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Soliton behavior in an optical waveguide in the Gerdjikov-Ivanov model
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Behavior of a soliton moving in an optical waveguide along an inhomogeneous and time-dependent background is

addressed in the framework of the Gerdjikov-Ivanov model. Equations describing the soliton motion were derived.

Theory is illustrated by the soliton motion along a simple wave.
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1. Introduction

Light propagation in a nonlinear medium often acts like a

liquid flow [1]. From a formal perspective, this is associated

with a fact that the nonlinear Schrödinger equation (NSE)
neglecting dispersion accurately reduces to the shallow-

water equations in a defocusing nonlinearity case or to

the
”
overturned“ shallow-water equations in a focusing

nonlinearity case. Consideration of dispersion leads to

so-called dispersive fluid dynamics that describes various

nonlinear optical effects in optical waveguides as well as

polariton and atom condensates [2], including soliton and

dispersive shock wave behavior [3–5]. Evolution of the

dispersive shock wave theory in recent years has brought

about the development of new methods allowing great

advances to be made in the classical problem of soliton

motion along an inhomogeneous and time-dependent large-

scale wave.

Difficulty of this problem is in that the soliton motion

cannot be separated with absolute accuracy from the

background evolution because both of them are actually

a single wave flow described by the same wave variables.

Due to this, the soliton motion induces a counter flow in

the background and this counter flow substantially affects

the soliton behavior described approximately as particle-like

excitation having a certain coordinate and momentum.

To solve this problem, various approximate methods

of the perturbation theory were proposed [6–17] that are

usually very cumbersome and not always provide a fairly

simple description of the soliton behavior. It has been

recently observed [18] that the theory could be significantly

simplified supposing that a narrow soliton behavior is

described by equations that are agreed in a particular way

with zero-dispersion evolution of a large-scale background.

Previous results were easily reproduced and new results

were obtained on this course for soliton described by the

Korteweg de Vries (KdV) equation [18] and NSE [19].

This study will elaborate a similar theory for the

Gerdjikov-Ivanov equation [20,21] that will be written in

standard dimensionless variables:

iψt + ψxx +
1

2
|ψ|4ψ + iψ2ψ∗

x = 0. (1)

This equation is often used to simulate propagation of

ultrashort light pulses in waveguides [22,23], and in this

context ψ is a light field envelope. The equation is written

in a frame of reference that moves at a group carrier

wave velocity, wherein x was used for a coordinate along

the waveguide and t was used for time to emphasize the

analogy with equations of fluid dynamics. The second

term on the left-hand side of (1), as usual, describes the

group velocity dispersion, the third term describes the fifth-

order nonlinearity, and the fourth term describes medium

response delay. These nonlinear terms are generally

accounted for as small perturbations in NSE, but their

isolation into a separate equation (1) gives an insight into

effects that are qualitatively associated with them.

The next section will address the main relations of

the Gerdjikov-Ivanov equation theory, including its soliton

solution. Then, a soliton behavior equation will be derived

and illustrated by a soliton motion along a simple wave.

2. General relations

First, equation (1) is rearranged to a so-called fluid

dynamics form in which the behavior of light wave
”
photon

liquid“ may be conveniently described. For this, the

following substitution is made

ψ =
√
ρ exp

(

i
∫ x

u(x ′, t)dx ′

)

, (2)

and the real and imaginary parts are separated in the

resulting equation. As a result, the following system is
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obtained

ρt +

[

ρ

(

2u +
1

2
ρ

)]

x

= 0,

ut + 2uux − (ρu)x − ρρx +

(

ρ2x
4ρ2

− ρxx

2ρ

)

x

= 0. (3)

These equations are similar to fluid dynamics equations

where ρ serves as the density of medium and u serves

as the flow velocity of medium. The first equation (3)
is a modified continuity equation and the second one is

the Euler equation with the
”
pressure“ P = −ρ(u + ρ/2)

depending on the flow velocity, wherein the last term, that

is often called the
”
quantum pressure“, describes dispersive

properties of a medium. For stability of a medium with

respect to density fluctuations, the pressure shall be positive

which implies the condition

u < −ρ/2 (4)

of applicability of the light wave description in terms of fluid

dynamics.

When small perturbations of a homogeneous state

ρ = ρ0, u = u0 are considered, then linearization of equa-

tions (3) with respect to small deflections from this state

ρ = ρ0 + ρ′, u = u0 + u′ gives a system

ρ′t + 2u0ρ
′
x + 2ρ0u′

x + ρ0ρ
′
x = 0,

u′
t + 2u0u

′
x − u0ρ

′
x − ρ0u′

x − ρ0ρ
′
x −

1

2ρ0
ρ′xxx = 0, (5)

from which the linear wave dispersion law is obtained ρ′,

u′ ∝ exp[i(kx − ωt)]:

ω = k

(

2u0 ±
√

−ρ0(2u0 + ρ0) + k2

)

. (6)

Radical expression is positive here provided that condi-

tion (4) is fulfilled.

Another important limiting case refers to long waves for

which |ρx/ρ| ≪ 1, |ux/u| ≪ 1, so the dispersion term may

be neglected in the second equation (3) and zero-dispersion

equations may be derived

ρt +

[

ρ

(

2u +
1

2
ρ

)]

x

= 0,

ut + 2uux − (ρu)x − ρρx = 0. (7)

In our theory, they describe evolution of the background

along which the soliton travels.

Let’s now get a soliton solution in a convenient form. For

this, solution of equations (3) is sought in the form of the

progressing wave ρ = ρ(ξ), u = u(ξ), ξ = x −Vt, where

V is the wave propagation velocity. Then equations (3)
become ordinary, are easily integrated once, and the first

equation gives

u =
A
2ρ

+
V
2
− ρ

4
, (8)

where A is the integration constant. The second equation

after integration and substitution of Eq.(8) into it may be

integrated once more with the result rearranged to the

following form

ρ2ξ = −1

4

[

ρ4 + 4Vρ3 + 4(V + 3A + 4B)

× ρ2 + 16Cρ + 4A2
]

, (9)

where B and C are another two integration constants.

Three integration constants that occur in the solution

may be expressed through the soliton velocity V and

values of the background variables ρ0, u0 at infinity, i.e.

far from the soliton. For this, note, above all, that

equation (9) has solutions when ρ fluctuates between zeros

ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4 of the polynomial on the right-hand side

in the positivity intervals of this polynomial, i.e. in one

of the intervals ρ1 ≤ ρ ≤ ρ2 or ρ3 ≤ ρ ≤ ρ4. As is well

known, the soliton corresponds to a separatrix solution that

occurs when ρ2 = ρ3 = ρ0, so in this case equation (9) may

be rewritten as

ρ2ξ =
1

4
(ρ0 − ρ)2(ρ − ρ1)(ρ4 − ρ). (10)

Let’s assume for definiteness that the case of

ρ1 ≤ ρ ≤ ρ2 = ρ0 corresponding to a dark soliton is con-

sidered and ρ = ρmin = ρ1 with ξ = 0, so the elementary

integration gives

ρ = ρ0 −
(ρ4 − ρ0)(ρ0 − ρ1)

(ρ4 − ρ1) ch
2 θ − (ρ1 − ρ0)

, (11)

where

θ =
1

4

√

(ρ4 − ρ0)(ρ0 − ρ1)ξ,

V = −1

4
(ρ1 + ρ4 + 2ρ0). (12)

To express ρ1 and ρ4 in terms of V , ρ0, u0, note

that A = ρ0(ρ0/2 + 2u0 −V ) follows from Eq. (8) and

ρ1ρ4ρ
2
0 = 4A2 follows from Eq. (9), so

ρ1ρ4 = (2V − 4u0 − ρ0)
2. (13)

The second equation (12) and equation (13) imply the

values of ρ1, ρ4:

ρ1 = −2V − ρ0 − 2
√

2(ρ0 + 2u0)(V − u0),

ρ4 = −2V − ρ0 + 2
√

2(ρ0 + 2u0)(V − u0), (14)

Taking into account (4), we find that these parameters are

real and positive in line with the determination of ρ in

Eq. (2), when the soliton velocity satisfies the condition

V < u0, (15)

i.e. it is negative and greater in magnitude than the

background flow velocity u0.
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Equations (11) and (12) imply that the inverse

soliton halfwidth κ defined by the limit relation

ρ0 − ρ ∝ exp(−κ|ξ |) is equal to

κ =
1

2

√

(ρ4 − ρ0)(ρ0 − ρ1). (16)

Substitution of expressions (14) here gives

(V + ρ0)
2 − 2(ρ0 + 2u0)(V + ρ0) + 2(ρ0 + u0)

× (ρ0 + 2u0) + κ2 = 0,

from which the desired expression for the soliton velocity is

derived through the inverse soliton halfwidth:

V = 2u0 ±
√

−ρ0(ρ0 + 2u0) − κ2. (17)

As reported by Stokes [24] for the Korteweg de Vries

soliton, this velocity is expressed through the linear wave

dispersion law (6) by

V =
ω(iκ)

iκ
, (18)

that has a clear physical meaning: linear waves ∝ ei(kx−ωt)

as well as low-amplitude soliton tails ∝ e−κ|x−Vt| are

described by the same linearized equations (5), so their

solutions go into one another when the substitution k → iκ
is made, wherein the linear wave phase velocity goes into

the soliton velocity (18).
Now we can pass to the derivation of soliton behavior

equations.

Soliton behavior

It is supposed that the soliton travels along an inhomo-

geneous wave ρ = ρ(x , t), u = u(x , t), wherein the typical

length at which these wave variables change substantially is

much higher than 1. Since the soliton width is in the region

of one, then it can be assumed with fair accuracy that the

soliton’s instantaneous velocity is given by expression (17)
where ρ0 and u0 are replaced with the local values of

ρ(x , t), u(x , t) in the soliton location point at time t .
Therefore, if the dependence of κ on ρ and u is found,

then equation (17) will be transformed into an equation

that defines the soliton motion along a large-scale wave.

To find κ = κ(ρ, u), let’s turn to considerations similar to

Stokes’ arguments [24] in his justification of equation (18)
and find first the dependence of the carrier wave wavenum-

ber k on ρ and u for a high-frequency packet propagating

along a large-scale wave. For this, note that, as long as the

wavelength ∼ k−1 is assumed to be lower or approximately

equal to 1, then the packet size may be taken to be much

lower than the typical amount of background variations, so

the packet position may be described with fair accuracy

by introducing the coordinate x = x(t). As is known from

the optical-mechanical analogy [25,26], motion of the packet

in the geometric-optical approximation obeys the Hamilton

equations
dx
dt

=
∂ω

∂k
,

dk
dt

= −∂ω

∂x
, (19)

where ω = ω(k, x , t) serves as the Hamiltonian. In our

case ω depends on x and t only through the wave variables

ρ(x , t), u(x , t) according to equation (6). It is assumed that

k is also a function of only ρ and u, and the evolution of ρ

and u according to the zero-dispersion equations (7) keeps

the Hamilton equations (19) valid. As was found in [27–
30], these conditions of Hamiltonian structure preservation

by the zero-dispersion flow give equations that define

k = k(ρ, u) at least in the range of large values of k . For

the Gerdjikov−Ivanov equation, calculations similar to those

conducted in [27–30] give these equations written as

∂k2

∂ρ
= 2(u + ρ),

∂k2

∂u
= 2ρ − 2

√

k2 − ρ(ρ + 2u). (20)

These equations are easily solved and we obtain

k2 = (q − u)2 + ρ(ρ + 2u), (21)

where q is the integration constant.

Now, following Stokes, it is supposed that solution of

equations (20) similarly to solution of linearized equa-

tions (5) may be extended to the regions of negative values

of k2, so equation (21) transforms into

κ2 = −(q − u)2 − ρ(ρ + 2u) (22)

for the inverse soliton halfwidth that defines κ = κ(ρ, u).
Substitution of this equation into (18) gives (suppose
q − u > 0)

dx
dt

= V =
ω(iκ)

iκ
= q + u(x , t), (23)

that defines the soliton path x = x(t). q is defined by the

initial soliton velocity at the origin of its path.

Note that the Gerdjikov−Ivanov equation is fully inte-

grable and, therefore, modulation Whitham equations in a

diagonal Riemannian form may be derived for it. Then

equation (23) may be derived from the Whitham equation

in the soliton limit (see this kind of theory in [14–17] for the
KdV and NSE equations). Our method provides a simpler

derivation procedure. Moreover, equation (23) may form a

basis for derivation of the Hamilton equations for the soliton

behavior similarly to [19] so that it is converted into the

integral of these equations. If there is the term U(x)ψ with

potential U(x) on the right-hand side of equation (1), then
the Hamilton equations may be rearranged to the Newton

equation taking the potential into account. However, such

statement of the problem is likely not relevant for the soliton

behavior in waveguides and, therefore, we restrict ourselves

to the case where an external potential is not available.
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u = –ρL
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ρ
R

u = –ρ
R
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ρ

Figure 1. Initial distribution of density ρ corresponding to the

soliton with the initial coordinate −l and velocity VL < 0 as well

as to the discontinuity of density (28).

Example: soliton motion along a simple
wave

By way of illustration, let’s consider the soliton motion

along a simple wave formed by the initial discontinuity in the

distributions of density ρ and u. Zero-dispersion system (7)
may be rearranged in a diagonal form

∂r+

∂t
+ v+

∂r+

∂x
= 0,

∂r−
∂t

+ v+
∂r−
∂x

= 0 (24)

for variables

r± = u ±
√

−ρ(ρ + 2u), (25)

wherein characteristic velocities are equal to

v± = 2u ±
√

−ρ(ρ + 2u). (26)

In a simple wave, one of the Riemannian invariants r± is

constant. As can be seen from (25), r+ = 0, if u and ρ are

interrelated by

u = −ρ, (27)

that is fulfilled all round the simple wave. In this case we

have the initial discontinuity of density ρ

ρ(x , 0) =

{

ρL, x ≤ 0,

ρR, x > 0,
(28)

where ρL > ρR , and u(x , 0) has an opposite discontinuity:

u(x , 0) =

{

−ρL, x ≤ 0,

−ρR, x > 0,
(29)

so everywhere r+ = 0.

Let at the initial time t = 0 the soliton be located on

the left of the discontinuity in point x = −l (Figure 1)
and has the initial velocity VL < 0. After the time t,
the discontinuity will turn into the depression wave in

which everywhere r+ = 0, i.e. the first equation (24) is

satisfied automatically, and the second equation implies self-

similar solution v− = −3ρ = x/t, i.e.distribution of density

is written as

ρ(x , t) =



















ρL, x ≤ −3ρLt,

−x/(3t), −3ρLt < x < −3ρRt,

ρR, x > −3ρRt.

(30)

Left edge of this distribution moves at the velocity of −3ρL,

so the soliton falls into the depression wave region at time

t1 =
l

| − 3ρL −VL|
=

l
3ρL + VL

(31)

at point

x1 = −L + VLt1 = − 3lρL

3ρL + VL
. (32)

As can be easily found from (17), we always have

|VL| < 3ρL, i.e. such time t1 > 0 always comes. When

t > t1, the soliton moves along the depression wave (30)
according to equation (23), i.e

dx
dt

= q − x
3t
, (33)

where q, we find from condition that (dx/dt)t=t1 = VL, so

q = VL + ρL. Equation (33) is easily solved with the initial

condition x(t1) = x1, so for the soliton path we get

x(t) =
3

2
(VL + ρL)t −

3

2
l2/3[(3ρL + VL)t]

1/3. (34)

As can be seen, it differs considerably from the soliton mo-

tion law x = −l + VLt with the homogeneous distribution of

density ρ = ρL up until transition to the simple wave region.

x

t

abc

150 100 50 0

5

10

15

20

25

30

–l

Figure 2. Paths of solitons with various initial velocities when

moving across a depression wave formed by the initial discontinuity

with ρL = 2, ρR = 1. The initial coordinate of the soliton is

−l = −10. Dashed lines show the motion of the depression

wave edges. Curve (a) corresponds to the initial velocity VL = −3

that satisfies condition (36) where the soliton passes through the

depression wave. Curve (b) corresponds to special case (50)
when the soliton velocity asymptotically approaches the front edge

velocity −3ρR . For curve (c), the soliton in the asymptotic state is

carried by the depression wave at velocity (39).
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The soliton achieves the opposite depression wave edge

that moves at the velocity of −3ρR at time

t2 =
l(3ρL + VL)

1/2

(VL + ρL + 2ρR)3/2
, (35)

if its initial velocity satisfies

|VL| < ρL + 2ρR . (36)

After this time and after collision with the depression wave,

it moves along the homogeneous background ρ = ρR at the

velocity

VR = VL + ρL − ρR, (37)

i.e. its velocity decreases in magnitude. It is obvious that by

virtue of (36), VR is inherently negative as must be the case

for the soliton moving along a homogeneous background.

The soliton path for this case is illustrated in Figure 2

(curve (a)).
However, if

|VL| > ρL + 2ρR, (38)

then the soliton motion stabilizes inside the depression wave

and its velocity at t → ∞ tends to a constant value

Vasymp =
3

2
(VL + ρL). (39)

In this asymptotic state, the soliton is always at a point on

the depression wave profile with the density

ρasymp = −1

2
(VL + ρL), (40)

i.e. it is carried by the depression wave flow being at rest

with respect to the wave (Figure 2, curve (c)).
In a special case VL = −ρL − 2ρR , the soliton path is

given as

x(t) = −3ρRt − 3(l/2)2/3t1/3, (41)

i.e. the soliton velocity tends at t → ∞ to the rear edge

velocity −3ρR , but the distance between the soliton and

rear edge grows with time as t1/3 (curve (b) in Figure 2).
A similar behavior of soliton

”
trapping“ by the depression

wave in case of NSE was discussed in [15,31] using various

methods.

Conclusion

Methods used in this work relies on Stokes’ elementary

considerations that correlate the properties of solitons

with the properties of high-frequency packets propagating

along large-scale wave profiles. In the case of the

Gerdjikov−Ivanov equation, equations (20) that occur in

our theory admit an exact solution of (21), which yields an

extremely simple soliton motion law (23). However, note

that, generally speaking, equations of type (20) defining the

function k = k(ρ, u), that depends on two arguments, are

not always consistent. At this point, it can be said that they

are consistent in case of fully integrable equations, but ex-

amples of their consistency for non-integrable equations are

not known. However, it can be expected that the proposed

method remains also applicable to non-integrable equations

when equations of type (20) admit approximate solution

that is true in the range of high values of k ≫ 1. Assuming

that this approximate solution may be extended to the region

of negative k2 = −κ2 < 0, a relation interconnecting the

inverse soliton halfwidth with the local wave variables of the

background is obtained and an approximate soliton motion

equation is finally derived. Hopefully, such generalization of

theory will help solve important soliton behavior problems,

including in the field of nonlinear optics.
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