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Oscillatory motion of Tamm polaritons in a magnetic field
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The oscillatory motion effect (Zitterbewegung) of Tamm polaritonic states at the interface of two multilayer

binary heterostructures with overlapping band gaps, belonging to the C3v point symmetry group and supporting

excitonic resonance, has been theoretically investigated. The effect involves oscillations the trajectory of the Tamm

state as it propagates along the interface plane. The possibility of controlling the characteristics of the oscillatory
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the Faraday configuration, has been demonstrated.
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Introduction

Spatial dispersion effects in natural and artificial crystals,

special role of which in the interaction processes between

light and a substance was emphasized by V.M. Agra-

novich [1], are visualized very vividly for exciton polaritons

in quantum microcavities [2]. This study is devoted to the

theory of so-called Tamm exciton-polariton states that have

been recently proposed by us in [3]. These are localized

electromagnetic field states that occur at the interface of

two optical heterostructures with different energy spectra

in conditions of strong interaction between an electromag-

netic field and environment disturbances. Surface states

associated with the disturbance of one-electron potential

periodicity near the crystal boundary were predicted by

I.E. Tamm [4] in the simplest Kronig-Penney model. Similar

surface or edge states are still extensively studied. Tamm

states have been previously predicted for electrons at the

semiconductor superlattice boundary [5] and also for optical

modes at the interface of two multilayer binary dielectric

heterostructures [6,7]. Both optical substructures can be

formed from different [6] as well as from the same pairs

of materials [7]. In the latter case, different thicknesses

of layers of the same material in different substructures

are chosen to ensure the difference in their energy spectra.

Tamm states are formed in band gaps of both substructures

to provide a prerequisite for them to occur — overlapping

of these band gaps. In case of substructures formed from

the same pairs of materials, this prerequisite is added by an

evident requirement for these band gaps to have different

sequence numbers.

Tamm states are also inherent in exciton-polariton sys-

tems. A photonic Tamm structure is transformed into a

polaritonic structure when there is exciton resonance in

the structure and strong coupling is ensured between the

exciton and photon states with formation of mixed exciton-

polariton modes. Exciton resonances occur when narrow

quantum wells are integrated into the layers of one material

in each substructure [8–10] or when a resonant material is

used for layers of the same type [3,11].
Splitting of eigen s -modes (TE) and p-polarized modes

(TM) is a typical feature of optical structures [12]. As a

result, a doublet of Tamm polariton states with orthogonal

polarizations is formed in a polaritonic structure near

the exciton resonance [3]. An important advantage of

polaritonic systems over photonic ones is the possibility to

control their properties effectively, including dispersion and

polarization properties, using an external impact.

Splitting of eigen states of the structure, besides the

spectral splatter, leads to occurrence of new effects during

quasiparticle propagation. One of the most prominent

phenomena of this kind is an oscillatory motion (zitterbe-
wegung). The effect is in spatial oscillations of the path

of a free propagating particle. This effect was discussed

at the dawn of the relativistic quantum theory [13,14] for

free electrons, however, the most vivid manifestations of the

effect are expected exactly in condensed media. This is

due to a considerable decrease in the jitter frequency that

is defined by the band gap Eg/~ by order of magnitude

(in units of reduced Planck’s constant), rather than by

the rest energy of a free electron 2m0c2/~ [15]. Besides

semiconductors [15], the oscillatory motion phenomena was

predicted and observed in several physical systems, includ-

ing Bose–Einstein condensates of ultracold atoms [16], wave
lattices [17] and graphene [18]. Zitterbewegung of photons

and exciton polaritons is also known in semiconductor

microcavities [19–23]. Display of the oscillatory motion

of an electron induced by its spin precession is highly
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interesting [24]. The effect results from a spin-orbit

interaction (real or artificial, associated with longitudinal

and transverse splitting in case of polaritons) that involves

mutual influence of the internal spin motion and external

propagation of a particle in a structure (for the Tamm

polariton states — in plane of the interface of the multilayer

optical heterostructures).
We have shown in [3] that the Tamm polariton states

can be excited at the interface of two binary layered

resonance substructures. Occurrence of nonreciprocity in

the propagation of such polaritons and removal of energy

degeneracy between states corresponding to directions

opposite to propagation in the structure plane when an

external magnetic field is applied in the Faraday geometry

have been also demonstrated. However, in [3], we were

restricted to the discussion of Tamm state propagation

in the structure plane in one direction (y axis) where

degeneracy was removed. Physical limit corresponding to

this case involves an endless wave packet width in the

orthogonal direction x in the structure plane. Due to

such conditions, we could identify the spin-orbit interaction

effect on spin (polarization) properties of Tamm polariton

states. This study focuses on the properties of Tamm

states associated with propagation behavior in the structure

plane. Using the generalized 4× 4transfer matrix for-

malism, oscillatory motion of finite-width Tamm polariton

wave packets has been studied theoretically. The effect of

dispersion nonreciprocity on specific display of polariton

zitterbewegung has been demonstrated. Possible control of

zitterbewegung properties, in particular, oscillation period

and amplitude, using an external magnetic field has been

also demonstrated.

Studied structure

A structure proposed in [3] is examined (Figure 1, a). The
structure consists of two multilayer substructures formed

from 14 (top substructure) and 7 (bottom substructure)
pairs of SiO2/CdTe layers. The bottom substructure is

placed on a SiO2 substrate. The SiO2 layers are taken

as optically isotropic with the permittivity εa = 2.25. The

CdTe layers serve as a resonant (bulk) medium with the

exciton resonance energy ~ωX ≈ 1.67 eV. The material is

cubic semiconductor with the point symmetry group Td .

When the z axis is oriented along the [111] crystal

axis, the structure is assigned to the point group C3v

(Figure 1, b). When there is an external magnetic field

oriented along the z ‖ [111], B = (0, 0, B) axis, permittivity

tensor components of CdTe, ε̂b = ε̂b0 + ε̂b1(B) + ε̂b2(B, k)
(k is the quasi-wave exciton vector), are written as:

ε̂b0 = ε̄b0

(

1 +
ωLT

ωX − ω − iŴ

)

Î3,

ε̂b1(B) =





0 iγ1B 0

−iγ1B 0 0

0 0 0



 ,

a b c

εAir εa εb0

ε(z)
z

B

z

Figure 1. (a) Schematic diagram of the structure and optical

excitation of the Tamm polariton state in the presence of external

magnetic field applied in the structure growth direction. (b)
CdTe lattice cell oriented in the coordinate axes of the studied

structure. (c) Schematic diagram of the permittivity profile along

the structure growth axis.

ε̂b2(B, k) =





−gBkx gBky hBky

gBky gBkx −hBkx

hBky −hBkx 0



 ,

where ε̄b0 is the background permittivity, ωLT is the

longitudinal-transverse exciton splitting frequency, Ŵ is

the nonradiative exciton decay. Coefficient γ1 charac-

terizes the Zeeman splitting, g and h characterize the

magneto-spatial dispersion [25–28]. It is the permittiv-

ity terms linear in k and B that are responsible for

the asymmetric dispersion and nonreciprocal propaga-

tion of exciton polaritons in the system addressed in

this work. The calculations use the following param-

eter values: ε̄b0 = 7.8, ~ωLT = 0.14meV, ~Ŵ = 0.1meV,

γ1 = 0.0002T −1, g = −0.0008µm/T , h = 0.004µm/T .
According to [3], selection of layer thicknesses is jus-

tified as follows. The bottom (belonging to the sub-

strate) substructure is a distributed Bragg reflector for

which the first-order Bragg resonance condition is met:

dbot
a
√
εa = dbot

b

√
ε̄b0 = πc/2ωBr, where c is the speed of

light in vacuum, dbot
a,b are the corresponding layer thicknesses

of the bottom structure. The Bragg frequency ωBr is selected

such that the exciton resonance frequency ωX coincides with

the first photonic band gap of the mirror.

The top substructure is multi-layered, however, the

Bragg resonance condition for it is violated in accor-

dance with the following expression: (d top
a + δd)

√
εa =

= (d top
b − δd)

√
ε̄b0 = πc/ωBr. As a result of the violation

involving layer thickness variation by ±δd, the second

photonic band gap is opened. Moreover, as long as the

layer thickness is approximately twice as large as the top

substructure layer thicknesses, the first and second band
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gaps of the top and bottom substructures, respectively, are

overlapped [3]. The calculations use the following parameter

values: dbot
a = 101.8 nm, dbot

b = 54.5 nm, d top
a = 148.6 nm,

d top
b = 164.1 nm, δd = 55 nm. Permittivity profile of the

whole structure is shown schematically in Figure 1, c.

Calculation method

To study the dispersion properties of the structure and to

simulate light propagation through the structure, we use the

generalized 4× 4 transfer matrix formalism that explicitly

accounts for electromagnetic field polarization [29–33].
Using this approach, a system of Maxwell’s equations is

solved for each layer in the structure formed by multiple flat

uniform layers, and the solutions agree at the neighboring

layer boundaries.

Propagation of a light beam falling on the structure from

the top substructure is addressed herein. The employed

formalism is aimed at the analysis of propagation of plane

monochromatic waves. Therefore, for the finite-width

incident beam, the Fourier transformation in the microcavity

plane shall be performed. This allows switching to a

reciprocal space and then applying the transfer matrix

formalism to each Fourier spectrum component [33].
When a plane wave with the frequency ω0 propagates

through the structure, tangential components of its wave

vector, k = (kx , ky ), are maintained when crossing a layer

boundary. The normal component, kz , varies in accordance

with the dispersion properties of a particular layer. This

variation ensures continuity of electric and magnetic fields

and their derivatives at the layer boundary. The system

of Maxwell’s equations for a plane wave in layer j can

be reduced to an eigen problem, κ j = kz , j c/ω0, of the

characteristic matric 1̂ j for this layer:

κ j9 j =
c
ω0

1̂ j9 j , (1)

where 9 j = (Ex , j ,Hy, j, Ey, j, Hx , j)
T is the vector of thex -

and y -components of the electric and magnetic fields. The

characteristic matrix is generally set as follows:

1̂ j =
1

εz z

×















kxεzx k2
x − εzz kxεzy −kx ky

εxz εzx − εxxεzz kxεxz εxz εzy − εxyεzz −kyεxz

0 0 0 1

εyxεzz − εyz εzx + −kxεyz εyyεzz − εyz εzy− −kyεyz

+kx kyεzz −k2
xεzz















,

where εmm′ are the dielectric tensor components in layer j ;
m,m′ = x , y, z . Derivation of the characteristic matrix 1̂ j

and equation (1) is described in detail in [3,32–34].
Eigenvalues κ l

j [l = 1, . . . , 4] in (1) correspond to ef-

fective wave vectors of waves with different polarizations

(κ1,3j and and κ2,4j ) propagating in layer j in the positive

(κ1,2j ) and negative (κ3,4j ) directions of the z axes. Electric

field in this basis is defined by the vector

E j = (E1
j , E2

j , E3
j , E4

j )
T . (2)

In this case, coupling of the adjacent layers, j − 1 and j ,
may be described as follows:

E j−1 = Â−1
j−1Â j P̂ jE j . (3)

In (3), the interaction matrix Â j is used to project the

vector E j on the vector 9 j . Â j is built such that its columns

form eigen vectors of the characteristic matrix 1̂ j derived

from solution of equation (1). Basically, field propagation

through layer j (from the front edge of the layer, z j , to

the rear edge, z j + d j , where d j is the layer thickness) is

described by the propagation matrix P̂ j whose components

are defined as P̂ ll′
j = δll′ exp[i(ω0/c)κ l

jd j ], where δll′ is the

Kronecker symbol. Though the model includes terms that

are linear in the wave vector k in the layer permittivity, the

presence of only tangential electric field components in (2)
avoids the need to introduce additional boundary conditions

at layer interfaces. The inlet field vector, E0, is related to

the outlet field vector, EN+1, of the structure consisting of

N layers through the following equation

E0 = T̂EN+1 = Â−1
0 (5N

j=1Â j P̂ j Â
−1
j )ÂN+1, (4)

where index N + 1 is used to designate a continuous

medium adjacent to layer N. T̂ is a transfer matrix through

the structure.

Note that, when there is no external magnetic field

(B = 0), basis (2) is composed of the s - and p-polarized
waves. However, the presence of magnetic field induces

optical property anisotropy of the structure leading to

polarization mixing. In this case, when describing radiation

transmission through particular layers, it is correct to suggest

ordinary and extraordinary wave propagation in them [35].

Tamm polariton state condition and
dispersion

The main arguments providing the Tamm polariton

condition are discussed in detail in [3,36]. For the sake of

completeness, they are summarized briefly below. Imagine

a plane of the interface of two substructures. Let’s consider

propagation of two oppositely directed randomly polarized

waves from this plane deep into each of the substructures.

Each of the waves undergoes reflection from the corre-

sponding substructure that is characterized by the amplitude

reflection coefficientsr̂L, where L = top and L = bot for

the top and bottom substructures, respectively. r̂L are

given by the 2× 2 matrices whose diagonal elements, rL
pp

and rL
ss , characterize wave reflection without polarization

variation. The external magnetic field B induces polarization

mixing, therefore the off-diagonal elements rL
ps and rL

s p that

characterize wave reflection with polarization reversing are

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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Figure 2. Dispersion of Tamm polariton states at B = 0 (a), 10 T (b) calculated by solving equations (5) within the generalized 4× 4

transfer matrix formalism. The two-dimensional images were made at kx = 0 (right), ky = 0 (left). Dispersion curves plotted from

Hamiltonian (6) are shown dotted. Equifrequency outlines (bottom) correspond to cross-sections in the three-dimensional image.

generally non-zero. To avoid overloading with additional

symbols, we use s and p for waves both in optically

isotropic and anisotropic layers. For the Tamm polariton

state to exist, a field of a specified polarization at the inter-

face being part of one of the substructures (top or bottom)
must coincide with the field of the same polarization that

is reflected from the other substructure (bottom or top,

respectively). Taking into account polarization mixing, the

Tamm polariton state condition is written as [3]:

(r topss rbotss + r topps rbots p ) cos θ + (r toppp rbotpp + r tops p rbotps − 1) sin θ = 0,

(5a)
(r toppp rbotpp + r tops p rbotps − 1) cos θ + (r topss rbotss + r topps rbots p ) sin θ = 0,

(5b)
where θ is the complex parameter characterizing the Tamm

state polarization. Reflection coefficients may be calculated

in accordance with the following expressions:

r (pp,ss) = [T(31,42)T(22,11) − T(32,41)T(21,12)]/detT̂

and

r (ps ,s p) = [T(41,32)T(22,11) − T(42,31)T(21,12)]/detT̂ .

When there is no external magnetic field (B = 0), condi-
tions (5) for the polarizations s and p are separated and

reduced to a simplified form: r topnn rbotnn = 1, n = s, p [36].
By solving equations (5) within the generalized 4× 4

transfer matrix formalism, dispersion of the Tamm polariton

state doublet in the structure plane can be calculated.

Figure 2 shows dispersion surfaces obtained by magnetic

field induction B = 0 and 10 T. When no external magnetic

field is applied (Figure 2, a), the dispersion of eigen (s - and
p-polarized) modes has axial symmetry. When an external

magnetic field is applied (Figure 2, b), the dispersion has

only a third-order axis of rotation, C3 ‖ z , there is also a

mirror reflectionx → −x [3].

Tamm polariton state zitterbewegung

Let’s consider transition of a continuous laser beam

through the described structure within the generalized

transfer matrix formalism. Select a Gaussian-shaped beam:

E0 ∝ exp[−r2/2w2 + i(k0y − ω0t)]p0,

with the width w, where r = (x , y). ω0 is the laser

frequency. The beam falls on the structure at an angle

in the yz plane, so that its wave vector in the structure

plane k0 = (0, k0). The wave number k0 is selected such

that to be in the middle between the split dispersion

branches in Figure. 2, b at the specified frequency ω0. Thus,

the superposition of eigen states may be excited most

effectively. The vector column p0 characterizes the incident

radiation polarization. Circular polarization is selected and

is set as p0 = (1, i, p3, p4)
T in basis (2) in all numerical

experiments, where p3 and p4 are found from (4) in a self-

consistent way.

Figure 3 shows the normalized intensity distribution

I(r) = |Ex (r)|2 + |Ey (r)|2and the Stokes vector component

(polarization component) distribution:

Sx(r) =
(

|Ex (r)|2 − |Ey(r)|2
)

/I(r),

Sy (r) = 2Re[Ex(r)E
∗

y (r)]/I(r),

Sz (r) = −2Im[Ex(r)E
∗

y (r)]/I(r),

Tamm polariton states in plane of the substructure inter-

face determined with B = −5T and the wave numbers

k0 = −1 (a−d), 1µm (e−h). Ex (r) and Ey(r) characterize

the electric field distribution in the x and y polarizations in

the corresponding plane. Center-of-mass paths of the wave

packets, X(y) =
∫

xI(r)dx/
∫

I(r)dx , are shown by green

curves above the intensity distributions in Figure 3, a, e.

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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The zitterbewegung takes place in both examined cases:

intensity distribution is non-monotonic with pronounced

oscillations in a direction transverse to the wave packet

propagation direction. It is shown that the oscillation period

is different in different cases and depends on the propagation

direction.

Oscillations of the center-of-mass path of the Tamm

polariton states are also accompanied by the oscillations

of their degree of polarization with the same period

(Figure 3, b−d, f−h). Interestingly, the polarization com-

ponent Sx of the Tamm polariton state (Figure 3, b, f) also

undergoes oscillations in the vicinity of the center line

of the wave packet x = 0 as opposed to the polariton

zitterbewegung in the planar zitterbewegung induced only

by the TE−TM-splitting predicted in [20].
Figure 4 shows the intensity distribution of the described

Tamm polariton states in the conjugate space, I(k), com-

pared with the spatial spectrum of the eigen Tamm polariton

state doublet. It is shown that despite the same (with an

accuracy to the wave vector sign) excitation conditions, the

eigen states have different splitting which leads to a different

oscillation period. This is the display of magnetically-

induced nonreciprocity in the studied system.

Zitterbewegung control using an external
magnetic field

It is convenient to consider the effects induced by the

spin-orbit interaction within the pseudospin formalism [37].
The symmetry analysis performed previously in [3] makes

it possible to write the effective Hamiltonian of the Tamm

polariton state doublet in the basis of the right and left

circular polarizations:

H =
~
2k2

2M
+ ~� · s, (6)

where k = (kx , ky ) is the polariton wave vector in the

structure plane, M is effective mass of polariton, and ∝ � · s
is responsible for the polarization mode splitting. Polariton

polarization is associated with a pseudo-spin having two

projections on the structure growth axis: s = 1
2
σ is the

polariton pseudo-spin operator, σ = (σx , σy , σz ) is the Pauli

matrix vector. unit operator of the first summand on the

right-hand side (6) is omitted for clarity. Within the pseu-

dospin formalism, it is convenient to characterize the disper-

sion branch splitting using the vector � = (�x , �y , �z ) that
serves as an effective magnetic field inducing the polariton

pseudospin precession. Components of � for the Tamm

state doublet are written as:

�x = C2[(k
2
x − k2

y)] + C3Bky , (7a)

�y = 2kx kyC2 + C3Bkx , (7b)

�z = C1B . (7c)

C1 in (7c) characterizes the Zeeman splitting in circular

polarizations in the external magnetic field B = (0, 0, B).

C2 describes the TE−TM-splitting of the Tamm polari-

ton modes. Summands with C3 characterize magneto-

spatial dispersion that occurs in structures with point

symmetry C3v [3,38]. Eigenvalues of Hamiltonian (6)
depending on kx at ky = 0 and on ky at kx = 0 are

shown in the side panes in Figure 2, a and b, respec-

tively, for B = 0 and 10T compared with the Tamm

polariton state doublet dispersions calculated within the

generalized transfer matrix formalism. Splitting con-

stants and effective polariton mass in the structure plane

are estimated as ~C1 = 15µeV/T, ~C2 = 0.54meV·µm2,

~C3 = 30µeV·µm/T and M = 3.4 · 10−5m0, where m0 is

the free electron weight.

Equations for the Tamm polariton state doublet coordi-

nate operators in the structure plane are derived as follows:

∂tx =
~kx

M
+ 2C2[kx sx + ky sy ] + C3Bsy ,

∂ty =
~ky

M
+ 2C2[kx sy − ky sx ] + C3Bsx .

As can be seen, polariton pseudospin evolution described

by the precession equation ∂ts = �× scontributes to the

polariton path
”
jitter“ compare with [24].

Consider the Tamm polariton state propagation along

the substructure boundary characterized by spinor

|9〉 = 9(r)|ψ〉, where

9(r) = (2π)−1

∞
∫

−∞

9(k − k0)e
ikrdk

— is the wave function envelope, |ψ〉 describes the Tamm

state polarization. Propagation of circularly polarized wave

packet, |ψ〉 = (1, 0), along the y axis is an important case,

k0 = (0, k0). In this case, for a considerably wide wave

packet (for whose width condition d ≫ 2π/k0 is met),
analytical expression for the center-of-mass path, X(Y ), may

be derived where X(t) = 〈9|x |9〉 and Y (t) = 〈9|y |9〉:

X(t) = −
�′

y0�x0

�2
0

(1− cos�0t), (8a)

Y (t) =
~

M
k0t +

�x0�
′

x0

�2
0

C1B
(

t − 1

�0

sin�0t
)

, (8b)

where

�x0 = �x |k→k0 = C3Bk0 −C2k2
0,

�′

x0 = (∂�x/∂kx )|k→k0 = BC3 − 2C2k0,

�′

y0 = (∂�y/∂kx )|k→k0 = BC3 + 2C2k0

and

�0 =
√

�2
x0 +�2

y0 +�2
z0.

Pseudo spin vector component evolution S(t) = 〈s〉 in this

case is described by the following expressions:

Sx (t) =
BC1�x0

�2
0

(1− cos�0t), (9a)

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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Figure 3. Oscillatory motion of the Tamm polariton states in an external magnetic field with induction B = −5T with excitation by the

inclined Gaussian laser beam 7 µm in width with the energy~ω0 = 1.66035 eV and quasi-pulse k0 = −1 (a−d), 1 µm−1 (e−h). Exciting
radiation polarization is circular. Spatial distribution of intensity (a, e) and of the Stokes vector components Sx (b, f), Sy (c, g) and Sz (d, h)
of the Tamm polariton states in the plane at the substructure interface calculated by the generalized 4× 4 transfer matrix method are

shown in the panes. Green curves in (a, e) show the center-of-mass path of the Tamm polariton state.

Sy (t) = −�x0

�0

sin�0t, (9b)

Sz (t) =
B2C2

1 +�2
x0

�2
0

cos�0t. (9c)

Without an external magnetic field, B = 0, expres-

sions (8) and (9) are considerably simplified and coincide

with those derived for the polaritons in a planar microcav-

ity [21]:

X(t) = −(2/k0)(1− cos�0t), Y (t) = ~k0t/M,

S(t) = (0,− sin�0t, cos�0t).

It is shown that at B = 0 the Stokes parameter Sx that is

responsible for the degree of linear polarization in the (xy)

axes actually remains unchanged during the evolution of the

Tamm polariton state. However, the presence of an external

magnetic field induces its oscillations together with other

components as shown in Figure 3, b, f.

Spatial oscillation period of the Tamm polariton state

has a quadratic dependence both on the wave number

k0 and the external field induction B . This is supported

by the dependences of the period on k0 with fixed B ,

and on B with fixed k0, as shown in Figure 5, a, c. The

Optics and Spectroscopy, 2024, Vol. 132, No. 8
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Figure 4. Intensity distribution of the Tamm states shown in

Figure 3, a−d (left) and in Figure 3, e−h (right) in the conjugate

space. Green dashed curves are the energy constant lines of the

Tamm polariton states at ~ω = 1.66035 eV and B = −5T.

solid lines demonstrate dependences derived from analytical

expressions (8). Dot indicate the results of simulation of

propagation of the Tamm polariton states excited by the

laser beam with the finite width w = 7µm within the

generalized 4× 4 transfer matrix formalism. It is shown

that, in the range of values where numerical calculation

appeared to be possible, the difference of the infinitely wide

wave packet on the analytical limit without considering the

dissipation is not higher than the numerical calculation error.

The same result (not shown in the article) has been obtained

for exciting beams of other width in the range from 5

to 50µm. Finite computational grid size and pitch in the

numerical experiment and , in some cases, fast (compared

with the period) Tamm state decay with distance from

the excitation point hinder the assessment o the spatial

oscillation period in random wave number and magnetic

induction ranges.

Dependence of amplitude on k0 and B is more complex.

With fixed B , dependence on k0 has a pronounced peak

(Figure 5, b). On the contrary, the dependence on B
with fixed k0 has a dip at B = 0. Note that analytical

expressions (8) do not predict the zitterbewegung am-

plitudes in conditions close to experimental. We repro-

duce these amplitudes through numerical simulation within

the generalized 4× 4 transfer matrix formalism. This

coincides with the conclusion applicable to the polariton

zitterbewegung in the planar microcavity [21]. The reasons

are as follows. First, analytical expressions (8) do not

account for oscillation decay that takes place for the

finite-width wave packets (Figure 3, a, e). The wider the

wave packet spectrum the shorter, of course, the decay

length. Therefore, the amplitude in Figure 5, b, d implies the

maximum deviation of the path of the Tamm polariton state

nearest to the point of laser beam entry into the structure.

Second, the presence of continuous optical pumping affects

the path deviation. This becomes more vivid, the closer

pumping spot size gets to the oscillation period. Finally,

the Tamm polariton state decay makes its contribution with

distance from the pumping spot. Detailed analysis of these

factors is not in the scope of this work.

Conclusion

This study describes theoretically the oscillatory motion

(zitterbewegung) of the Tamm polariton states in the

resonant optical structure formed from two multilayer

SiO2/CdTe substructures. The effect is in oscillations

of the Tamm state path propagating in the substructure

interface plane. The effect occurs for the finite-width Tamm

polariton wave packets and results from the impact of

the Tamm polariton pseudospin (polarization) on polariton

propagation in the spin-orbit interaction conditions caused

by polarization mode splitting, including the TE−TM-

splitting and magnetically-induced splitting. Path oscillations

are followed by polarization oscillations predicted by us

previously for the case of one-dimensional propagation of

the Tamm polaritons in the structure plane [3].

Magnetic field applied in the Faraday geometry modifies

the polarization and dispersion characteristics of the Tamm

polaritons, in particular, leads to dispersion nonreciprocity.

This implies variation of the strength and manner of eigen

mode splitting in the structure and, consequently, variation

of the contribution made by the spin-orbit interaction to

the Tamm polariton state propagation. The study shows

the external magnetic field effect on the oscillatory motion

properties and intensities and demonstrates controllability of

the Tamm polariton path oscillation period and amplitude

using an external magnetic field.

Funding

E.S.S and A.V.K. are grateful to St.Petersburg State

University (Grant � 122040800257-5). The work was

performed by E.S.S. under the state assignment for research

of the Ministry of Science and Higher Education of the

Russian Federation (topic FZUN-2024-0019, state assign-

ment of Vladimir State University). A.V.K. is grateful to

Moscow Institute of Physics and Technology under the

”
Proritet-2030“ Strategic Academic Leadership Program.

Symmetry analysis and analytical models were developed

under the sponsorship of the Russian Science Foundation,

Grant � 23-12-00142 (M.M.G.).

Conflict of interest

The authors declare that they have no conflict of interest.

48 Optics and Spectroscopy, 2024, Vol. 132, No. 8



754 E.S. Sedov, M.M. Glazov, A.V. Kavokin

–1
k , µm0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
m

p
li

tu
d
e 

o
f 

o
sc

il
la

ti
o
n
s,

 µ
m

1

3

2

1

3

2

10

20

30

40

50

60

O
sc

il
la

ti
o
n
 p

er
io

d
, 
µ

m

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

a c

b

B, T

–10 –5 0 5 10

1

3

2

1

3

2

d

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10

20

30

40

50

60

–10 –5 0 5 10

A
m

p
li

tu
d
e 

o
f 

o
sc

il
la

ti
o
n
s,

 µ
m

O
sc

il
la

ti
o
n
 p

er
io

d
, 
µ

m

Figure 5. Dependence of the oscillation period (a, c) and amplitude (b, d) of the Tamm polariton state path: a, b — on the wave number

in the structure plane k0 with fixed external magnetic field inductions; c, d — on the external magnetic field induction B with fixed wave

numbers. In panes (a, b) B = 5 (1), 0 (2), −5T (3). In panes (c, d) k0 = 0.8 (1), 1 (2), 1.2 µm−1 (3). Solid curves in panes (a) and (c)
indicate dependences obtained from analytical expressions (8); color dots show the numerical calculation results within the generalized

4× 4 transfer matrix formalism; dashed lines connect dots with the same k0 and B .
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