
Optics and Spectroscopy, 2024, Vol. 132, No. 8

06

Zero-, one-, and two-dimensional modes in the Lugiato–Lefever model

with focused pumps: A brief review

© B.A. Malomed

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and the Center for Light-Matter

University, Tel Aviv University,

Tel Aviv, Israel

e-mail: malomed@tauex.tau.ac.il

Received May 25, 2024

Revised May 25, 2024

Accepted July 29, 2024

A review is presented for theoretical results demonstrating the creation of stable spatially confined 0D (zero-
dimensional), 1D, and 2D modes in the framework of the Lugiato-Lefever (LL) equations, which are fundamental

models of externally driven nonlinear passive optical cavities. The confinement is imposed, in the 2D setting, by

the tight harmonic-oscillator (HO) potential, or, in the framework of the 1D and 2D LL equations, by the tightly

focused 1D or 2D pump term. The 2D modes, which are strongly confined by the HO potential, and driven by

the zero-vorticity or vortical pump, realize effectively 0D pixels, with the respective vorticity. These solutions are

obtained by means of the perturbation theory (in the 1D case), variational approximation (VA) and Thomas-Fermi

approximation, as well as in the numerical form. The 1D LL equation with the tightly focused pump, which

is approximated by the delta-function, gives rise to an exact solution of the codimension-one (non-generic) type,

provided that the equation includes a cubic loss term, along with the linear one. In addition to the codimension-one

analytical solution, generic ones are obtained in the numerical form, featuring shapes which are close to those of the

analytical solution. These 1D modes are completely stable. The 2D LL equation including the focused pump with

vorticity S = 0, 1, 2, ..., produces pump-pinned modes, that are found by means of VA and numerically. Stability

regions are identified for these modes in the system’s parameter space. Under the action of the self-focusing cubic

nonlinearity, those vortex modes which are unstable spontaneously transform into necklace-shaped states. On the

other hand, the defocusing nonlinearity maintains stability of the vortex modes, at least, up to S = 5.

Keywords: laser cavity; focused pump; localized modes; vortices; stability; variational approximation; Thomas-

Fermi approximation; perturbation theory.
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1. Introduction

Equations of the Lugiato-Lefever (LL) type are com-

monly known as dynamical models for nonlinear passive

optical cavities, with the intrinsic loss compensated by

a pump term, which represents an external laser beam

driving the cavity [1]. These models provide solutions

for fundamental phenomena in laser optics, such as cavity

solitons [2–6], chimera modes [7], switching waves [8],
vortices [9,10], frequency combs [11–18], optical rogue

waves [22–24], and self-trapped spatiotemporal modes [25].
In the properly scaled form, the LL equation for local

complex amplitude φ (x, y.t) of the amplitude of the optical

field trapped in the two-dimensional (2D) pumped lossy

cavity with coordinates (x, y) and scaled time t is [1,26,27]

i

(
γ +

∂

∂t

)
φ =

[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ 1

+ U (x, y) + σ |φ|2
]
φ + E (x, y) , (1)

where γ > 0 is the loss coefficient, E (x, y) represents

the pump field, which in most cases is considered as the

uniform one (E = const), but it may also be a localized

function of the coordinates, if the pump is provided by a

tightly focused laser beam [28–31], 1 ≷ 0 is the detuning of

the pump with respect to the cavity, and effective potential

U (x, y) may be realized by spatial modulation δn (x, y)
of the local refractive index in the optical cavity, so that

U (x, y) ∼ −δn (x, y). Further, the Laplacian in Eq. (1)
represents the paraxial diffraction (in the scaled form), while

σ < 0 and σ > 0 correspond, severally, to the self-focusing

or defocusing cubic nonlinearity of the optical material. By

means of additional rescaling applied to Eq. (1) one may fix

γ ≡ 1, which is set below.

A relevant possibility is to consider the 2D LL equation

with the pump provided by a laser beam with embedded

vorticity (winding number) m = ±1,±2 ... . The natural

form of the vortex beam close to its pivot is written, in

polar coordinates (r, θ), as

E = E0r
|m|eimθ (2)

with E0 = const [28]. Naturally, the vortex beam supports

vortical solutions of the LL equation with the same winding

number m, while m = 0 corresponds to the fundamental

modes.
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A characteristic of the confined field is its total power (or
norm, mathematically speaking),

P =

∫ ∫
|φ(x, y, t)|2dxdy (3)

(this definition implies that the integral converges). A simple

corollary of Eq. (1) is the evolution equation for the power,

dP
dt

= −2γP − 2

∫ ∫
Im{E∗ (x, y)φ(x, y, t)}dxdy, (4)

where ∗ stands for the complex conjugate.

An important feature of physically relevant equations is

a possibility to represent them in a Lagrangian form (see,
e.g., Refs. [32] and [33]). Equation (1) in its usual form

cannot be derived from a Lagrangian, as it includes the

dissipative term, γ∂φ/∂t . Nevertheless, the well-known

substitution [34],

φ(x, y, t) ≡ 8(x, y, t) exp (−γt) , (5)

eliminates it, introducing, instead, time-dependent coeffi-

cients in the LL equation:

i
∂

∂t
8 =

[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ 1

+ U (x, y) + σe−2γt |8|2
]
8 + E (x, y) eγt . (6)

Unlike the underlying equation (1), the transformed

one (6) can be derived from a real time-dependent La-

grangian [28,35],

L =

∫ ∫
dxdy

{
i
2

(8∗
t 8− 8∗8t) +

1

2

(
|8x|2 + |8y|2

)

+ [1 + U (x, y)] |8|2 +
σ

2
e−2γt |8|4

+ eγt (E (x, y)8∗ + E∗ (x, y)8)} .

(7)
The availability of the Lagrangian representation for the

LL equation is an essential asset, making it possible

to apply the variational approximation (VA), and thus

to obtain important results in an approximate analytical

form [28,29,31,32,35]. The one-dimensional (1D) version of

the LL equation and the respective equations (4) and (7) are
obtained by dropping coordinate y in the above equations,

keeping only x in them.

The objective of the present article is to produce a

concise review of previously obtained theoretical (analytical
and numerical) findings for the 1D and 2D LL equations

which maintain spatially confined states, either under the

action of a localized pump, or imposing the localization

by a strongly confining potential U (x.y). The presentation

chiefly follows original works [28,29,31], with the results for

the zero-, one-, and two-dimensional LL equations reported

in Sections 2, 3, and 4, respectively (“zero-dimensional”

pertains to the 2D LL equation with a tightly confining

potential, that effectively reduces the dynamics to that of a

pixel [39,40], i.e., a point-like object.

In addition to that, it is relevant to mention that recent

work [30] addressed localized modes maintained by the

tightly focused pump in the 1D LL equation with the usual

diffraction term replaced by its fractional counterpart,

−∂2/∂x2 →
(
−∂2/∂x2

)α/2
, (8)

where α, taking values 1 < α < 2, is the fractional Lévy in-

dex [36–38], which defines the fractional pseudodifferential

operator (8) as the Riesz derivative [41],

− ∂2

∂x2
φ =

1

2π

∫ +∞

−∞

dp|p|α
∫ +∞

−∞

dξei p(x−ξ)φ(ξ). (9)

The analysis reported in Ref. [30] has identified shapes of

localized modes pinned to the focused pump, and their

stability domains, in the framework of the 1D fractional

LL equation.

The article is completed by briefly formulated conclusions

in Section 6.

2. Fundamental and vortical modes
(
”
zero-dimensional“ones) produced

by the LL equation with the tightly
confining potential

The effectively 0D pixel is modeled by Eq. (1) with

spatially uniform pump, E = const, and tightly confining

harmonic-oscillator (HO) potential,

UHO (x, y) =
(
�2/2

) (
x2 + y2

)
. (10)

Large strength �2 of the HO potential (10) determines

an effective radius of the pixel, as the HO radius in

the Schrödinger equation with the potential (10), viz.,

rHO = 1/
√
�. The asymptotic form of the respective

stationary solution of Eq. (1) at r → ∞ is

φ(r ) ≈ − 2E

(�r )2
+

4 (1− iγ) E

(�r )4
. (11)

In this section, following Ref. [28], analytical approxima-

tions are presented first, viz., the VA for the zero-vorticity

fundamental modes, and the Thomas-Fermi approximation

(TFA), which is relevant for vortex modes. This is followed

by a summary of numerical results for both fundamental

(zero-vorticity) and vortex pixel states. In particular, the

numerical results are compared to the analytical predictions.

2.1. The variational approximation (VA) for the
zero-vorticity (fundamental) modes

Proceeding to the VA, Eq. (11) suggests one to adopt

the following variational ansatz for the optical amplitude

8 (x, y, t), which is the solution of Eq. (6) (recall this
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equation admits the variational representation based on

Lagrangian (7)) [28]:

8 (x, y, t) = ǫ
f (t) eγt+iχ(t)

1 + r 2 f (t) eiχ(t)
, (12)

ǫ ≡ −2E
�2

, (13)

where f (t) and χ(t) are real variables (variational parame-

ters). Note that the integral power (3) of the ansatz is

P =
4πE2 f
�4

χ

sin χ
. (14)

The substitution of ansatz (12) in Eq. (7) and the inte-

gration,
s

dxdy, produces, after simple manipulations [28],
the following VA Lagrangian,

e−2γt

πǫ2
LVA =

1

2
f q1(χ)

dχ
dt

− 1

2
q2(χ) sin χ

d f
dt

+ f 2q2(χ)

+ 1 f q1(χ) +
σ ǫ2

8
f 3q3(χ) −�2q1(χ) cos χ

− �2

4

∫
dχ[q3(χ) sin χ] ,

(15)
where q1(χ) ≡ χ/ sin χ, q2(χ) ≡ [(sin χ − χ cos χ) / sin3 χ,
and q3(χ) ≡ [2χ − sin (2χ)]/ sin3 χ .
The variation of the respective action,

∫
LVAdt, with

respect to variables f (t) and χ(t), produces the Euler-

Lagrange equations [28]:

1

2
[q2(χ) cos χ + q′

2(χ) sin χ + q1(χ)]
d f
dt

+
(
γ f −�2 sin χ

)
q1(χ) +

(
�2 cos χ − 1 f

)
q′
1(χ)

− f 2 q′
2(χ) − g

8
f 3q′

3(χ) +
�2

4
q3(χ) sin χ = 0 , (16)

1 · q1(χ) + 2 f q2(χ) +
3g
8

f 2 q3(χ) + γq2(χ) sin χ

+
1

2
[q2(χ) cos χ + q′

2(χ) sin χ + q1(χ)]
dχ
dt

= 0 , (17)

where (see Eq. (13))

g = σ ǫ2 ≡ 4σE2/�4. (18)

While it may seem that Eqs. (16) and (17) are singular

at χ = 0, a simple analysis demonstrates that all the

singularities cancel, while a singularity is indeed possible

at χ = π.

First of all, stationary (fixed-point, FP) solutions of

Eqs. (16) and (17), with d f /dt = dχ/dt = 0, are deter-

mined by the system of equations

(
�2 sin χ − γ f

)
q1(χ) +

(
1 f −�2 cos χ

)
q′
1(χ)

+ f 2 q′
2(χ) +

g
8

f 3q′
3(χ) − �2

4
q3(χ) sin χ = 0, (19)

1q1(χ) + 2 f q2(χ) +
3g
8

f 2 q3(χ) + γq2(χ) sin χ = 0,

(20)
where the q′

1,2,3 ≡ dq1,2,3/dχ . It is easy to find approximate

solutions of Eqs. (19) and (20), assuming that they have

|χ| ≪ π (see Eq. (12)). Then, in the lowest approximation,

which takes into regard the condition of the strong con-

finement (large �2 in potential (10)), Eqs. (20) and (19)
produce explicit approximate solutions:

f ≈ −2±
√
4− 18g1
3g

, (21)

χ ≈ γ
(
−2±√

4− 18g1
)

g�2
, (22)

which exist under condition g1 < 2/9 (note that it always

holds for 1 < 0).
Another approximate solution of Eqs. (19) and (20) can

be found for large values of detuning 1, provided that g1 is

negative (see Eq. (18)):

f ≈
√
−21/g − 2/ (3g) , (23)

χ ≈ (15/2)γ/1. (24)

In the general case, the FP solutions of Eqs. (19) and (20),
where, as said above, one may fix γ ≡ 1, depend on three

parameters: 1 ≷ 0, g ≷ 0, and �2 > 0.

In addition to finding the FPs, the full dynamical version

of the VA, represented by Eqs. (16) and (17), can be used

to analyze stability of the FPs, as well as to predict the

evolution of unstable states. In reality, such a dynamical

analysis turns out to be very cumbersome, while direct

numerical simulations are actually more efficient [28].
The predictions of the VA for the stationary states are

compared to numerical solution below in Figs. 1 and 2,

demonstrating, in most cases, good accuracy of the VA

method.

2.2. The Thomas-Fermi approximation (TFA)

Patterns supported by the combination of trapping poten-

tial (10) and vortex pump (2) are looked for as solutions

to the stationary version of Eq. (1) with the same integer

vorticity m as in the pump:

φ (r, θ) = eimθA(r ), (25)

where complex amplitude function A satisfies the radial

equation.

[
1

2

(
d2

dr2
+

1

r
d
dr

− m2

r 2

)
− 1

+ iγ − �2

2
r 2 − σ |A|2

]
A = E0r

|m|. (26)

With the structure of the vortex pump defined as per

Eq. (2), Eq. (26) produces localized vortex modes only for

m = 0 and ±1.
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Figure 1. Profiles of trapped fundamental modes, ̺(x) (see Eq. (30)), obtained in Ref. [28] by dint of the imaginary-time simulations of

the 2D equation (1), are shown by chains of yellow circles. Black solid lines are counterparts of the same profiles produced by the VA

based on ansatz (12) and Eqs. (21) and (22). The mismatch values are (a) 1 = −1, (b) 1 = −4, (c) 1 = −10, with other parameters

fixed as �2 = 100, γ = 1, E = 10, and g = 1 (the self-defocusing sign of the nonlinearity, see Eq. (18)).
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Figure 2. The same as in Fig. 1, but for (a) 1 = 1, (b) 1 = 4, (c) 1 = 10, with �2 = 100, γ = 1, E = 10, and g = −1 (the self-focusing
nonlinearity).

The TFA for vortex solitons may be applied here, cf.

Ref. [43]. This approximation implies dropping the radial

derivatives in Eq. (26), which leads to a complex cubic

equation for amplitude A, which is relevant for σ > 0 (the
self-defocusing sign of the cubic nonlinearity) and 1 > 0

(positive mismatch in Eq. (1)):

[
1− iγ +

1

2

(
m2

r 2
+ �2r 2

)
+ σ |A|2

]
A = −E0r

|m| . (27)

Equation (27) strongly simplifies in the limit of large

1 > 0, when both the imaginary and and nonlinear terms

may be omitted:

A(r ) = −E0r
|m|

[
1 +

1

2

(
m2

r 2
+ �2r 2

)]−1

. (28)

For |m| = 1, Eq. (28) produces the ring-shaped vortex

mode, with the maximal intensity located at

r 2max =
(√

12 + 3�2 + 1
)
/�2. (29)

Recall that the TFA represented by Eqs. (27)−(29) is

relevant only for m = 0 and m2 = 1. For m = 0, the

TFA-predicted profiles of the trapped modes are compared

below to their numerically found counterparts in Fig. 3.

For m2 = 1, the comparison of values given by Eq. (29)
with their counterparts extracted from numerically found

vortex-ring shapes (see, e.g., Fig. 6 below), demonstrates

that the approximate analytical values of r 2max, as given by

Eq. (29), are smaller than the numerical ones by 11% for

1 = 0, and by 6% for 1 = 10 [28]. As expected, the TFA

provides better accuracy for large 1, but even for 1 = 0 the

prediction may be qualitatively correct.

2.3. Numerical results for zero-vorticity
(fundamental) modes

2.3.1. Shapes of the stationary modes Localized

fundamental-mode solutions to Eq. (1), with the confining

potential (10) and constant pump E, were found in Ref. [28]
by means of the well-known imaginary-time propagation

method [44,45]. The initial guess for the numerical solution

was chosen as per the VA ansatz (12), with f and χ taken

according to Eqs. (21) and (22).
In Fig. 1, three typical examples of the 2D fundamental

modes, produced by the numerical solution, are presented

by their 1D integrated intensity profiles,

̺(x) ≡
∫ +∞

−∞

|φ(x, y)|2dy, (30)

along with their analytically predicted VA counterparts,

based on ansatz (12) and simplified variational equations

(21) and (22), for three different values of detuning 1: (a)
1 = −1, (b) 1 = −4, and (c) 1 = −10, for g = 1 (the self-

defocusing nonlinearity, see Eq. (18)), large confinement

strength, �2 = 100, and the pump strength E = 10.
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Figure 3. Similar to Figs. 1 and 2, chains of yellow circles

represent profiles of the fundamental modes, ̺(x), obtained in

Ref. [28] from the imaginary-time solution of Eq. (1), for the self-

defocusing nonlinearity, g = 1, and large positive values of the

mismatch: 1 = 10 (a) and 1 = 20 (b). Black solid lines display

analytical counterparts of the same profiles, produced by the TFA

as per Eq. (31). Other parameters are �2 = 100, γ = 1, and

E = 10.

Similar results obtained for the self-focusing nonlinearity

(with g = −1, see Eq. (18)) and three positive values of

the mismatch, viz., (a) 1 = 1, (b) 1 = 4, and (c) 1 = 10,

with the same fixed values �2 = 100 and E = 10 as in

Fig. 1, and displayed in Fig. 2. For both the self-defocusing

and focusing signs of the nonlinearity, g = ±1, the VA

profiles demonstrate good accuracy in comparison to their

numerical counterparts.

Figure 3 exhibits typical profiles of the fundamental

modes in the case when the TFA applies, viz., the

nonlinearity is defocusing and mismatch 1 takes large

positive values. In particular, the integrated intensity profile

produced by the substitution of the TFA solution (28) with

m = 0 in definition (30) is

̺TFA(x) =
2πE2

�4

(
21

�2
+ x2

)−3/2

. (31)

Figure 3 corroborates that the TFA is quite accurate in the

range of its applicability.

2.3.2. Stability of the fundamental modes The

stability of the fundamental modes was tested in Ref. [28]
by means of real-time simulations of Eq. (1), adding 5%

random noise to the input and using the well-established

split-step algorithm [46]. The systematic simulations were

performed using the input predicted by the VA based on

ansatz (12) and simplified variational equations (21) and

(22). In fact, the difference of the VA-predicted shape

from its numerically predicted counterpart was an additional

initial perturbation, which helps one to test the stability of

the fundamental modes.

First, the simulations demonstrate the stability of the

fundamental modes in the case of the self-defocusing,

σ = +1 in Eq. (1): the perturbed input quickly relaxes

towards the stationary fundamental mode (sometimes ex-

hibiting persistent oscillations around it, with a relatively

small amplitude, see details in Ref. [28]). A similar outcome

of the perturbed evolution was observed in the case of the
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Figure 4. The strong instability of the fundamental mode

produced (in Ref. [28]) by the simulations of Eq. (1) with the self-

focusing nonlinearity (σ = −1). Panels (a, b) and (c, d) pertain to

values of the mismatch 1 = 1 and 1 = 10, respectively. The other

parameters are E = 10, �2 = 100, and γ = 1. Panels (a,c) and

(b,d) display, severally, the input at t = 0 and output at t = 10.

self-focusing, with σ = −1, and sufficiently large positive

values of mismatch 1. The latter finding is qualitatively

explained by the fact that the lossless unpumped limit of

the 2D LL equation (1), with γ = E = 0, σ = −1, and

the trapping HO potential (10), i.e., the 2D nonlinear

Schrödinger equation (NLS) with the HO potential term

and cubic self-focusing, admits a completely stable family of

fundamental solitons, with the negative chemical potential,

which corresponds to 1 > 0, in terms of Eq. (1) [47].

On the other hand, at some other values of parameters,

Eq. (1) with the self-focusing sign, σ = −1, gives rise to

strong instability of the fundamental modes through fast

fragmentation, as shown in Fig. 4. This dynamical regime

may be considered as a manifestation of the modulational

instability in the LL equation, driven by the cubic self-

focusing [11,26]. Further, the large size of local amplitudes

in small spots, which is demonstrated by the development of

the instability in Fig. 4, implies the trend towards the onset

of the 2D critical collapse driven by the self-focusing cubic

term [48,49].

The existence and stability of the localized fundamental

modes produced by Eq. (1) with the confining HO potential

(10) are summarized by charts displayed in Fig. 5 for three

values of the strength of the HO potential: (a) �2 = 4, (b)
�2 = 16, and (c) �2 = 100. The stability area is composed

of gray and white boxes, which correspond, respectively,

to static outcomes of the simulations, or those featuring

small residual oscillations, on top of the stationary shapes.

Unstable solutions were found in the area not covered by

boxes. As mentioned above, the stability domain is the one

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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of self-defocusing (σ = +1 in Eq. (1), and also a smaller

domain of the self-focusing (σ = −1), combined with large

positive values of mismatch 1. In the stability areas shown

in Fig. 5, black spots highlight values of the parameters at

which the output profiles of the static solutions are very

close to the input ones, i.e., the VA, even in the simplified

form based on Eqs. (21) and (22) provides very accurate

predictions.

Essentially the same stability charts which are displayed

in Fig. 5 can be produced by (longer) simulations of Eq. (1)
which start not from the VA ansatz, but simply from the

zero input. This fact stresses the robustness of the eventual

results.

2.4. Vortex states maintained by the tightly
confining potential

The approximate analytical results for localized vortex

modes supported by the combination of pump (2) with

embedded vorticity m = 1 and tight confining potential (10)
are produced by means of TFA, as shown above by

Eqs. (25)−(29). Numerical results for stable vortex modes

were produced in Ref. [28] by direct simulations of the

respective equation (1), starting from the zero input. This

simulation scenario is appropriate, as vortices, if they are

stable, are strong attractors drawing solutions which develop

from the zero.

A typical example of a stable ring-shaped vortex mode

produced by Eq. (1) with the self-defocusing nonlinearity

is displayed in Fig. 6. Unstable vortex modes suffer strong

fragmentation, similar to the picture displayed above for

the unstable fundamental modes in Fig. 4 (see details in

Ref. [28]).
More complex stable vortex profiles were found too. As

shown in Fig. 7, they feature a multi-ring radial structure,

and a spiral shape of the phase distribution (note that this

complex mode is, quite surprisingly, stable as the solution

of Eq. (1) with the self-focusing nonlinearity). Actually,

emerging spirality in the phase pattern can be seen in

Fig. 6, b too. The spirality is explained by the fact that

Eq. (26) produces amplitude A(r ) as a complex function,

as seen in Eqs. (11) and (27). The spirality of vortex

modes is a well-known feature of 2D complex Ginzburg-

Landau (CGL) equations [50,51] (in which spatial patterns

are maintained not by the pump field, but by the intrinsic

gain), although in solutions of the CGL equation the phase

spirality is not usually related to a multi-ring radial structure.

The stability of the multi-ring patterns produced by the

present version of the LL equation is a remarkable findings,

as similar patterns tend to be completely unstable in many

other models [53,54].
The results for the vortex modes are summarized in Fig. 8

by means of stability charts in the plane of the mismatch

and nonlinearity strength, (1, σ ), for �2 = 4 in Eq. (10)
and E0 = 1 or 2 in Eq. (2). Note that, for the self-

focusing nonlinearity (σ < 0), the stability domain for the

vortex modes is essentially larger than its counterpart in the

chart for the fundamental (zero-vorticity) modes, cf. Fig. 5,

which was also plotted for �2 = 4. This inference may be

explained by the fact that the vanishing of the modal field

A(r ) at r → 0 (see Eq. (28)) makes the central area of the

vortex mode nearly
”
empty“, thus preventing the occurrence

of the modulational instability in it [28].

The gray and yellow areas in Fig. 8 are populated,

severally, by the single- and multi-ring vortex structures,

see examples in Figs. 6 and 7, respectively. Note that,

in panel (b), the stable multi-ring modes are found solely

for σ = 0, which implies the linearized version of the LL

Eq. (1). On the other hand, in panel (b) they exist also

at σ 6= 0 (as solutions of the nonlinear equation), provided
that mismatch 1 takes negative values with sufficiently large

|1|. This observation is easily explained by the fact that the

combination of the basic terms in Eq. (26) with m = 1 and

1 < 0,
[
1

2

(
d2

dr2
+

1

r
d
dr

− 1

r 2

)
− 1

]
A, (32)

is the same as in the usual Bessel equation, hence the multi-

ring structures naturally correspond to the oscillatory shape

of the standard Bessel function, J1
(√

−2/1r
)
.

3. One-dimensional localized modes
maintained by the LL equation with a
tightly focused pump

Localized 1D modes can be readily generated by the LL

equation with a tightly focused pump, even in the absence

of any confining potential. This possibility was investigated

in Ref. [29] in the framework of the model represented by

the following equation:

i

(
γ +

∂

∂t

)
φ =

(
−1

2

∂2

∂x2
+ 1 + σ |φ|2

)
φ + E(x), (33)

cf. its 2D counterpart (1). Similar to Eq. (1), σ = −1 and

+1 define the self-focusing and defocusing sign of the cubic

term, while the absolute value of the nonlinearity coefficient

is fixed here as |σ | = 1.

Note that, while the usual form of the 1D LL equa-

tion (33) is written in the notation corresponding to a

spatial laser cavity, the same equation with t replaced by the

propagation distance, z, and coordinate x replaced by the

reduced time, τ ≡ t − x/Vgr (here Vgr is the group velocity

of the carrier wave) provides a dynamical model of a passive

fiber temporal-domain cavity, pumped by a copropagating

optical wave, E(τ ) [55]. In particular, the case of a tightly

focused pump, considered in this section, corresponds to

the pump wave represented by a temporal-domain soliton.

Stability of stationary modes produced by Eq. (33) may

be enhanced if a cubic-loss term, represented by coefficient
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Figure 5. The existence area of stable fundamental modes produced (in Ref. [28]) by real-time simulation of Eq. (1). To generate the

area, the input was used in the form of ansatz (12) with parameters predicted by the simplified VA equations (21) and (22), adding
random noise at the 5% amplitude level. The three panels correspond to � = 2 (a), � = 4 (b), and � = 10 (c). In gray boxes, the

simulations quickly converge to stationary states, while in white boxes the stable modes keep small intrinsic oscillations. Instability, in the

form of the fragmentation (see Figs. 4 (b) and 4 (d)), takes place in the area not covered by boxes. The results for the linear version of

Eq. (1), corresponding to g = 0, are not included, as all the stationary solutions are obviously stable as solutions of the linear equation.
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Figure 6. (a) Local-intensity |φ (x, y) |2 and (b) phase profiles of a stable vortex mode produced in Ref. [28] by the simulations of

Eq. (1) with vortex pump (2) (m = 1) and confining potential (10). Panel (c) depicts the radial profile of the vortex mode along the cross

section y = 0. Parameters are σ = 2 (the self-defocusing nonlinearity), 1 = −8, γ = 1, � = 2, and E0 = 1.

Ŵ > 0, is added to the linear loss in Eq. (33):

i

(
γ + Ŵ|φ|2 +

∂

∂t

)
φ

=

(
−1

2

∂2

∂x2
+ 1 + σ |φ|2

)
φ + E(x). (34)

The cubic loss term represents the effect of the two-photon

absorption, if it takes place in the laser cavity.

3.1. The perturbative treatment of the 1D mode

In the case of the self-focusing nonlinearity and positive

detuning (σ = −1 and 1 > 0 in Eq. (33)), the perturbation

theory was developed in Ref. [29], treating iγφ and E(x)
as small terms. In the zero-order approximation, a localized

solution is taken as the usual NLS soliton [56],

φ(x) = e−i ζ
√
21 sech

(√
21x

)
. (35)

The constant phase shift ζ in this approximation for the

stationary mode is determined by the balance condition for

the integral power,

P =

∫ +∞

−∞

|φ(x)|2 dx, (36)

which is the 1D version of definition (3). Indeed, it follows
from the power-balance condition, dP/dt = 0, as produced

by Eq. (34), that the 1D stationary solution must satisfy the

integral condition

γP + Ŵ

∫ +∞

−∞

|φ(x)|4 dx = −
∫ +∞

−∞

E(x)Im {φ(x)} dx

(37)
(cf. its 2D counterpart following from Eq. (4)). The

substitution of approximation (35) in Eq. (37) predicts the

value of the phase shift:

sin ζ =
2 [γ + (4/3)Ŵ1]

∫ +∞

−∞ E(x) sech
(√

21x
)

dx
. (38)

Note that, even for the weak delocalized

pump, E(x) = const ≡ E0, with small E0, integral∫ +∞

−∞
E(x)sech

(√
21x

)
dx converges, hence the

approximation based on Eqs. (35)−(38) predicts a
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Figure 8. Stability areas in the plane of (1, σ ) for the vortex modes numerically generated in Ref. [28] by the real-time simulations of

Eq. (1) with the confining potential (10) and vortex pump (2) with winding number m = 1. Other parameters are γ = 1, �2 = 4, and

E0 = 1 in (a), or E0 = 2 in (b). Stable single-ring vortices (see Fig. 6) are found in the gray areas, while the yellow ones are populated

by stable multi-ring vortex modes with the spiral phase structure, see Fig. 7. No stable vortices were found in the white area.

localized mode created on top of a flat background, with

a small amplitude φ0 ≈ E0/ (1 + iγ), under the condition

that the amplitude
√
21 of solution (35) is much larger

than φ0, i.e., E
2
0 ≪ 13 [29].

3.2. A particular exact solution and states close

to it

The gain localized in a very narrow region may be

approximated by the Dirac’s delta-function,

E(x) = E0 δ(x). (39)

In this case, the homogeneous version of Eq. (34),

i

(
γ + Ŵ|φ|2 +

∂

∂t

)
φ =

(
−1

2

∂2

∂x2
+ 1 + σ |φ|2

)
φ, (40)

must be solved with the boundary condition at x = 0

determined by the integration of Eq. (34) with the pump

term (39) in an infinitesimal vicinity of x = 0. The latter

condition amounts to the jump of the first derivative at

x = 0:
dφ
dx

|x=+0 −
dφ
dx

|x=−0 = 2E0. (41)

An exact solution of Eq. (40) with the boundary

condition (41) is [29]

φ(x) =
Aei ζ

[sinh (λ (|x| + ξ))]1+iµ
, (42)

with parameters (µ is called the chirp)

µ = −γ/λ2, (43)

A2 = 3γ/ (2Ŵ) , (44)

λ2 =
γ

4Ŵ

(√
9σ 2 + 8Ŵ2 + 3σ

)
, (45)

ξ =
1

2λ
arcosh

(
1 +

χ

E2
0

+

√
4 +

χ

λ2E4
0

)
, (46)

ζ = π − arctan µ + µ ln (sinh (λξ)) , (47)

where χ ≡ A2λ2
(
1 + µ2

)
and

arcosh(Z) ≡ ln
(

Z +
√

Z2 − 1
)
.

This exact solution is a non-generic one, as it exists at the

single value of the mismatch parameter,

10 =
1

2

(
3σγ

Ŵ
− λ2

)
(48)
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(in other words, it is a codimension-one type of the exact

solution, with
”
one“ referring to one constraint (48), which

must be adopted to obtain the solution). The ingredient

of the exact solution given by Eq. (45) is valid, giving

λ2 > 0, for both the focusing and defocusing signs of the

nonlinearity, σ = −1 and +1.

Note that the presence of the cubic-loss term in Eq. (34),
with Ŵ > 0, is necessary for the existence of the exact

solution. Indeed, letting Ŵ → 0 in Eq. (45) leads to a

singular limit:

λ2 ≈
{

3γ/ (2Ŵ) at σ = +1,

(1/3)Ŵγ at σ = −1.
(49)

It is relevant to mention that exact solutions of the

codimension-one type for the pinned states were found too

in the 1D model based on the CGL equation with the delta-

function gain (rather than pump). The difference is that the

CGL equation with the localized gain also admits the zero

state, which may or may not be stable [57].

3.3. Numerical results

In Ref. [29], numerical solution of Eq. (34) with the

delta-function pump (39) was performed using the standard

Gaussian approximation for the delta-function,

δ̃(x) = (
√
πw)−1 exp(−x2/w2), (50)

with a sufficiently small width w . On the other hand, if a

discretized form of the LL equation, with a mesh size 1x,
is used for the numerical solution, width w in Eq. (50) may

not be too small in comparison to 1x. In fact, it was found

that the numerical scheme was stable for w > 1x/2 [29].
With these approximations, numerical stationary solutions

were produced by direct simulations of Eq. (34), starting
from the zero input, φ(x, t = 0) = 0. The output, to

which the numerical solution relaxed, was categorized as

a stable mode if it maintained a static profile for a long

time, t ∼ 1000, which corresponds to & 100 characteristic

diffraction times tdiffr. According to Eq. (34), this time scale

for a mode of width 3 is estimated as tdiffr ∼ 232.

In Fig. 9, typical examples of the analytically found

solutions for the modes pinned to the delta-function are

plotted for the focusing and defocusing nonlinearities, i.e.,

for σ = −1 and σ = +1, respectively, along with their

numerically found counterparts. In this case, the parameters

of Eqs. (34) and (39) are set as γ = Ŵ = E0 = 1, and

the value of mismatch 1 is taken as per Eq. (48), i.e.,

10(σ = −1) ≈ −1.64, 10(σ = +1) ≈ 0.61. The numerical

solutions plotted in the same panels were produced for three

different values of the width used in the regularized delta-

function (50), viz., w = 0.05, 0.10, and 0.15.

Because the codimension-one analytical solution, repre-

sented by Eqs. (42)−(47), is valid under constraint (48)
imposed on the parameters, it is relevant to explore the

structural stability of the pinned modes against deviations

from this constraint. To this end, the analytical and

numerical solutions found with the value of mismatch

1 = 10, selected as per Eq. (48), and numerical solutions

found for 1 = 0.7510 and 1.2510 are plotted in Fig. 10.

It is seen that such considerable changes of 1 produce a

weak effect, i.e., the solutions are structurally stable ones.

In other words, the codimension-one analytical solution for

the pinned mode adequately represents generic ones.

The solutions displayed in Figs. 9 and 10 for the self-

defocusing and focusing signs of the nonlinearity (σ = +1

and −1, respectively) exhibit counter-intuitive features: the

pinned modes are more tightly localized and have a larger

amplitude in the self-defocusing case than in case of

focusing. This feature is explained by the effect of the cubic

loss term ∼ Ŵ in Eq. (34). Indeed, the shape of the modes

is essentially affected by their chirp µ (see Eqs. (42) and

(43)), which is generated by that term.

The results produced by the analytical solution for the

pinned mode and its numerically found counterpart are

summarized in Fig. 11, which displays the effect of the

variation of the pump’s amplitude E0 (see Eq. (50))
and dissipation coefficient γ in Eq. (34) on the peak

local power, max[|φ|2] ≡ |φ (x = 0)|2, and integral power

P (see Eq. (36)) of the analytical solution, given by

Eqs. (42)−(47), and its numerically found counterparts.

The results are displayed for both the defocusing (σ = +1)
and focusing (σ = −1) signs of the cubic self-interaction.

These plots are relevant for the realization of the model, as

both the pump’s strength E0 and effective loss rate γ can be

readily controlled in the experiment (in particular, γ can be

adjusted as the difference between the background material

loss and lasing gain in the cavity). Naturally, the powers

gradually increase with the growth of E0, and decay with

the growth of γ .

Finally, systematic simulations of the perturbed evolution

of the pinned modes, performed in the framework of

Eqs. (34) and (39), corroborate the stability of all numer-

ical solutions approximating the exact analytical one [29].
Furthermore, all the solutions were found to be strong

attractors, to which the direct simulations Eq. (34) quickly

relax, starting from the zero input, φ(x, t = 0) = 0.

4. Two-dimensional localized modes
maintained by the LL equation with a
focused pump

4.1. The zero-vorticity pump

As a direct extension of the 1D LL equation (33), one
can consider its 2D version with a focused pump term [29]:

i

(
γ +

∂

∂t

)
φ =

[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)

+ 1 + σ |φ|2
]
φ + E(x, y). (51)

Here the cubic loss is not included (Ŵ = 0, cf. Eq. (33)),
as, unlike the analytical 1D solution (42), this term is not
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Figure 9. Solid red lines represent the exact solution (42) for the mode pinned to the delta-function pump, along with a set of numerical

solutions based on the use of the regularized delta-function (50), with the finite width w = 0.05 (dashed orange lines), w = 0.1 (dashed-
dotted gray lines), and w = 0.15 (dotted black lines). The results displayed in panels (a) and (b) pertain to the self-focusing (σ = −1)
and self-defocusing (σ = +1) signs of the nonlinearity, respectively. Other parameters are E0 = γ = Ŵ = 1, while 1 is given by Eq. (48).
All the numerically found solutions are stable. The figure is borrowed from Ref. [29].
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Figure 10. Solid red lines display the exact solution given by Eqs. (42)−(47) for the mode pinned to the delta-function pump (39). They
are compared to a set of the numerically found solutions produced in Ref. [29] with the regularized delta-function (50). Dotted black lines

pertain to the mismatch parameter 1 = 10, taken exactly as per Eq. (48). Dashed orange lines and dashed-dotted gray ones correspond,

respectively, to 1 = 0.7510 and 1 = 1.2510 . The solutions displayed in panels (a) and (b) were obtained for the self-focusing (σ = −1)
and defocusing (σ = +1) signs of the nonlinearity, respectively. Other parameters in Eq. (34) are E0 = γ = Ŵ = 1. All numerical solutions

displayed here are stable. The figure is borrowed from Ref. [29].

necessary for finding 2D numerical solutions considered

here. Further, as mentioned above, one may fix the linear

loss parameter, γ ≡ 1, by means of rescaling. A natural

form of the tightly confined 2D pump term is the isotropic

Gaussian with radius W,

E(x, y) =
E0√
πW

exp

(
−x2 + y2

2W2

)
, (52)

where E0 ≡
∫ ∫

E (x, y) dxdy is the pump’s integral inten-

sity.

In the framework of VA (cf. its 1D version based

on Eqs. (12)−(24)), approximate stationary solutions to

Eq. (51) can be looked for in the form of the chirped

Gaussian,

φ (x, y) = Aexp
[
− (B − iC) r 2

]
, (53)

where r ≡
√

x2 + y2 is the radial coordinate, and amplitude

A, squared inverse radial width B > 0, and chirp C are

real variational parameters. Detailed analysis, reported in

Ref. [29], leads to a cumbersome system of VA equations

for them:

σA3 +

[
4B(B + 1) + 4C2

]

2B
A

+
8WE0B2

(
1 + 2BW2

)
√
π [4B3W4 + 4B2W2 + (4W4C2 + 1) B]

= 0,

(54)

σBA3 + 4
(
1B + 2C2

)
A

+
8W3E0B3

[
1 + 4

(
B2 −C2

)
W4 + 4BW2

]
√
π (1 + 4 (B2 + C2)W4 + 4BW2)

2
= 0, (55)

π (2C − γ) A
2B2

− 32W5E0

(
1 + 2BW2

)
C

√
π [1 + 4 (B2 + C2)W4 + 4BW2]

2
= 0.

(56)

Typical examples of stable localized isotropic modes

produced by Eqs. (51) and (52) in the variational and
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Figure 11. Panels (a, c) and (b, d) show the peak local power
(
max[|φ|2] ≡ |φ (x = 0)|2

)
and integral norm (P, see Eq. (36)) as

functions of the pump amplitude E0 (see Eq. (50)) and linear-dissipation coefficient γ . In the left and right columns, coefficients are

fixed, severally, as γ = Ŵ = 1 and E0 = Ŵ = 1. In all panels, the data produced by the analytical solution for σ = +1 and −1, (the
self-defocusing and focusing signs of the nonlinearity) are displayed by solid blue and dashed black lines, respectively. The corresponding

results produced by the numerical solution are shown, severally, by chains of yellow circles and red boxes. The figure is borrowed from

Ref. [29].
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and (d) represent the approximate analytical solution based on ansatz (53), chains of yellow circles representing the corresponding

numerical solutions. Other parameters in Eqs. (51) and (52) are E0 = 10 and σ = γ = W = 1.

numerically exact form are displayed in Fig. 12. It is seen

that the VA may provide very accurate solutions in the

quasi-analytical form.

In a small segment of their existence region (covered by

yellow squares in the stability charts displayed in Fig. 14),
numerically found stable 2D modes feature a crater-like

shape, with the maximum of the local power located at

a finite distance from the center, see an example in Fig. 13.

Obviously, the analytical approximation based on the simple

Gaussian ansatz (12) cannot reproduce this shape.

The most important results produced by the analysis of

solutions of the 2D LL equation (51) with the confined

zero-vorticity pump (52) are summarized in Fig. 14 by

means of stability charts for the localized 2D modes in the

plane of the mismatch and nonlinearity coefficients, (1, σ ),
for fixed pump’s parameters, E0 = 10 and W = 1. In this

figure, which is borrowed from Ref. [29], red and yellow

squares designate segments of the parameter plane which

are populated, respectively, by the usual bell-shaped modes

(see Fig. 12) and the crater-shaped ones (see Fig. 13).
Further details of the analytical and numerical results for

the 2D modes pinned to the localized zero-vorticity pump

can be found in Ref. [29].
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Figure 13. (a) The same as in Fig.12 (a), but for σ = −5 and

1 = −4. (b) The black dashed line is the radial cross-section

profile, |φ (x, 0)|2, of the numerically generated crater-shaped

mode. The orange solid line shows a formal VA prediction for

the same parameters.

4.2. Confined modes supported by the localized

vortex pump

4.2.1. The definition of the model A natural possi-

bility to extend the analysis of the 2D model, which was

recently addressed in Ref. [31], is to consider localized

pump with embedded vorticity S≥ 1 (similar to integer

winding number m in Eq. (2)). Accordingly, the 2D LL
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finite distance from the center, see an example in Fig. 13.
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Figure 15. The comparison between cross-sections (drawn through y = 0) of the variational solutions for the vortex modes and their

numerical counterparts (dashed black and solid blue lines, respectively) for different values of the loss parameter α in Eq. (57) belonging to

the set (66). Panels (a) and (b) pertain, respectively, to the self-focusing (σ = −1) and defocusing (σ = +1) signs of cubic nonlinearity.

Other parameters in Eqs. (57) and (58) are fixed as η = f 0 = 1, W = 2, and S = 1. All the vortex modes presented in this figure are

stable. The figure is borrowed from Ref. [31].

equation (51) is replaced by the one written in the polar

coordinates (r, θ):

i

(
α +

∂

∂t

)
u = − 1

2

(
∂2

∂r 2
+

1

r
∂

∂r
+

1

r 2
∂

∂θ2

)
u

+ σ
(
|u|2 − η2

)
u + E(r )eiSθ, (57)

where notation u, instead of φ, is used for the optical field,

the loss factor is denoted as α (instead of γ above), the
mismatch is written as 1 ≡ σ η2, and the confined vortex

pump with strength f 0 is taken as

E(r ) = i f 0r
m exp

(
−r 2/W2

)
. (58)

The difference from the vortex pump defined above in

the form of expression (2) is that here it is necessary to

introduce the radial confinement of the pump, with width

W, once the confining potential is not included in Eq. (57).
Pump vortex beams with a confined radial structure are

used in diverse experimental setups [58].

Equation (57) is written in the scaled form. In physical

units, r = 1 and t = 1 normally correspond to the spatial

and time scales ∼ 50 µm and ∼ 50 ps, respectively, for a

laser cavity. Then, the typical width W = 2, considered be-

low, corresponds to the pump beam with waist ∼ 100 µm,

which is an experimentally relevant value. Accordingly, the

characteristic evolution time in simulations presented below,

t̀ ∼ 100, corresponds to the physical time ∼ 5 ns [31].

Stationary solutions of Eq. (57) are characterized by

the total power, defined as in Eq. (3), and the angular

momentum,

M = i
∫ +∞

−∞

dx
∫ +∞

−∞

dyu∗ (y∂xu− x∂yu) dxdy, (59)

with ∗ standing for the complex conjugate, even if the

power and angular momentum are not dynamical invari-

ants of the dissipative LL equation. In the case of

stationary axisymmetric solutions with vorticity S, i.e.,

u (x, y) = u(r )eiSθ , the angular momentum is M = SP.
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Figure 16. (a) The power of the localized vortex modes versus strength f 0 of the vortex pump in the self-focusing case (σ = −1

in Eq. (57)). The results produced for S = 1 and 2 by the quasi-analytical VA solutions, based on Eqs. (63) and (64), are shown by

solid blue and dashed black lines, respectively. The corresponding numerical solutions are represented by red circles and green squares,

respectively.The numerical solutions are stable, in this case, at f 0 < 1.6 and f 0 < 1.1 for S = 1 and 2, respectively, i.e., the plotted

families are completely stable. (b) The VA-predicted and numerically obtained (dashed red and solid blue lines, respectively) profiles of

the stable solution with S = 2 and f 0 = 0.4, drawn as cross-sections through y = 0. The other parameters are α = η = 1 and W = 2.

4.2.2. Analytical considerations First, the lineariza-

tion of Eq. (57), with the pump substituted as per Eq. (58),
straightforwardly produces the asymptotic expression for the

tail of the vortex mode decaying at r → ∞:

u(r, θ) ≈ (i /2)W4r S−2 exp
(
−r 2/W2 + iSθ

)
. (60)

The global analytical approximation for the localized

vortex modes is offered by VA based on the Gaussian ansatz

u(r, θ) ≡ U(r ) exp (iSθ) = U0r
S exp

(
− r 2

W2
+ iSθ + iφ

)
,

(61)
where the variational parameters are the real amplitude U0

of the solution and its phase shift φ from the pump. Power

(3) of this ansatz is

PS = πS!
(
W2/2

)S+1
U2
0 . (62)

Note that the local power |U(r )|2 , corresponding to

ansatz (61), which vanishes at r → 0 and r → ∞, attains

its maximum at r 2 = SW2/2.

The VA gives rise to the following equations for parame-

ters φ and U0:

cosφ = αU0/ f 0, (63)

23S+1S!
{

f 0W
2 sinφ +

[
(S+ 1) − σW2

]
U0

}

+ (2S)!σW2S+2U3
0 = 0. (64)

Note that Eq. (63) is tantamount to the equation produced

by the substitution of ansatz (61) in the power-balance

condition following from Eq. (57) (cf. Eq. (37)):

2π

∫ ∞

0

f (r )Re {U(r, t)} rdr = αP. (65)

The constraint cosφ ≤ 1 implies that, for the fixed pump’s

amplitude f 0, the amplitude of the localized vortex mode

does not exceed the maximum value, which corresponds to

φ = 0 in Eq. (63), viz., U0 ≤ (U0)max = f 0/α.

4.2.3. Numerical results Cross sections (drawn

through y = 0) of the variational and numerical solutions

for stable vortex modes obtained for values of the loss

parameter

α = 0.5, 1.0, 2.0, (66)

are plotted for σ = −1 and +1 (the self-focusing and

defocusing cubic nonlinearity) in Figs. 15(a) and (b),
respectively, while the other coefficients in Eqs. (57)
and (58) are fixed as η = 1, f 0 = 1, W = 2, and S = 1.

It is seen that the VA accuracy improves with the increase

of α, being essentially better for the self-focusing sign of

the cubic nonlinearity. The larger discrepancy in the case

of the self-defocusing is explained by the fact that localized

modes (bright solitons) are not naturally maintained by the

defocusing nonlinearity.

Families of stable vortex modes with S = 1 and 2 are

presented by the corresponding P ( f 0) dependences plotted
in Fig. 16(a) for the focusing sign of the nonlinearity in

Eq. (57), i.e., σ = −1. These dependences are relevant for

the realization of the predicted modes, as it is easy to vary

the intensity of the pump beam, f 2
0 , in the experiment.

In the case of the self-focusing sign of the nonlinearity

(σ = −1) and fixed pump strength f 0, there is a critical

value αcrit of the loss parameter α, so that at α < αcrit the

vortex solitons are unstable against spontaneous breaking of

the axial symmetry. In particular, αcrit ≈ 0.35 for the values

of the other parameters fixed as in Fig. 15(a). On the other

hand, for σ = −1 and fixed α the instability of the vortex

mode against the spontaneous breaking (splitting) sets in

at f 0 > ( f 0)crit (when the nonlinearity, determined by the

mode’s amplitude, is too strong). For α = η = 1 and W = 2

(the same parameters as fixed in Fig. 16), the critical values

of f 0 are ( f 0)crit (S= 1) ≈ 1.6, ( f 0)crit (S = 2) ≈ 1.1,

( f 0)crit (S = 3) ≈ 0.6, ( f 0)crit (S = 4) ≈ 0.3, and

( f 0)crit (S = 5) ≈ 0.08, respectively. Naturally, narrow
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Figure 17. The fission of unstable vortex-ring modes into necklace-shaped structures, as demonstrated (in Ref. [31]) by simulations

of Eqs. (57) and (58), with σ = −1 (cubic self-focusing), α = 2, η = 1, and W = 2. Each plot displays the result of the numerical

simulations at time t = 100. Values of the vorticity (winding number) and pump’s strength are indicated in panels.

vortex rings with large values of S are much more

vulnerable to the spontaneous splitting initiated by

the azimuthal modulational instability of the vortex

rings.

Deeper in the instability region of the vortex modes, i.e.,

at f 0 essentially exceeding the corresponding critical values

( f 0)crit (S), the splitting instability initiates fission of the

vortex rings into slowly rotating necklace-shaped structures,

composed of N identical fragments with equal distances

between them, which resembles the typical scenario of the

splitting instability of vortex rings in the framework of the

NLS equation [47]. However, unlike the case of the NLS

equation, the emerging necklace does not expand, being

essentially pinned to the maximum of the vortex pump (52),

hence the radius of the necklace remains approximately the

same as the radius of the underlying unstable vortex ring.

In the examples displayed in Fig. 17 the necklaces built of

N = 4, 5, 7, and 8 fragments are produced by the fission of

the unstable rings with winding numbers S= 1, 2 or 3, 2

or 3, and 3, respectively.

On the other hand, in the framework of the LL equa-

tion (57) with the self-defocusing nonlinearity (σ = +1)

and the vortex pump with winding numbers 1 ≤ S≤ 5

the vortex modes are completely stable [31] (vorticities

with S> 5 were not considered). Indeed, the defocusing

nonlinearity does not give rise to the above-mentioned

azimuthal modulational instability which might lead to the

fission of the vortex rings.

5. Conclusion

The objective of this article is to produce a brief

survey of theoretical results for the creation of stable

localized 0D (zero-dimensional), 1D, and 2D modes in

the framework of the LL (Lugiato-Lefever) equations, with

the 2D confinement imposed by the tight HO (harmonic-

oscillator) potential, or by the spatially localized 1D or

2D pump term. In the former case, the 2D modes,

strongly confined by the HO potential and supported by the

zero-vorticity (fundamental) or vortical spatially unconfined

pump, may be considered as effective 0D pixels (with

embedded vorticity, in the case of the vortex pump).
The corresponding fundamental and vortex solutions were

obtained by means of the VA (variational approximation)
and Thomas-Fermi approximation, respectively, as well as

in the numerical form. The 1D LL equation, which includes

the strongly localized pump, represented by the delta-

function, and the cubic loss term (in addition to the linear

one), gives rise to the exact solution of the codimension-one

(non-generic) type. Along with the analytical non-generic

solution, generic ones were obtained in the numerical form,

featuring shapes which are quite close to those of the

analytical solution. All such 1D modes pinned to the

delta-function pump are stable. In the framework of the

2D LL equation with the localized pump carrying vorticity

S= 0, 1, 2, ... the modes pinned to the pump were found

by means of the VA and in the numerical form, and their

stability regions were identified. In the case of the self-

focusing nonlinearity, strongly unstable modes in the form
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of vortex rings spontaneously split into necklace-shaped

states, while the defocusing nonlinearity supports stable

vortex rings up to S = 5, at least.

Not included in this review are results for localized modes

produced by the 1D LL equation which combines the

fractional diffraction, defined as per Eq. (9), self-focusing
nonlinearity, and the focused pump. The findings for the

fractional LL equation were recently reported in Ref. [30].
As an extension of the work summarized in this article, it

may be interesting to study setups based on 1D and 2D LL

equations with two or several spatially separated pumps —
in particular, the ones with opposite signs in the 1D case,

or 2D pumps with opposite vorticities, ±S.
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