = ie jkls l describe a two-level atom

(s = 1/2); s± = s1 ± is2. Electromagnetic field operators

are expanded as series in spherical harmonics [4]:

ak =
∑

j,m

∫
dω
2π

8 jmω(k/|k|)c jm(ω). (3)

Due to the dipole approximation, equation (2) may be

limited to consideration of interaction between the atom and

only electrodipole photons (with the angular momentum

j = 1). Wherein c(ω) ≡ c j=1,m=0(ω), where the momen-

tum projection m = 0 is established by the incident field

polarization (here the linear polarization is chosen for

definiteness).
Let’s introduce a notation for the field operators (the

formal Fourier variable x may be assumed as a
”
radial co-

ordinate“: incoming photons have x < 0, outgoing photons

havex > 0):

ε(x) =

∫
dω
2π

c(ω)ei(ω−ω12)x , (4)

corresponding to the commutation relations

[ε(x), ε†(x ′)] = δ(x − x ′), and rewrite the Hamiltonian of

the
”
atom + electrodipole photons“ system as

H =

∫
dx{−iε†(x)∂x ε(x) +

√
γδ(x)[ε†(x)s−

+ε(x)s+]} + ω12

(
s3 +

1

2

)
. (5)

Thus, the problem of resonance interaction between

the atom and quantum electromagnetic field is described

effectively by a one-dimensional model. This model was

studied before [10] in view of the spontaneous Dicke

superradiance. The Bethe ansatz was used to make a

full set of eigenstates of Hamiltonian (5), which forms the

basis for description of the time evolution of an arbitrary

initial system state. Unlike the initial atomic excitation

decay problem addressed in [10], the initial system state

(t → −∞) in the resonance fluorescence problem contains

photons approaching the atom. Physical characteristics

of the scattered field are defined by the final system

state (t → +∞) that is found by solving the Schrödinger

equation:

i∂t |9(t)〉 = H |9(t)〉 ,

|9(t → −∞)〉 = e−iH0t |In〉 , (6)

|9(t → +∞)〉 = e−iH0t |Out〉 . (7)

Let’s consider a configuration where a photon beam with

the typical wave vector k oriented along the zaxis falls on an

atom located at the origin. It is assumed that the beam has

the cross-section S and the length L along the z axis. The

Fock state of the incident field containing N free photons is

given by the following expression

|In, N〉 =
1√
N

[a†
k]

N |0〉, (8)

where |0〉 is the vacuum state of the field. An arbitrary state

of a beam of identical independent photons is written in the

Fock basis as:

|In〉 =
∑

N

AN |In,N〉 . (9)

A case when the incident field is in the coherent state is of

particular interest

|In, α〉 = exp

(
−|α|2

2
+ αa†

k

)
|0〉, (10)

which corresponds to the Poisson coefficient statistics in

expression (9): |AN |2 = exp (−N̄)N̄N/N!, where N̄ = |α|2 is

the mean photon number. As will be shown below, coherent

states form a convenient basis for the investigation of field

scattering with arbitrary statistics.

Scattered light properties are defined by averaging of field

operators over the out-state. The stationary fluorescence

case in the external field corresponds to the limit transition

N̄ → ∞; L → ∞;
N̄
L

→ Const. (11)

Our immediate problem is to find the out-state of the

scattered field.

3. Multiparticle scattering problem

1. In expansion (3) for ak, the electrodipole photon

operator is extracted:

ak = ãk +

√
σ1

SL
c(ω), (12)

where ãk includes the photon operators with the angular

momenta j > 1 that don’t interact with the atom; σ1 is

the
”
target area“ of photons with j = 1 [14]. Taking into

account (12), the Fock state (8) is written as:

|In, N〉 =
1√
N!

N∑

n=0

Cn
N

( σ1
SL

)n/2
(ã†

k)
N−n[c†(ω)]n|0〉. (13)

Thus, the initial scattering problem reduces to the problem

of scattering of the |in, n〉 state containing only
”
dipole“
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photons

|in, n〉 =
1√
n!

[c†(ω)]n|0〉

=
1√
n!

∫
dnx

n∏

j=1

ei(ω−ω12)x jε†(x j)|0〉, (14)

whose time evolution is defined by Hamiltonian (5).
2. Accurate solution of problem (5), (14) results from

complete integrability of model (5). The full set of

eigenstates of Hamiltonian (5) is written as [10]:

|λ〉 ≡|λ1, ..., λn〉 =

∫
dnyFB(λ, y)

n∏

j=1

eiλ j y j

×
[
ε†(y j) +

√
γ

λ j
s+δ(y j)

]
|vac〉 , (15)

where the |vac〉 state corresponds to an unexcited atom and

the absence of photons, and the Bethe factor

FB(λ, y) =

n∏

j<l,l

[
1 +

iγ
λ j − λl

sign(y j − y l)

]
(16)

accounts for multiparticle correlations. Allowable values

of the complex quantities {λ j} are defined by the wave

function boundedness condition (15) [10]. Energy of state

(15) is equal to E(λ) =
∑

j λ j .

Evolution of an arbitrary initial state |9in〉 is defined using

an exact integral representation [15]:

|9(t)〉 =e−iHt|9in〉 =

∫

Ŵ

dnλe
−it

∑n

j=1
λ j |λ〉(λ|9in〉

→e−iH0t |9out〉 (17)

where integration follows a special contour Ŵ in a n-
dimensional complex space of variables {λ}, and the

auxiliary state |λ) differs from (15) in that the Bethe factor

is absent. By omitting the details specified in [Y–85], exact
expressions for the sought out-state are written:

|9out〉 =

∫
dnx8out(x)

n∏

j=1

ε†(x j)|0〉, (18)

8out(x) =

∫
dnyS(x, y)8in(y), (19)

where S — the matrix that connects the wave functions of

outgoing and incoming photons is written as:

S(x, y) =

∫
dnλ

(2π)n

n∏

j<l

λ j − λl − iγsign(x j − x l)

λ j − λl + iγ

×
n∏

j=l

λ j − iγ/2
λ j + iγ/2

eiλ j(x j−y j) =
∑

θ(x1 > . . . > xn)

×
n∏

j=l

[
δ(x j − y j) − θ(y j − x j)e

γ(x j−y j )/2
]
.

(20)

Summation in (20) is performed over permutations of the

x j coordinates.

Expression (20) for the S-matrix corresponds to a single-

atom resonance fluorescence case. In case of photon

scattering on the ensemble M of closely spaced atoms, the

following replacement shall be made in expression (20)

λ j − iγ/2
λ j + iγ/2

→ λ j − iMγ/2

λ j + iMγ/2
. (21)

This makes the mathematical structure of the theory much

more sophisticated — bunched (
”
string“) photon states

will occur in the final state of the scattered field. This

work is restricted to a relatively simple case of single-atom

resonance fluorescence.

3. Expression (20) is a sum of 2n terms (without

permutations) describing all possible scattering processes

of n photons, wherein δ(x − y) type multipliers correspond

to unscattered (free passing) photons. Unscattered dipole

photon operators added to the ã†
k operators of photons

with j > 1 (3) recover the a†
k operator in the out-state.

Eventually, the final state of the |Out, N〉 field is given by

the following expression

|Out, N〉 =

N∑

n=0

√
Cn

N

( σ1
SL

)n/2
|scat, n〉 ⊗ |In, N − n〉 .

(22)
Here, the |In, N − n〉 state (8) corresponds to N − n
photons in the passing (unscattered) beam, and |scat, n〉
describes the state of n scattered photons:

|scat, n〉 =

∫
dnx8scat(x)

n∏

j=1

ε†(x j)|0〉, (23)

8scat(x) =

∫
dnyT (x, y)8in(y), (24)

T (x, y) =(−γ)nL−n/2
√

n!θ(x1 > . . . > xn)

×
n∏

j=l

θ(y j − x j)e
γ(x j−y j )/2, (25)

where the T -matrix (25) is a component of sum (20)
that doesn’t contain any unscattered dipole photons. It

shall be emphasized that expressions (22)−(25) correctly

account for all possible scattering channels. Note, however,

certain conditionality in using symbol ⊗ in (22). The

point is that the Hilbert space of the ε†(x) operators

that form the |scat, n〉 state is a subspace of the Hilbert

space of the a†
k operators that generate the |In,N − n〉

state. Therefore, when calculating averages with respect

to state (22), nonzero value, following from (4) and (3), of
the commutator

[ε(x), a†
k] =

( σ1
SL

)1/2

ei(ω−ω12)x . (26)

shall be taken into account.
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4. For initial state (14), wave function (24) of the

scattered photons is written as:

8scat(x) = (−1)n 2
nn!

Ln/2
θ(x1 > . . . > xn)

n∏

j=1

ψ(x j−1, x j),

(27)

ψ(x j−1, x j) =
γ

2

∫ x j−1

x j

dyei(1>+iγ/2)(y−x j)

×θ(−L/2 < y < L/2), (28)

(here, x j=0 ≡ L/2). For simplicity, we restrict ourselves

hereinafter to the case of exact resonance where the incident

radiation frequency offset 1 = ω − ω12 = 0. Wherein

ψ(x j−1, x j) = θ(x j−1 − x j)
[
1− e−γ(x j−1−x j )/2

]
;

j = 1, . . . , n; xn > −L/2, (29)

ψ(xn−1, xn) = θ(xn−1 − xn)
[
eγ(xn+L/2)/2 − e−γ(xn−1−xn)/2

]
;

xn < −L/2. (30)

Equation (30) reflects the fact that the last photon of the

scattered field can be emitted even after expiration of the

excitation light pulse lifetime.

A set of expressions (22)−(30) is the main result of

the work that makes it possible to describe completely

the out-state of the scattered field for an arbitrary state of

the incoming photon field. The next section demonstrates

how the developed formalism works using the simplest,

but physically interesting, situation in which the incoming

field is in the coherent state. Correlation functions of

the scattered field will be derived by direct calculation of

averages over the corresponding operators with respect to

the out-state (without reference to the Lindblad formalism,

regression theorem, etc.).

4. Field scattering in the coherent state

1. Taking into account expressions (22), the out-state is

found for the case where the incident field is in the coherent

state (10):

|Out, α〉 =

N∑

n=0

αn

√
n!

( σ1
SL

)n/2
|scat, n〉 ⊗ |In, α〉 . (31)

Expression (31) describes both scattered and unscattered

fields, including the correlation between them. In the

case when characteristics of only the scattered field are of

interest, then, using (31), an effective description may be

developed solely in terms of the scattered field. For this,

note that, when averaging the arbitrary functional O(ε†, ε)
of the scattered field operators over (31), the following

expressions occur naturally:

e−N̄〈0|e
√

N̄a k̄

n∏

j=1

ε(x ′
j )O(ε†, ε)

n∏

l=1

ε†(x l)e
sqrtbarNa†

k̄ |0〉

(32)

(α was selected for real definiteness, α =
√

N̄ ). By

changing the exponents of the operators and using relation

(26), expression (32) is written as

〈0|
n∏

j=1

[ε(x ′
j) +

√
ρθ(−L/2 < x ′

j < L/2)]O(ε†, ε)

×
n∏

l=1

[ε†(x l) +
√
ρθ(−L/2 < x l < L/2)]|0〉, (33)

where ρ = σ1N̄/(SL) is the dipole photon flux density in

the incident beam. When passing from (32) to (33), it was
assumed in line with a general physical statement of the

scattering problem (final beam aperture) that the observed

O is measured in spatial points where the transmitted wave

field is absent. Consequently, operators included in O(ε†, ε)

commute with the a†
k̄
and a k̄ operators and, therefore, are

not shifted. Thus, the average of the operator O(ε†, ε) is

written as

〈Out, α|O(ε†, ε) |Out, α〉 = 〈Õut, α|O(ε†, ε)|Õut, α〉,
(34)

where the effective out-state |Õut, α〉 is written as:

|Õut, α〉 =|0〉 +

∞∑

n=1

(−1)n(4ρ)n/2
∫

dnx

×
n∏

j=1

ψ(x j−1, x j)[ε
†(x j)

+
√
ρθ(−L/2 < x j < L/2)]|0〉. (35)

Derivation of expression (35) directly generalizes

to the case of an arbitrary envelope shape E(x)
of the incident pulse, which leads to replacement√
ρθ(−L/2 < x j < L/2) → E(x) in (35). E(x) will also

occur in the expression under the integral sign in (28). The
developed formalism is thereby also applicable to the non-

stationary fluorescence excitation.

2. Expanding the product in square brackets in expression

(35), write (35) as a sum of terms with different photon

numbers:

|Õut, α〉 =
∞∑

n=0

(−1)n(4ρ)n/2
∫

dnxv(xn)

×
n∏

j=1

u(x j−1, x j)ε
†(x j)|0〉. (36)

Here, the functions u(x , y) and v(x) satisfying the following

equations are introduced

u(x , y) = ψ(x , y) − 2ρ

∫ L/2

−L/2
ψ(x , z )u(z , y)dz , (37)

v(x) = 1− 2

∫ L/2

−L/2
u(x , y)dy. (38)

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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In the case of fluorescence in a constant-amplitude field,

ψ(x , y) and u(x , y) depend only on the difference of

positions and expression (36) takes a simple form:

|Õut, α〉 =v(L)|0〉 +

∞∑

n=1

(−1)n(4ρ)n/2

×
∫

dnxu(L/2− x1)u(x1 − x2) . . . u(xn−2 − xn−1)

×
[
u(xn−1 − xn)v(xn + L/2) + u(xn−1 + L/2)

×θ(−L/2 − xn)e
γ(xn+L/2)/2

] n∏

j=1

ε†(x j)|0〉.

(39)
u(x) and v(x) are nonzero only when x > 0. Their Fourier

components determined from (37) and (38) are given by

u(ω) = − γ/2

(ω − ω+)(ω − ω−)
, (40)

v(ω) =
i(ω + iγ/2)

(ω − ω+)(ω − ω−)
, (41)

where

ω± = −iγ/4±
√
γρ − (γ/4)2. (42)

A set of results obtained in (34) − (42) contains all

information about the scattered radiation and makes it

possible to calculate its physical properties.

5. Calculation of physical quantities

Application of the derived expressions for calculation

of some correlation functions of scattered radiation is

illustrated below.

1. Let’s make sure first that the derivation of state didn’t

break the unitarity and (34) is normalized correctly, i.e.

〈Õut, α|Õut, α〉 = 1. From (34) follows

〈Õut, α|Õut, α〉 = v2(L) +

∞∑

n=1

(4ρ)n

×
∫

dnxu2(L/2 − x1)u
2(x1 − x2) . . . u2(xn−2 − xn−1)

×
[
u2(xn−1 − xn)v

2(xn + L/2) + u2(xn−1 + L/2)

×θ(−L/2 − xn)e
γ(xn+L/2)

]
.

(43)
Introducing notations U(x) = u2(x) and V (x) = v2(x) with

the Fourier components

U(ω) = − iγ2/2
(ω + iγ/2)(ω − 2ω+)(ω − 2ω−)

, (44)

V (ω) = i
(ω + iγ/2)(ω + iγ) − 2ργ

(ω + iγ/2)(ω − 2ω+)(ω − 2ω−)
, (45)

Figure 1. The dashed line shows δ(x j − x ′
j ) corresponding to

pairing of ε†(x j ) and ε(x ′
j ).

and passing to the Fourier representation in (43), we have

〈Õut, α|Õut, α〉 =V (L) +

∫
dω
2π

e−iωLW (ω)

× [V (ω) + 1/γ] . (46)

Here

W (ω) =

∞∑

n=1

[4ρU(ω)]n =
4ρU(ω)

1− 4ρU(ω)

= − 2i
ργ

(ω + i0)(ω −�+)(ω −−�−)
, (47)

where

�± = −3iγ/4±
√
�2

R − (γ/4)2. (48)

The following quantity is introduced in this expression

�R =
√
4ργ, (49)

that coincides with the Rabi frequency. In the given limit

L → ∞ (whereas V (L) → 0), the nonvanishing contribution

to the integral over ω is given only by the pole ω = −i0
and we get

〈Õut, α|Õut, α〉 =

∫
dω
2π

e−iωL i
ω + i0

= 1. (50)

Summation occurring during calculation of the norm and

leading to W (ω) is illustrated in Figure 1 where the dashed

line shows δ(x j − x ′
j) corresponding to pairing of ε†(x j)

and ε(x ′
j ).

2. The correlator calculation scheme will be described

next as an example

D(x , y) = 〈Õut, α|ε†(x)ε(y)|Õut, α〉, (51)

the Fourier component of which with respect to (x − y)
defines the spectral density of scattered light. Using (39),
we find the following expression for (51) at x > y :

D(x , y) = D1(x , y) + D2(x , y), (52)

where

D1(x ,y) =

∞∑

k,l,m=0

(4ρ)k+l+m+3

×
∫

dx ′dx ′′dy ′dy ′′〈L/2|Ûk |x ′〉Ŵ1(x ′, x , x ′′)

×〈x ′′|Û l |y ′〉Ŵ1(y ′, y, y ′′)〈y ′′|Ûm(V̂ + γ̂−1)| − L/2〉;
(53)

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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Figure 2. The wavy lines correspond to external coordinates x
and y .

D2(x , y) =

∞∑

k,l=0

(4ρ)k+l+2

∫
dx ′dy ′〈L/2|Ûk |x ′〉

×Ŵ2(x ′, x , y, y ′)〈y ′|Û l(V̂ + γ̂−1)| − L/2〉. (54)

Here, the following notations are used:

〈x1| f̂ ĝ|x2〉 ≡
∫

dx f (x1, x)g(x , x2),

Ŵ1(x
′, x , x ′′) = u(x ′ − x)u(x − x ′′)u(x ′ − x ′′), (55)

Ŵ2(x
′, x , y, y ′) = u(x ′ − x)u(x − y ′)u(x ′ − y)u(y − y ′).

(56)
Figure 2, a and 2, b shows typical fragments of the general

term in sums (53) and (54), respectively; wavy lines

correspond to external coordinates x and y . Resulting

diagrams are identical to those in the atom density matrix

method [16] that uses technique [17].

It is more convenient to calculate quantities (53) and (54)
by passing to the Fourier representation in the expressions

under the integral sign followed by summation over photon

numbers and, finally, by inverse Fourier transform. In the

given stationary excitation limit (L → ∞), we get

D(x − y) =
�2

Rγ/4

�2
R + γ2/2

{
γ2

�2
R + γ2/2

+ e−γ|x−y |/2

+
�2

R − γ2/2

�2
R + γ2/2

cos [�(x − y)]e−3γ|x−y |/4

+
γ

�R

(5/4)�2
R − γ2/2

�2
R + γ2/2

sin (�|x − y |)

×e−3γ|x−y |/4
}
, (57)

where � ≡
√
�2

R − (γ/4)2 . Fourier transform of this

correlator with respect to (x − y) gives the scattered

radiation spectrum where, besides the central peak, there

are broadened side peaks at frequencies ±�R ( forming

together the famous Mollow triplet at �R > γ/4) [7].

3. Resulting exact expression (39) for the scattered light

state allows complete description of statistical properties of

Figure 3. Factorization of the n-th order correlation function

radiation. Thus, for example, it is easy to see that (Figure 3)
the n-th order correlation function

ρ(n)(x1, . . . , xn)

= 〈Õut, α|ε†(x1) . . . ε
†(xn)ε(xn) . . . ε(x1)|Õut, α〉

(58)
is expressed through the second-order correlation function

ρ(2)(x1, x2). Specifically, in the region x1 > . . . > xn, we

have

ρ(n)(x1, . . . , xn) =ρ(2)(x1, x2)ρ
(2)(x2, x3) . . .

×ρ(2)(xn−1, xn). (59)

Calculation of ρ(2)(x1, x2) is identical to the derivation

shown above for expression (51) and gives

ρ(2)(x1, x2) =

(
�2

Rγ/2

�2
R + γ2/2

)2 {
1−

[
cos (�|x1 − x2|)

+
3γ

4�
sin (�|x1 − x2|)

]
e−3γ|x1−x2|/4

}
.

(60)
Note that expression (60) (and, therefore, (59)) describes

the so-called photon antibunching phenomenon, i.e. corre-

lators (60), (58) vanish when positions coincide. In the

approach developed here, this obviously results from the

”
Fermi“ structure of the wave function of scattered photon

state (39) that vanishes when photon positions coincide.

Expressions (57) and (60) derived for the particular case

of stationary excitation by the coherent field discussed in

this section agree with the known results and illustrate the

application of the field-theoretic approach described in the

previous sections.

6. Conclusion

We have presented an exact field-theoretic approach to

description of multiphoton state scattering in an electromag-

netic field with arbitrary statistics on the resonance atom.

The approach is based on direct regular application of the
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Hamilton formalism without using the density matrix and

description reduction related thereto. Such usually unfea-

sible approach can be implemented due to the exceptional

circumstance where the given
”
atom +field“ system is an

integrable one, which makes it possible to find a full set of

multiphoton eigenstates. Hence, the resonance fluorescence

description may be represented as an exact solution of the

quantum Cauchy problem that corresponds to the dynamic

transformation of the given initial in-state (incoming field)
into the final out-state (scattered and unscattered field). The
constructed exact out-state makes it possible to calculate the

scattered field characteristics for an arbitrary quantum state

of the excited field. The general formalism developed in

Sections 2−3 is illustrated in Sections 4 − 5 as a particular

case where the incoming field is in the stationary coherent

state. Spectrum and second-order correlation function of the

scattered field coincide with the known results. Derivation

proposed here is a regular quantum-mechanical calculation

without involvement of sophisticated approaches with the

Lindblad equation, regression theorem, etc. [13]. It is

expected that the present approach will be in high demand

for modern quantum optics applications where the incident

field is in nonclassical (incoherent) state.
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theoretical department at the Institute of Spectroscopy.
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