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Weak disorder in photonic crystals
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1. Introduction

Photonic crystals of various kinds provide a useful

toolbox in optics and spectroscopy for tailoring light-matter

interactions [1]. These systems are characterized by a

periodic spatial modulation of their dielectric response on a

length scale comparable to the wavelength of light, leading

to the opening of stop bands (energy gaps) in the photonic

density of states. The simplest example is a periodic stack

of quarter-wavelength plates, realizing a distributed Bragg

reflector [2].

This sort of one-dimensional photonic crystal can be

realized not only using solid state components, but also

using cold atoms loaded into an optical lattice, where the

atomic density is modulated [3–5]. These latter systems have

recently been much studied. Typically, a well developed

photonic band gap can be realized with a rather small

number of periods in a condensed matter Bragg reflector,

at least when there is a high dielectric contrast between

the layers. However, many more periods are required in

an atomic Bragg reflector, due to the very small dielectric

contrast between the atom rich and atom poor layers. Of

course, the optical response of atoms can be enhanced

working with a light frequency close to an atomic transition

in which case, however, polaritonic effects [6] come into

play and there is a non trivial interplay between the

polaritonic stop band and Bragg reflection [7]; this regime

is outside the scope of the present work as only transparent

media characterized by a real and frequency independent

refraction index will be considered.

Another difference between condensed matter and atomic

based photonic crystals is in the degree of disorder they

exhibit: this is typically larger in the former [8] than in the

latter [9,10]. Also, the problem of disorder induced light

localization has attracted much interest [11–15], and in a

multilayer system requires a scaling analysis for increasingly

longer samples. In many instances, however, disorder

is comparatively weak in relation to the limited size of

the samples used, leading to a mild degradation of the

reflectivity rather than to the appearance of localized states

within the stop bands. This regime may be realized

both in significantly disordered, but rather short solid state

multilayers, as well as in less disordered, but much longer

atomic systems, and it is clearly relevant for all practical

applications of distributed Bragg reflectors.

The usual approach to deal with a finite size disordered

system is a numerical simulation of the relevant physical

quantities to be averaged over a large number of disorder

realizations, which may be computationally demanding even

for one-dimensional systems [16,17]. Here, we directly

focus on the reflectivity spectra close to a photonic band gap

and work out a simple shortcut to configurational averaging

based on a perturbative approach to weak uncorrelated
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disorder which is shown to be accurate for both geometric

(i.e., positional) as well as compositional disorder [18].

2. A perturbative expansion

We begin by demonstrating that a perturbative expansion

of elements of the system transfer matrix can be used to

compute the disorder–averaged transmission and reflection

coefficients, without having to do any time consuming

numerical averaging. Consider a 1D photonic crystal of

period a having a unit cell comprising a layer of thickness

d with a real refraction index n and a vacuum spacer of

thickness (a − d). The unit cell transfer matrix M connects

the forward (E+
j ) and backward (E−

j ) propagating fields in

the j th lattice period to those in the ( j + 1)th period [7],
and is given by

(

E+
j+1

E−
j+1

)

= M

(

E+
j

E−
j

)

=

(

m11 m12

m21 m22

) (

E+
j

E−
j

)

=

(

eik0(a−d) 0

0 e−ik0(a−d)

)

M

(

E+
j

E−
j

)

(1)
with k0 = ω/c the wave-vector in vacuum, and the transfer

matrix M is that for a single homogeneous layer of

thickness d and refractive index n, given by

M=
1

4n













(n + 1)2eik0dn

− (n−1)2e−ik0dn
(n2−1)(eik0dn−e−ik0dn)

(n2−1)(e−ik0dn−eik0dn)

(n+1)2e−ik0dn

− (n−1)2eik0dn













.

(2)
In the ideal (no-disorder) case, the total transfer matrix of

a photonic crystal containing N unit cells will be simply

given by MT = MN , i.e., the product of N identical (single-
cell) transfer matrices M . In the disordered case instead the

single-cell transfer matrix will depend on the lattice site j
and the corresponding total transfer matrix will be given by

MT =
∏N

j=1 M j .

In the following, weak and uncorrelated disorder will

be introduced, either in the refractive index (compositional

disorder) or in the vacuum spacer thickness (geometric

disorder). Let us consider the j th cell transfer matrix M j as

a function of a real disorder parameter p j = p0 + ǫ j , with

〈ǫ j〉 = 0 and 〈ǫ j ǫl〉 = δ jl ǫ
2, where 〈 〉 indicates the average

over disorder realizations and ǫ2 ≪ p2
o . Then, expanding

M j = M(p j) up to second order in ǫ j , one has the total

transfer matrix,

MT =

N
∏

j=1

M j ≃

N
∏

j=1

(

M0 + ǫ j M1 +
1

2
ǫ2j M2

)

, (3)

where we have defined the matrices

M0 = M(p0), M1 =
∂M
∂ p

∣

∣

∣

∣

p0

, M2 =
∂2M
∂ p2

∣

∣

∣

∣

p0

. (4)

These three matrices are independent of disorder. Expand-

ing the N-terms product (3) up to order ǫ2j , we have the

approximate expression

MT ≃ MN
0 +

N
∑

j=1

ǫ j M
N− j
0 M1M j−1

0 +
1

2

N
∑

j=1

ǫ2j M
N− j
0 M2M

j−1
0

+

N−1
∑

j=1

N
∑

l= j+1

ǫ jǫlM
N−l
0 M1M

l− j−1
0 M1M

j−1
0 .

(5)
From this total transfer matrix (5), quantities of experimen-

tal interest such as the reflectivity R = |MT,12/MT,22|
2 and

transmittivity T = |1/MT,22|
2 can be calculated [5,7] and,

subsequently, averaged over many disorder realizations [10].
In the numerical examples considered below, we will

assume T + R = 1 (no-loss).
To compute transmission, e.g., we require the matrix

element MT,22 of the total matrix in Eq. (5) which can be

written in the following form

MT,22 ≃
(

MN
0

)

22



1 +

N
∑

j=1

c jǫ j +

N
∑

j=1

N
∑

l= j

g jlǫ jǫl



 . (6)

The numerical coefficients c j and g i j equal the ǫ j inde-

pendent combinations of matrix elements appearing within

the summations in Eq. (5) and thereby do not depend on

disorder. They are given by

c j = (MN− j
0 M1M j−1

0 )22/
(

MN
0

)

22
,

g jl = g jl =

[

1

2
δ jl(M

N− j
0 M2M j−1

0 )22

+ (1− δ jl)(M
N−l
0 M1M l− j−1

0 M1M j−1
0 )22

]

/
(

MN
0

)

22
.

(7)
The disorder-averaged transmission coefficient can then be

written to leading order as,

〈T 〉 =

〈

1

|MT,22|2

〉

≃
1

∣

∣(MN
0 )22

∣

∣

2

〈

1

|(1 +
∑

j c jǫ j +
∑

j,l g jlǫ jǫl)|2

〉

≃
1

∣

∣(MN
0 )22

∣

∣

2

〈

1−
∑

j

(c j + c⋆
j )ǫ j

+
∑

j,l

(c jc l + c⋆
j c

⋆
l + c⋆

j c l)ǫ jǫl −
∑

j,l

(g jl + g⋆
jl)ǫ jǫl

〉

= TN

[

1 + 2ǫ2 Re
∑

j

(

1

2
|c j |

2 + c2
j − g j j

)]

,

(8)

where TN = 1/
∣

∣(MN
0 )22

∣

∣

2
is the transmittivity of the N-layer

stack in the absence of disorder (ǫ j = 0). Most importantly,
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in the final step upon averaging over disorder we assume

uncorrelated disorder, i. e. 〈ǫ jǫl〉 = δ jl ǫ
2, hence the j 6= l

terms can be neglected. The final expression tells us

how to compute the average transmissivity in terms only

of combinations of transfer matrices and their derivatives,

defined in Eq. (4).
To compute reflection we require instead the ratio of two

matrix elements, i. e. MT,12/MT,22 . In much the same way

as done for MT,22 above, we have

MT,12 ≃ (MN
0 )12



1 +

N
∑

j=1

f jǫ j +

N
∑

j=1

N
∑

l= j

h jlǫ jǫl



 , (9)

where

f j =
1

(MN
0 )12

(MN− j
0 M1M j−1

0 )12,

h jl =
1

(MN
0 )12

[

1

2
(MN− j

0 M2M j−1
0 )12 δ jl

+ (1− δ jl)(M
N−l
0 M1M

l− j−1
0 M1M

j−1
0 )12

]

. (10)

The disorder-averaged reflectivity of the multilayer stack is

obtained by combining Eq. (6) and (9) so that up to second

order in the disorder we have

〈R〉 = RN

[

1 + 2ǫ2Re

N
∑

j=1

(

c2
j +

1

2
|c j |

2 − g j j

−
1

2
( f j + f ⋆

j )(c j + c⋆
j ) +

1

2
| f j |

2 + h j j

)]

, (11)

adopting the same reasoning employed for Eq. (8) above

and with RN =
∣

∣(MN
0 )12/(MN

0 )22
∣

∣

2
being the reflectivity of

the N-layer stack in the absence of disorder (ǫ j = 0).
Further note that the powers of M0 entering TN , RN and the

coefficients in Eqs. (7) and (10) encompassing the effects of

the disorder can be computed directly through the relation

M± j
0 = U j−1(ξ) M±1

0 −U j−2(ξ) 1, (12)

with U j(ξ) being the Chebyshev polynomials of the second

kind [5] and ξ = Tr[M±1
0 ]/2.

3. Geometric Disorder

We now apply the above results to a disordered

photonic crystal where disorder affects the thickness

of the spacer layer between the dielectric slabs viz.

(a − d) → (a − d) + ǫ j with |ǫ j | ≪ (a − d), 〈ǫ j〉 = 0 and

the disorder strength being characterized by 〈ǫ2j 〉/(a − d)2.
The refractive index n is otherwise constant (n > 1).
Just as discussed above, the transfer matrix of the j th

layer of this system is equal to

M j =

(

eik0(a−d+ǫ j ) 0

0 e−ik0(a−d+ǫ j)

)

M

= (cos (k0ǫ j) 1 + i sin (k0ǫ j) σz ) M0, (13)
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0.1

1

ν/ν
B

Figure 1. Reflectivity spectra near the first stop-band of a

photonic crystal with geometric disorder: the green line is for

the ideal case (no disorder), the thick blue line and the dotted

orange line (almost superimposed) are for the disordered case

calculated, respectively, with numerical averaging of the exact

transfer matrix and with the perturbative approach of Eq. (11)
(see text for details).

the matrix M0 being the unit cell transfer matrix in the

absence of disorder, as given by Eqs. (1), (2), and σz is the

usual Pauli z matrix.

The total transfer matrix MT =
∏N

j=1 M j can be ex-

panded to second order in ǫ j (disorder parameter) as

MT ≃ MN
0

(

1−
1

2
k2
0

N
∑

j=1

ǫ2j

)

+ ik0

N
∑

j=1

ǫ j MN− j
0 σz M j

0

− k2
0

N−1
∑

j=1

N
∑

l= j+1

ǫ jǫlM
N−l
0 σz M l− jσz M j

0,

(14)
from which the coefficients in Eqs. (7) and (10) are

identified as

c j =
ik0

(MN
0 )22

(MN− j
0 σz M j

0)22,

g jl = −(1− δ jl)
k2
0

(MN
0 )22

(MN−l
0 σz M l− j

0 σz M j
0)22 −

1

2
k2
0δ jl,

(15)
and

f j =
ik0

(MN
0 )12

(MN− j
0 σz M j

0)12,

h jl = −(1− δ jl)
k2
0

(MN
0 )12

(MN−l
0 σz M l− j

0 σz M j
0)12 −

1

2
k2
0δ jl .

(16)
Note that for uncorrelated disorder the coefficients g j 6=l

and h j 6=l are immaterial, as discussed above, and only the

matrices MN− j
0 σz M j

0 are to be computed.

For illustrative purposes, we consider a photonic crystal

with d = 0.8 a , n = 1.7 and N = 10. In Fig. 1 we

show the reflectivity spectrum around the first stop-band,
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Figure 2. Difference between the reflectivity spectra of a photonic

crystal with geometric disorder calculated with full numerical

averaging and with Eq. (11): the dotted orange line is for a

disorder level of 25 percent (the same as in Fig. 1), while the blue

solid line is for a disorder level of 12 percent.

where 2π νB/c = π/(a − d + nd), for the ideal case (thin

green line) and a case with geometric disorder calculated

either with a numerical configurational averaging of the

exact transfer matrix (thick blue line) or with Eq. (11)

(dotted orange line). Transmission spectra can likewise be

obtained using Eq. (8) and simply add up to unity as the

system is lossless. Geometric disorder is quantified setting

ǫ j = (a − d) × 0.25× r j where r j is a random number

uniformly distributed in the interval [−1, +1], which implies

a disorder level of 25 percent, and the reflectivity spectra are

calculated either averaging over 1000 disorder realizations

the exact transfer matrix or via the perturbative approach

corresponding to Eq. (11). We hereafter deliberately use

quite a large degree of disorder, significantly exceeding what

is typically found in disordered photonic crystals, to assess

the range of validity of the present perturbative approach.

This point is further detailed in Sect. 5. As shown in Fig. 2

where the difference between the two calculations is plotted

for two levels of disorder, the perturbative approach works

very well.

4. Compositional disorder

The next special case is known as compositional disorder,

here where the disorder affects only the refractive index

value: n → n0 + ǫ j with n0 > 1, |ǫ j | ≪ (n0 − 1) and again

〈ǫ j〉 = 0, the disorder strength being characterised by

〈ǫ2j 〉/(n0 − 1)2.

Then, as defined previously in Eqs. (3), (4), the single

layer transfer matrix M of Eq. (2) can be expanded to

second order in the disorder ǫ j , obtaining for the single cell

transfer matrix M j

M j ≃

(

eik0(a−d) 0

0 e−ik0(a−d)

)(

M0 + ǫ j M1 +
1

2
ǫ2j M2

)

≡ M0 + ǫ j M1 +
1

2
ǫ2j M2,

(17)
where M0 is simply given by Eq. (2) with n replaced by n0

and the matrix derivatives, M1 and M2 can be conveniently

written in terms of the usual σ Pauli matrices as

M1 = −k0d sin (k0dn0) 1

+
i
2

(

n2
0 − 1

n2
0

sin (k0dn0) +
n2
0 + 1

n0

k0d cos (k0dn0)

)

σz

−
1

2

(

n2
0 + 1

n2
0

sin (k0dn0) +
n2
0 − 1

n0

k0d cos (k0dn0)

)

σy ,

(18)
and

M2 = −(k0d)2 cos (k0dn0) 1

+
i
2

(

2
n2
0 − 1

n2
0

k0d cos (k0dn0)

+

(

2

n3
0

−
n2
0 + 1

n0

(k0d)2
)

sin (k0dn0)

)

σz

−
1

2

(

2
n2
0 + 1

n2
0

k0d cos (k0dn0)

−

(

2

n3
0

+
n2
0 − 1

n0

(k0d)2
)

sin (k0d − n0)

)

σy . (19)

Then, as in the previous two sections the total transfer

matrix can be written to second order in the disorder

parameter ǫ j in the form of Eq. (5), with the coefficients

due to disorder, c j , g jl, f j , and h jl identified as in Eqs. (7)
and (10), and the reflectivity computed using Eq. (11).
Again, for uncorrelated disorder as discussed above, only

the matrices (MN− j
0 M1M j−1

0 ) and (MN− j
0 M2M j−1

0 ) are to

be computed.

As a numerical example, we consider the same photonic

crystal sample structure as above (d = 0.8 a , n0 = 1.7,

N = 10) and show in Fig. 3 its reflectivity spectrum around

the first stop-band (where 2π νB/c = π/(a − d + n0d)) for

the ideal case (thin green line) and a case with compo-

sitional disorder calculated either with numerical configura-

tional averaging of the exact transfer matrix (thick blue line)
or with Eq. (11) (dotted orange line). Here, compositional

disorder is introduced setting ǫ j = (n0 − 1) × 0.13 × r j

where r j is a random number uniformly distributed in the

interval [−1,+1], which implies a compositional disorder

level of 13 percent, and the reflectivity spectra are calculated

either averaging over 1000 disorder realizations the exact

transfer matrix or via the perturbative approach correspond-

ing to Eq. 11. As evident from Fig.4 where the difference
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Figure 3. Reflectivity spectra near the first stop-band of a

photonic crystal with compositional disorder: the green line is for

the ideal case (the same as in Fig. 1), the thick blue line and the

dotted orange line (almost superimposed) are for the disordered

case calculated, respectively, with an exact transfer matrix and with

the perturbative approach of Eq. (11) (see text for details).

0.7 1.10.9 1.3

∆
R

–0.05

0

ν/ν
B

0.05

Figure 4. Difference between the reflectivity spectra of a

photonic crystal with compositional disorder calculated with an

exact transfer matrix and with Eq. (11): the dotted orange line is

for a disorder level of 13 percent (the same as in Fig. 3, while the

blue solid line is for a disorder level of 6 percent.

between the two calculations is shown for two levels of

disorder, the perturbative approach works well also in this

case, as discussed below.

5. Numerical accuracy

It might seem from a direct comparison of the blue

solid line in Fig. 2 (12 percent geometric disorder) with

the dotted orange line in Fig.4 (13 percent compositional

disorder) that the degree of accuracy of the perturbative

approach would be worse for the latter case. However,

the significance of the nominal disorder levels quoted above

(e. g., 25 percent in Fig. 1 and 13 percent in Fig. 3) should

be scrutinized as we do in the following. A better way to

compare quantitatively the two disorder levels is to translate

both of them into the respective typical phase variation

they induce across the average period a for the specific

10 15 20 25

F

0.1

1

10

100

N

Figure 5. Grand averaging (F) of the norm 8 as a function

of N (see text). Frequency averaging F = 〈〈 f 〉〉 is over the gap

spectral region while disorder averaging f = 〈8〉 is for a 2% (small

points) and 30% (large points) degree of geometric disorder. Other

parameters are as in Figs. 1 and 2.

disordered systems considered above. For the case of

geometric disorder, this phase variation is 1φg = k0

√

〈ǫ2j 〉;

for the case of compositional disorder, 1φc = k0d
√

〈ǫ2j 〉.

For the instances shown Fig. 1 and Fig. 3, it follows
1φg

1φc
= 25

13
( a

d − 1) 1
n0−1

≃ 0.7, in turn the effective disorder

level of the blue solid line in Fig. 2 is only about one third of

that of the dotted orange line in Fig. 4. Thus, similar levels

of effective disorder of both compositional and geometric

type lead to a roughly comparable agreement between the

exact and the perturbative approach.

Another important question is how long a sample the

perturbative approach might handle. The generic expression

Eq. (5) of the total transfer matrix of a photonic crystal of

N cells can be written as

MT ≃ MN
0 (1 + 1M(N)) (20)

and is expected to hold provided 1M, corresponding to

the perturbative effects of disorder, remains small compared

to 1, as assessed for instance by its Frobenius norm

8 =
√

∑

i, j |1M i, j |2. For values of 8 comparable or larger

than 1, the perturbative approach is not feasible. To assess

its limits of validity, we consider averaging the norm 8 over

disorder realizations, viz., f = 〈8〉, in turn averaged over

the photonic gap frequency range, viz., F = 〈〈 f 〉〉 (grand
averaging). Figure 5 reports F as a function of N averaged

over 700 frequency values in the range 0.7 νB − 1.3 νB and

for 1000 realizations of two degrees of geometric disorder.

It is clear that F increases roughly exponentially with

N and that even for moderate values of N is much larger

than 1. It is interesting to note, however, that even for

the case N = 10 considered in Sect. 1, while for a disorder

level of 2 percent F is actually small, for a disorder level

of 30 percent it is comparable to 1, and yet even for a

disorder level of 25 percent as shown in Fig. 1 the reflectivity

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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Figure 6. Disorder averaged f for a geometric disorder of 30

percent as a function of frequency for N = 10, other parameters

are as in Figs. 1 and 2.

200 400 600 800

F

1

0.50

N

0.10

Figure 7. Grand averaging F for a compositional disorder levels

of 30 percent and n0 = 1.01 as a function of N, with d = 0.8 a .

spectrum appears to be described reasonably well by the

perturbative approach (see also Fig. 2). A similar behaviour

is also observed for compositional disorder. This is due

to the fact that the Frobenius norm 8 strongly depends

on frequency and increases dramatically within the gap as

shown in Fig. 6 where the average f of 8 over disorder

realizations is shown as a function of frequency. In the high

reflectivity frequency range around νB , R is close to one and

is not much affected by disorder, while away from the gap

the disorder perturbation matrix 1M is actually small. As a

matter of fact, the largest deviation of the reflectivity values

calculated perturbatively from those obtained from an exact

transfer matrix calculation occurs at the gap edges as shown

in Fig. 2 and 4. Thus, in general, the reflectivity spectra turn

out to be more accurate than expected on the basis of the

frequency averaged F shown in Fig. 5.

For the parameter values considered so far, in particular

the value of n0 = 1.7 representative of a solid state based

distributed Bragg reflector, the perturbative approach breaks

down for moderate values of N of the order of a few tens.

Another class of photonic crystals of current interest is that

based on cold atoms loaded into optical lattices [3,4] for

which only very small values of refractive index contrast are

realistic, and samples containing a few hundred periods are

typically used. In the latter case, the perturbative approach

works very well even for N values of the order of several

hundreds as shown in Fig. 7.

6. Summary and conclusions

We have presented a semi-analytic, perturbative approach

for calculating the effect of moderate disorder on the

reflection and transmission from a multilayer. We note

that already for a number of layers N on the order of

one hundred, the perturbative approach for the reflectivity

in Eq. (11) is computationally much more efficient than

the usual one based on numerical configurational averaging.

The computational shorcut here provided is essentially due

to the fact that the coefficients c j , g jl, f j , and h jl appearing

in Eq. (11) do not depend on disorder and are calculated

only once, from which the disorder-averaged reflectivity is

obtained analytically. The same applies for the transmittivity

in Eq. (8). The present method is particularly suited to deal

with atomic based photonic crystals [3–5], characterized

by a low level of disorder and a high number of periods,

especially when the single unit cell cannot be modeled as

above by piece-wise constant optical response functions, but

requires a more elaborate description [9,10].
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