Графен на ферромагнитном изоляторе EuX (X = O, S, Se, Te)

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

Поступила в Редакцию 20 января 2025 г. В окончательной редакции 4 февраля 2025 г. Принята к публикации 12 февраля 2025 г.

Предложена простая модель плотности состояний EuX, учитывающая зоны p-состояний атомов X, зоны 4f- и 6s-состояний атомов Eu. В рамках этой модели определено влияние подложки на одослойный графен: оказалось, что основную роль играет p-зона X. Получены аналитические выражения для перехода заряда между графеном и халькогенидом европия и намагниченности графена, наведенной зеемановским обменном полем атомов европия.

Ключевые слова: адсорбционный подход, уширение и сдвиг состояний графена, переход заряда, намагниченность графена.

DOI: 10.61011/FTT.2025.02.59994.14-25

1. Введение

Вопрос о возможности магнитных состояний в углеродных структурах возник еще в "дографеновую эпоху" [1-3] и продолжал дискутироваться [4-6] вплоть до экспериментального подтверждение такой возможности, полученного для кромок графеновой наноленты сравнительно недавно [7]. С тех пор принято считать, что магнитные состояния графена следует искать в ситуациях, когда структура идеального бесконечного листа графена нарушена, что, однако, мешает применению такого графена в спинтронике и квантовых компьютерах. Поэтому естественным представляется создание намагниченности в эпитаксиальном графене (эпиграфене), наведенной магнитной подложкой, т.е. за счет эффекта близости (proximity effect). В работах [8,9] была предложена простая схема описания наведенной намагниченности в эпиграфене вследствие контакта с ферромагнитным металлом (FM). Здесь та же схема будет вначале применена к однолистному графену (SLG single layer graphene), находящемуся на поверхности ферромагнитного изолятора (FMI), в качестве которого в настоящей работе мы рассмотрим монохалькогениды EuX, где X = O, S, Se, Te.

Свойства этих соединений начали изучать экспериментально конца 60-х годов прошлого века [10–13]; результаты расчетов из первых принципов приведены в работах [14–16]. В последнее время возник интерес к гетероструктурам с участием EuS: SLG/EuS [17], InAs/EuS [18], а также BLG (bilayer graphene)/Cr₂X₂Te₆, где X = Se, Si, Sm [19]. Оценки показывают, что EuS характеризуется значительной константой обменного взаимодействия $J_{\rm ex} \sim 10$ meV и большим магнитным моментом $\sim 7\mu_{\rm B}$, приходящимся на один ион Eu.

2. Модель плотности состояний EuX

В рамках адсорбционного подхода к описанию электронного спектра эпислоев [20] основным моментом является использование достаточно простой, но адекватнойой модели плотности состояний подложки. Действительно, пусть функция Грина свободного графена (freestanding graphene) имеет вид $g(\omega, \mathbf{q}) = (\omega - \varepsilon_{\mathbf{q}} + i0^+)^{-1}$, где ω — энергетическая переменная, $\varepsilon_{\mathbf{q}}$ — закон дисперсии электронов, \mathbf{q} — двумерный (2D) волновой вектор. Тогда функцию Грина эпиграфена можно представить как

$$G_{\sigma}(\omega, \mathbf{q}) = \left(\omega - \varepsilon_{\mathbf{q}} - \Sigma_{\sigma}(\omega)\right)^{-1}.$$
 (1)

Здесь σ — спиновый индекс, $\Sigma_{\sigma}(\omega) = \Lambda_{\sigma}(\omega) - i\Gamma_{\sigma}(\omega)$ — собственно-энергетическая часть (self-energy), $\Gamma_{\sigma}(\omega) = \pi V^2(\omega)\rho_{\sigma}^{\text{sub}}(\omega)$ — функция уширения состояний графена и $\Lambda_{\sigma}(\omega)$ — функция сдвига этих состояний, являющаяся гильберт-трансформантой функции $\Gamma_{\sigma}(\omega)$, $\rho_{\sigma}^{\text{sub}}(\omega)$ — плотность состояний подложки, $V(\omega)$ — матричный элемент взаимодействия графена с подложкой (зависимость от энергии ω будет пояснена далее). Таким образом, на данном этапе задача сводится к заданию плотности состояний подложки.

Энергетические диаграммы для соединений EuX представлены в работах [10–13], энергетические зоны в статьях [14–17]. Согласно этим работам электронный спектр соединений EuX имеет три характерные полосы сплошного спектра: 1) валентная зона, образованная 2p-состояниями халькогенидов, расположенная в энергетическом интервале $E_{\nu}^{-} = -W_{\nu}/2 \le \Omega_{\nu} \le W_{\nu}/2 = E_{\nu}^{+}$, где $\Omega_{\nu} = \omega - \overline{\omega}_{\nu}$, W_{ν} — ширина валентной зоны, центру которой отвечает энергия $\overline{\omega}_{\nu}$; 2) зона проводимости, образованная 6s- и 5d состояниями, а также гибридизованными p-состояниями X, энергетический интервал которой дается теми же выражениями, что и для валентной зоны, но с заменой индекса ν на индекс c;

Рис. 1. Модельные плотности состояний для валентной зоны $ho_{\nu}(\omega)$, заполненной подзоны f-состояний $ho_{f}(\omega)$ (спиновый индекс не указан) и зоны проводимости $\rho_c(\omega)$. Жирными точками на оси энергий отмечены центры зон валентной $\overline{\omega}_{\nu}$, проводимости $\overline{\omega}_c$, центр заполненной f-подзоны $\overline{\omega}_f$ находится вне поля рисунка.

3) полностью заполненная 7 электронами подзона зоны f-состояний для спина $\sigma = \downarrow$ расположена в энергетическом интервале $E_c^- - E_v^+$, определяемым неравенством $E_{f\downarrow}^- = -W_f/2 \le \Omega_{f\downarrow}/2 = E_{f\downarrow}^+$; центр пустой подзоны $\overline{\omega}_{f\uparrow}$ расположен на ~ 10 eV выше $\overline{\omega}_{f\downarrow}$ и находится глубоко в зоне проводимости; под запрещенной зоной понимается $E_g = E_c^- - E_f^+$ [10], значения ширины запрещенной зоны с учетом спина приведены в работе [15]. Модельные плотности состояний, соответствующие этим полосам сплошного спектра, схематично изображенные на рис. 1 (*f*-подзона для спина $\sigma = \downarrow$, а также центр и потолок зоны проводимости на рис. 1 не изображены). Соответствующие энергетические параметры представлены в таблице, куда добавлены также значения работ выхода ϕ по данным работы [10].

Энергетические параметры зонной диаграммы EuX и работы выхода в eV

Парметры	<i>W</i> _ν [10]	$E_f - E_v^+$ [14]	<i>W_f</i> [13–15]	<i>Eg</i> [10]]	<i>W</i> _c [13,16]	φ [10]
EuO	~ 3	1.12	~ 1	1.1	~ 15	0.6 ± 0.3
EuS	~ 2	1.65	~ 1	1.7	~ 15	3.3 ± 0.3
EuSe	~ 2	1.80	~ 1	1.9	~ 15	2.8 ± 0.3
EuTe	~ 2	2.00	~ 1	$\sim 2 \ [16]$	~ 15	_

Приведенные на рис. 1 плотности состояний соответствуют модели Фриделя (типа "пьедестал") [8,9,21]:

$$\rho_{\nu(c)} = \begin{cases}
\overline{\rho}_{\nu(c)}, & |\Omega_{\nu(c)}| \le W_{\nu(c)}/2, \\
0, & |\Omega_{\nu(c)}| > W_{\nu(c)}/2, \\
\rho_{f\sigma} = \begin{cases}
\overline{\rho}_{f}, & |\Omega_{f\sigma}| \le W_{f}/2, \\
0, & |\Omega_{f\sigma}| > W_{\nu}/2,
\end{cases}$$
(2)

где $\overline{\rho}_{\nu(c,f)} = \mathrm{const.}$ Тогда функции уширения принимают вид $\Gamma_{\nu(c)}(\omega) = \pi V^2_{\nu(c)} \rho_{\nu(c)}(\omega)$ и $\Gamma_{f\sigma}(\omega) = \pi V^2_{f\sigma} \rho_{f\sigma}(\omega)$ и $\Gamma_{\nu(c)}(\omega) = \pi V_{\nu(c)}^2 \rho_{\nu(c)}(\omega)$, где $V_{\nu(c,f)}$ — матричный элемент взаимодействия состояний валентной зоны (зоны проводимости, f-зоны) с p_z-состояниями графена (это то, что выше обозначалось как $V(\omega)$). Соответствующие функции сдвига есть

$$\Lambda_{\nu(c)}(\omega) = \overline{\Lambda}_{\nu(c)} \ln \left| \frac{\Omega_{\nu(c)} + W_{\nu(c)}/2}{\Omega_{\nu(c)} - W_{\nu(c)}/2} \right|,$$
$$\Lambda_{f\sigma}(\omega) = \overline{\Lambda}_{f} \ln \left| \frac{\Omega_{f\sigma} + W_{f}/2}{\Omega_{f\sigma} - W_{f}/2} \right|,$$
(3)

где $\overline{\Lambda}_{\nu(c,f)} = \overline{\rho}_{\nu(c,f)} V^2_{\nu(c,f)}$. Перейдем к численным оценкам матричных элементов $V_{\nu(c)}$ σ -связи p_z -состояний углерода с 2*p*-состояниями X и 6s-состояниями Eu, равным соответственно $V_{pp\sigma}=2.22(\hbar^2/m_ed^2)$ и $V_{sp\sigma}=1.42(\hbar^2/m_ed^2)$, где \hbar приведенная постоянная Планка, m_e — масса электрона, *d* — расстояние от листа графена до подложки, нижний

Рис. 2. Функции сдвига $\Lambda_{\nu}(\omega)$ и $\Lambda_{c}(\omega)$ и графическое решение уравнения (7): точка пересечения линии $F \propto (\omega - \varepsilon_D)$ и функции $\Lambda_{\nu}(\omega)$ определяет перенормированное значение энергии точки Дирака є Вертикальные пунктирные линии соответствуют границам зон.

индекс σ относится к типу связи, а не к спину. Здесь и далее все матричные элементы считаются величинами положительными [22].

Для оценки величины V_f воспользуемся результатами работы [23], принимая $V_f = V_{pf\sigma} = (3\sqrt{5}/2\pi)$ $\times [\hbar^2(r_p r_f^5)^{1/2}/md^5]$, где параметры $r_p(C) = 6.59$ Å и $r_f = 0.42$ Å [24]. Полагая далее $\overline{\rho}_v = 6/W_v$, $\overline{\rho}_c = 2/W_c$, $\overline{\rho}_f = 7/W_c$ и d = 3 Å, получим $V_v = 1.87$ eV, $\overline{\Lambda}_v = 5.64$ eV; $V_c = 1.2$ eV, $\overline{\Lambda}_c = 0.19$ eV; $V_f = 0.017$ eV, $\overline{\Lambda}_f = 0.002$ eV.

На рис. 2 мы представили функции сдвига $\Lambda_{\nu}(\omega)$ и $\Lambda_{c}(\omega)$ ($\overline{\Lambda}_{f}/\overline{\Lambda}_{c} \approx 10^{-2}$): ясно, что главный вклад в суммарный сдвиг и уширение $\overline{\Gamma}_{\nu(c,f)} = \pi \overline{\Lambda}_{\nu(c,f)}$ состояний эпиграфена (как и любого адсорбированного слоя), вносит валентная 2*p*-зона *X*. (Тут нужно уточнить, что делая подобное утверждение, мы, по умолчание, игнорируем границы зон, где соответствующие этим зонам функции сдвига испытывают логарифмические расходимости).

3. Числа заполнения и магнитные моменты атомов эпиграфена

Функции Грина (1) соответствует плотность состояний SLG

$$\rho_{\sigma}(\omega, \mathbf{q}) \approx \frac{1}{\pi} \frac{\Gamma_{\nu}(\omega)}{[\omega - \varepsilon_{\mathbf{q}\sigma} - \Lambda_{\nu}(\omega)]^2 + \Gamma_{\nu}^2(\omega)}.$$
 (4)

Здесь мы отбросили вклады зон проводимости и состояний f электронов EuX. В рамках низкоэнергетического приближения, считая, что вектор **q** отсчитывается от вектора точки Дирака **K**, $\varepsilon_{q\sigma} = \varepsilon_{D\sigma} \pm 3taq/2$, где с учетом эффекта Зеемана $\varepsilon_{D\uparrow,\downarrow} = \varepsilon_D \pm h$, ε_D — энергия точки Дирака, h — обменная зеемановская энергия магнитного поля, наводимого подложкой [25], t — интеграл перескока (hopping integral) электрона между ближайшими атомами углерода, находящимися на расстоянии a.

Введем числа заполнения

$$n_{\mathbf{q}\sigma} = \int_{-\infty}^{\infty} \rho_{\sigma}(\omega, \mathbf{q}) f(\omega - \mu) d\omega, \qquad (5)$$

где $f(\omega - \mu)$ — функция распределения Ферми-Дирака, μ — химический потенциал.

Рассмотрим случай T = 0, принимая за нуль энергию середины валентной зоны ($\overline{\omega}_{\nu} = 0$). Тогда

$$n_{\mathbf{q}\sigma} = \frac{\overline{\Gamma}_{\nu}}{\pi} \int_{-\xi}^{\mu} \frac{d\omega}{[\omega - \Lambda_{\nu}(\omega) - \varepsilon_{\mathbf{q}\sigma}]^2 + \overline{\Gamma}_{\nu}^2},\tag{6}$$

где $\xi = t\sqrt{2\pi\sqrt{3}} \sim 10 \text{ eV}$ — энергия обрезания [20]. Сопоставляя приведенную в таблице работу выхода EuS (3.3 eV) с работой выхода свободного недопированного SLG $\varphi_{\text{SLG}} = 4.5 - 4.6 \text{ eV}$ [26,27] и не учитывая сдвиг L_{ν} , можно было бы сделать вывод о переходе электронов на графен, что, ошибочно (см. далее). Для получения выражения числа заполнения n_{σ} в аналитическом виде необходимо прибегать к упрощениям, так как уже выражения для $\rho_{\sigma}(\omega)$ довольно громоздки [20,28]. Определяя значение перенормированной (за счет взаимодействия с подложкой) энергии точки Дирака $\varepsilon_{\rm D}$ из уравнения

$$\omega - \varepsilon_{\rm D} - \Lambda_{\nu}(\omega) = 0, \qquad (7)$$

получаем $\varepsilon_{\mathrm{D}}^* = \varepsilon_{\mathrm{D}} + \Lambda_{\nu}(\varepsilon_{\mathrm{D}}).$

Графическое решение уравнения (7) представлено на рис. 2. Тогда заменив выражение в квадратной скобке в (6) на $C_{\sigma}(q) = \varepsilon_{D\sigma}^* \mp 3taq/2$, получим

$$n_{q\sigma} \approx \frac{1}{\pi} \operatorname{arccot} \frac{C_{\sigma}(q) - \mu}{\overline{\Gamma}_{\nu}}.$$
 (8)

Исходя из данных таблицы и рис. 1 и 2, получим $(\varepsilon_{\rm D} - \overline{\omega}_{\nu}) \approx 3-4 \,\mathrm{eV}$, так что $(\varepsilon_{\rm D}^* - \overline{\omega}_{\nu}) \approx 7 \,\mathrm{eV}$. Таким образом, под действием подложки точка Дирака смещается в область зоны проводимости EuX, вследствие чего графен приобретает положительный заряд. При этом заполненной остается только часть валентной зоны графена. К сожалению, какими либо экспериментальными данные по адсорбции углерода на EuO мы не располагаем. Следует подчеркнуть, что в теории адсорбции и эпитаксиальных слоев параметр $\overline{\Gamma}_{\nu}$ рассматривается как подгоночный [29]. Отметим, однако, что от значения $\overline{\Gamma}_{\nu}$ зависит величина перехода заряда, но не его направление (знак).

В дальнейшем нам понадобятся значения

$$n_{\sigma}=N^{-1}\sum_{\mathbf{q}}n_{\mathbf{q}\sigma},$$

где N^{-1} — число состояний $|q\sigma\rangle$, число заполнения $n = n_{\uparrow} + n_{\downarrow}$, определяющее переход заряда между SLG и EuX, и наведенную подложкой намагниченность эпиграфена $m = n_{\uparrow} - n_{\downarrow}$. Необходимые для вычисления выражения приведены в Приложении. Так как эти выражения довольно громоздки, то здесь мы рассмотрим частный случай, достаточно хорошо иллюстрирующие общую ситуацию. Полагая $aq_{\rm max} \ll 1$, представим (8) в виде

$$n_{q\sigma} \approx \frac{1}{\pi} \operatorname{arccot} \frac{C_{\sigma}(0) - \mu}{\overline{\Gamma}_{\nu}} \pm \frac{3aq}{2} \frac{t\overline{\Gamma}_{\nu}}{[C_{\sigma}(0) - \mu]^2 + \overline{\Gamma}_{\nu}^2}.$$
(9)

Так как в низкоэнергетическом приближении к описанию спектра графена сохраняются только линейные члены, следует записать выражение (9) в виде

$$n_{\sigma} \approx \frac{1}{\pi} \operatorname{arccot} \frac{C_{\sigma}(0) - \mu}{\overline{\Gamma}_{\nu}}.$$
 (10)

Пусть $|C_{\sigma}(q)-\mu| \ll \overline{\Gamma}_{\mu}$, тогда $n \sim 1-2(\varepsilon_{\mathrm{D}}^*-\mu)/\overline{\Gamma}_{\nu}$, $|m| \sim 2h/\overline{\Gamma}_{\nu}$.

В случае $|C_{\sigma}(q)-\mu| \gg \overline{\Gamma}_{\mu}$, имеем $n \sim 2\overline{\Gamma}_{\nu}/\pi(\varepsilon_{\mathrm{D}}^*-\mu)$, $|m| \sim 2h\Gamma_{\nu}/\pi(\varepsilon_{\mathrm{D}}^*-\mu)^2$.

Энергия $h = \mu_{\rm B}H$, где H — напряженность магнитного поля и $\mu_{\rm B} = 5.79 \cdot 10^{-2} \,{\rm meV/T}$ — магнетон Бора. Тогда при $H = 2-20 \,{\rm T}$ имеем $h \sim 0.1-1 \,{\rm meV}$, что по порядку величины совпадает с оценками работ [30,31]. Отметим, что в работе [25] приводится значение $h = 11 \,{\rm meV}$ при $H = 200 \,{\rm T}$.

4. Заключение

Предложенная в настоящей работе простая модель плотности состояний халькогенидов европия EuX позволила легко получить функции уширения Г и сдвига Л состояний эпитаксиального графена, вызванные влиянием подложки. Выяснилось, что основной вклад в Г и Л дает валентная зона, образованная 6s-состояниями атомов Х. Такое упрощение задачи дало возможность получить аналитические выражения для перехода заряда с атомов графена в зону проводимости подложки, который (при грубой оценки) оказался большим. Для оценки наведенной ферромагнитным изолятором EuX намагниченности графена было использовано зеемановское расщепление состояний графена. Таким образом, использование адсорбционного подхода [20,29], позволяющего игнорировать кристаллическую структуру интерфейса, представляется перспективным для описания эффекта близости. Отметим, что в последние пять лет тема наведенной намагниченности в гетероструктурах набирает популярность [32-36].

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Приложение

Для вычисления чисел заполнения и магнитных моментов введем безразмерные параметры $e_{\sigma} = \varepsilon_{D\sigma}^*/\Gamma_V$, $\tau = 3t/2\overline{\Gamma}_v$, $\overline{\mu} = \mu/\overline{\Gamma}$, x = aq и вспомогательный интеграл

$$I_{\sigma}^{\pm} = 1 + \frac{2}{\tau^2} \int_{0}^{\tau} \arctan(y + \overline{\mu} - e_{\sigma}) y \, dy, \qquad (\Pi 1)$$

где мы положили $y_{\max} = \tau a q_{\max} = \tau$, верхние индексы $\pm y$ интеграла относятся к зеемановскому расщеплению $\pm h$. Представим $I_{\sigma}^{\pm} = 1 + \{I_{\sigma}^{\pm}\}_1 + \{I_{\sigma}^{\pm}\}_2$, где

$$\{I_{\sigma}^{\pm}\}_{1} = \frac{2}{\tau^{2}} \int_{\overline{\mu}-e_{\sigma}}^{\tau+\overline{\mu}-e_{\sigma}} \arctan(z)zdz$$
$$= \frac{1}{\tau^{2}} \left((1+z^{2}) \arctan(z) - z \right)_{\overline{\mu}-e_{\sigma}}^{\tau+\overline{\mu}-e_{\sigma}}, \quad (\Pi 2)$$

$$\{I_{\sigma}^{\pm}\}_{2} = \frac{2(e_{\sigma} - \overline{\mu})}{\tau^{2}} \int_{\overline{\mu} - e_{\sigma}}^{\tau + \overline{\mu} - e_{\sigma}} \arctan(z) dz$$
$$= \frac{2(e_{\sigma} - \overline{\mu})}{\tau^{2}} \left(z \arctan(z) + \frac{1}{2}\ln(z^{2} + 1)\right)_{\overline{\mu} - e_{\sigma}}^{\tau + \overline{\mu} - e_{\sigma}}, \quad (\Pi3)$$

 $z = \tau x + \mu - e_{\sigma}$. Полученные выражения позволяют вычислить значения $n = n_{\uparrow} + n_{\downarrow}$ и $m = n_{\uparrow} - n_{\downarrow}$.

Список литературы

- M. Fujita, K. Wakabayashi, K. Nakado, K. Kusakabe. J. Phys. Soc. Japen 65, 1920 (1996).
- [2] T.L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V.A. Davydov, L.S. Kashevarova, A.V. Rakhmanina. Nature 413, 716 (2001).
- [3] Τ.Π. Μακαροβα. ΦΤΠ 38, 641 (2004) [T.L. Makarova. Semiconductors 38, 615 (2004)].
- [4] Y.-W. Son, M.L. Cohen, S.G. Louie. Nature 444, 347 (2006).
- [5] O.V. Yaziev. Rep. Prog. Phys. 73, 056501 (2010).
- [6] K. Zollner, M. Gmitra, T. Frank, J. Fabian. Phys. Rev. B 94, 155441 (2016).
- [7] M. Slota, A. Keerthi, W.K. Myers, E. Tretyakov, M. Baumgarten, A. Ardavan, H. Sadeghi, C.J. Lambert, A. Narita, K. Müllen, L. Bogani. Nature 557, 691 (2018).
- [8] С.Ю. Давыдов. ФТТ 62, 326 (2020) [S.Yu. Davydov. Phys. Solid State 62, 378 (2020)].
- [9] С.Ю. Давыдов. Письма в ЖТФ 47, 11, 37 (2021) [S.Yu. Davydov. Tech. Phys. Lett. 47, 566 (2021)].
- [10] D.E. Eastman, F. Holtzberg, S. Methfessel. Phys. Rev. Lett. 23, 226 (1969).
- [11] G. Günterodt. Phys. Cond. Matter 18, 37 (1974).
- [12] A. Mauger, G. Godart. Phys. Rep. 141, 51 (1986).
- [13] P.G. Steeneken, L.H. Tjeng, I. Elfimov, G.A. Sawatzky, G. Ghiringhelli, N.B. Brookes, D.-J. Huang. Phys. Rev. B 88, 047201 (2002).
- [14] D.B. Ghosh, M. De, S.K. De. Phys. Rev. B 70, 115211 (2004).
- [15] M. Horne, P. Strange, W.M. Temmerman, Z. Szotek, A. Svane, H. Winter, J. Phys.: Condens. Matter 16, 5061 (2004).
- [16] P. Larson, W.R.L. Lambrecht. J. Phys.: Condens, Matter 18, 11333 (2006).
- [17] P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia, W. Cha, F. Katmis, Y. Zhu, D. Heiman, J. Hone, J.S. Moodera, C.-T. Chen. Nat. Materials 15, 711 (2016).
- [18] Y. Liu, A. Luchini, S. Martí-Saánchez, C. Koch, S. Schuwalow, S.A. Khan, T. Stankevicč, S. Francoual, J.R.L. Mardegan, J.A. Krieger, V.N. Strocov, J. Stahn, C.A.F. Vaz, M. Ramakrishnan, U. Staub, K. Lefmann, G. Aeppli, J. Arbiol, P. Krogstrup. ACS Appl. Mater. Interfaces 12, 8780 (2020).
- [19] K. Zollner, M. Gmitra, J. Fabian. New J. Phys. 20, 073007 (2018).
- [20] С.Ю. Давыдов. ФТТ 58, 779 (2016). [S.Yu. Davydov. Phys. Solid State 58, 804 (2016)].
- [21] В.Ю. Ирхин, Ю.П. Ирхин. Электронная структура, физические свойства и корреляционные эффекты в *d*- и *f*металлах и их соединениях. УрО РАН, Екатеринбург (2004). 472 с.
- [22] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
- [23] W.A. Harrison, G.K. Straub. Phys. Rev. B 36, 2655 (1087).
- [24] G.K. Straub, W.A. Harrison. Phys. Rev. B 31, 7668 (1985).

- [25] И.Е. Гобелко, А.В. Рожков, Д.Н. Дресвянкин. Письма в ЖЭТФ 118, 689 (2023) [I.E. Gobelko, A.V. Rozhkov, D.N. Dresvyankin. JETP Lett. 118, 676 (2023)].
- [26] Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim. Nano Lett. 9, 3430 (2009).
- [27] D. Niesner, T. Fauster. J. Phys.: Condens. Matter 26, 393001 (2014).
- [28] С.Ю. Давыдов. ФТП **47**, 97 (2013) [S.Yu. Davydov. Semiconductors **47**, 95 (2013)].
- [29] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Издательство СПбГЭТУ "ЛЭТИ", СПб (2013) [S.Yu. Davydov. Theory of Adsorption: Method of Model Hamiltonians (St. Petersburg, LETI, 2013. In Russian].
- [30] H. Haugen, D. Huertas-Hernando, A. Brataas. Phys. Rev. B 77, 115406 (2008).
- [31] T. Tokuyasu, J.A. Sauls, D. Rainer. Phys. Rev. B 38, 8824 (1988).
- [32] T. Norden, C. Zhao, P. Zhang, R. Sabirianov, A. Petrou, H. Zeng. Nat. Commun. 10, 4163 (2019).
- [33] D. Zhong, K.L. Seyler, X. Linpeng, N.P. Wilson, T. Taniguchi, K. Watanabe, M.A. McGuire, K.-M.C. Fu, D. Xiao, W. Yao, X. Xu. Nat. Nanotechnol. 15, 187 (2020).
- [34] L. Ciorciaro, M. Kroner, K. Watanabe, T. Taniguchi, A. Imamoglu. Phys. Rev. Lett. **124**, 197401 (2020).
- [35] M. Bora, P. Deb. J. Phys.: Mater. 4, 034014 (2021).
- [36] P.E.F. Junior, T. Naimer, K.M. McCreary, B.T. Jonker, J.J. Finley, S.A. Crooker, J. Fabian, A.V. Stier. 2D Mater. 10, 034002 (2023).

Редактор А.Н. Смирнов