13

Полевая электронная эмиссия из композитного слоя углеродных нанотрубок с аминокислотой

© О.Ю. Цыбин¹, М.А. Баранов¹, М.Е. Попов^{1,2}, С.В. Филиппов², А.Г. Колосько², Е.О. Попов²

¹ Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия ² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: popov_me@spbstu.ru

Поступило в Редакцию 21 октября 2024 г. В окончательной редакции 20 ноября 2024 г. Принято к публикации 27 ноября 2024 г.

Представлено исследование полевых эмиссионных свойств нового нанокомпозитного материала на основе смеси углеродных нанотрубок и органического вещества (аминокислоты валина). На поверхности тонкого слоя композита, покрывающего электропроводящий металлический катод, экспериментально выявлена развитая сеть активных центров электропной эмиссии. Кроме обеспечения автоэлектронных эмиссионных свойств поверхности композита валин обеспечивал высокую адгезию и прочность нанокомпозитного покрытия.

Ключевые слова: электронная полевая эмиссия, углеродные нанотрубки, аминокислота, валин.

DOI: 10.61011/PJTF.2025.06.59935.20161

Биомолекулярная функционализация наноуглеродных материалов обеспечивает новые уникальные приложения в физике, химии, биологии, медицине и электронике. Выглядят перспективными применения углеродных нанотрубок (УНТ), совмещение которых с биологическими молекулами открывает возможности разработки новых типов биосенсоров и биоаккумуляторов [1–5].

Соединение УНТ с биомолекулами может уменьшить неконструктивную агломерацию УНТ, обусловленную силами Ван-дер-Ваальса между ними. С другой стороны, ковалентные связи между функциональными группами и углеродным скелетом УНТ могут улучшить адгезию УНТ к подложке [5]. Оба этих фактора совместно определяют возможности применения подобных веществ в вакуумной электронике, в том числе для актуальных разработок полевых электронных эмиттеров и катодов.

Полевые катоды на основе УНТ обладают низкими пороговыми напряжениями и достаточно высокими эмиссионными токами, которые получаются за счет распределения токовой нагрузки по множеству проводящих острийных выступов над поверхностью катода [6].

В связи с требованием механической устойчивости материала эмиттера при воздействии пондеромоторных сил используют различные варианты закрепления УНТ на поверхности катода. Это формирование кластерных структур (например, эмиттеры на основе конусообразных агломератов УНТ [7]), создание специальных буферных слоев, повышающих адгезию (например, добавление слоя Ті [8]), а также применение различных веществ, связывающих УНТ с подложкой, — так называемых биндеров. Биндеры наносятся до расположения УНТ на поверхности катода (например, эмиттеры, полученные переносом УНТ с однородной пленки на

островки из AuSn и SnAg путем прямого контакта [9]) или после (например, инфильтрация вертикально ориентированных УНТ молекулами полидиметилсилоксана и их последующая полимеризация [10]), а также смешиваются с УНТ в виде суспензии, из которой потом формируется нанокомпозитное покрытие (например, эмиттеры, полученные путем пневматического распыления смеси УНТ и раствора полимера полиметилметакрилата на подложку [11]). В работе [12] было продемонстрировано улучшение эмиссионных свойств катода из УНТ за счет применения электрохимически контролируемой коагуляции диспергированных молекулярных комплексов УНТ с рибонуклеиновой кислотой. Однако целый ряд этих научно-технологических апробаций не привел в настоящее время к выявлению эффективных решений.

В настоящей работе была разработана нанокомпозитная смесь УНТ с аминокислотами, из которых положительными свойствами был отмечен состав с валином, и впервые изучены автоэлектронные эмиссионные свойства катода с таким композитным слоем.

Экспериментальный полевой катод представлял собой подложку — круглую металлическую пластинку диаметром 10 mm с нанокомпозитным покрытием УНТ/валин. Для создания покрытия на пластинку наносилась капля суспензии композита с последующим испарением растворителя. Суспензия была приготовлена из смеси двух компонентов: взвеси УНТ в ортоксилоле (0.1 mg УНТ на 1 ml) и раствора валина в ортоксилоле (1 mg валина на 1 ml), которые были подвергнуты обработке ультразвуком в течение нескольких часов. Концентрация УНТ в нанокомпозите составила 10 wt.%. Использованные УНТ — углерод-

Результаты полевого эмиссионного эксперимента с нанокомпозитным слоем УНТ/валин на катоде. *а* — ВАХ (на вставке — картина свечения); *b* — ВАХ-ФН (на вставке — статистика эффективного коэффициента усиления поля).

ные нанотрубки марки Tuball (производство OCSiAl, Новосибирск). Боковые контакты УНТ на металлической подложке приводят к контактному сопротивлению порядка $1 k\Omega$, в то время как концевые контакты УНТ могут быть значительно более проводящими [13,14].

 $(HO_2CCH(NH_2)CH(CH_3)_2,$ Использовался валин EMD Millipore Corporation, Japan) без дополнительной очистки. Валин относится к группе простых алифатических неполярных α-аминокислот, которые имеют наибольшую алкильную боковую цепь C_{α} и существуют в виде различных конформеров. Перенос электронов через полипептидные матрицы подобных белков является ключевым процессом в биологических системах, отвечающих за преобразование энергии и передачу сигналов. Процесс переноса заряда чувствителен к последовательности аминокислот, составляющих белок, и их конформации, поэтому может служить инструментом для контроля проводимости подобных нанокомпозитов. В работах [15,16] было показано, что самоорганизующаяся полипептидная матрица имеет электронную проводимость не только в растворе, но и в сухом состоянии на протяжении сотен нанометров. Соответственно мы предполагали, что хорошая электропроводимость полипептидов аминокислот, в частности валина, должна улучшить проводящие свойства нанокомпозита с УНТ и привести к повышенной полевой эмиссии.

Для исследования эмиссионных свойств была применена компьютеризированная методика многоканальной регистрации и записи данных о полевой эмиссии [17]. Регистрировались уровень вакуума в измерительной камере, приложенное напряжение и эмиссионный ток, а также картина распределения эмиссионной активности по поверхности катода (так называемая картина свечения). Картины свечения формировались на люминофорном покрытии прозрачного анода (стекло с прозрачным проводящим ITO-покрытием). Вольт-амперные характеристики (ВАХ) регистрировали в режиме импульсного напряжения со скоростной регистрацией сигналов (единичная реализация ВАХ получалась за 20 ms, составляющих период импульса высокого напряжения), что позволило достигать более высоких напряжения), что позволило достигать более высоких напряжений, чем в режиме постоянного питания. Уровнем напряжения и уровнем эмиссионного тока обозначены далее амплитуды импульсов приложенного напряжения и соответствующего эмиссионного тока.

Специальная программа записи и онлайн-обработки данных позволила построить ВАХ в координатах Фаулера-Нордгейма, оценить эффективные коэффициент усиления поля и площадь эмиссии, а также построить их статистику при относительно стабильном уровне эмиссионного тока [18]. Дополнительной возможностью являлось проведение в режиме онлайн теста на холодную полевую эмиссию (так называемый тест Форбса) [19].

Эксперименты показали, что пороговое напряжение исследуемого катода составляло ~ 300 V (для достижения заданного уровня тока $1.5 \,\mu$ A). При этом регистрация картин свечения начиналась при напряжении ~ 400 V и токе ~ 20 μ A. Зная установленное межэлектродное расстояние между плоскими поверхностями эмиттера и анода ($d_{sep} = 370 \,\mu$ m), можно оценить пороговое поле начала эмиссии, которое составило всего 0.81 V/ μ m.

Максимальный полученный в экспериментах ток достигал 1.6 mA при напряжении ~ 920 V. Выше напряжение не поднималось ввиду опасности повреждения ITO-покрытия.

На рисунке представлена ВАХ с максимальным уровнем тока $\sim 1.5 \,\text{mA}$, построенная в обычных и в полулогарифмических координатах Фаулера—Нордгейма (ВАХ-ФН). На вставках показаны картина свечения и

статистика эффективного коэффициента усиления поля. Полученная статистика демонстрирует необычный эффект: наличие сразу трех пиков, которые в процессе накопления данных формируются одновременно. Вероятно, на эмитирующей поверхности функционировали три независимых участка, которые различались параметрами локального усиления микроскопической напряженности электрического поля и обеспечивали различные парциальные автоэлектронные потоки в вакуумном зазоре между композитным слоем и анодом. В пользу этого предположения свидетельствуют как статистика коэффициента усиления поля, так и картина свечения люминофорного покрытия анода (см. рисунок, a).

Локальные свойства поверхности композитного слоя определялись тем, что эмиссия электронов в вакуум могла осуществляться не только с энергетического уровня, соответствующего чистой УНТ, $\sim 4.6 \text{ eV}$ [20], но и с уровня, соответствующего высшей заполненной молекулярной орбитали валина — около 8.72 eV (эффективная работа выхода валина в газовой фазе, потенциал ионизации с NH₃ HOMO) [21].

Наряду с этим представляется возможным, что именно полимерные островки из молекул валина, покрывающие УНТ, обеспечивали нанокомпозитному покрытию высокие энергетические уровни электронов, параметры локального усиления поля и выхода электронов в вакуум.

При уровне измеряемого тока эмиссии $\sim 1.5 \text{ mA}$ все зарегистрированные ВАХ прошли тест на холодную полевую эмиссию. При заданной работе выхода УНТ (4.6 eV) эмиссия происходила в районе безразмерных локальных полей f от 0.36 до 0.45, что, согласно тесту, не выходит за рамки "режима классической холодной полевой эмиссии" [19]. Это свидетельствует о том, что разработанный композитный катод обладает достаточно высоким потенциалом для применения в вакуумной микроэлектронике.

Финансирование работы

О.Ю. Цыбин, М.А. Баранов, М.Е. Попов, выполнившие постановку задач, проектирование исследованных образцов и анализ результатов, благодарят Российский научный фонд за финансовую поддержку этих работ из средств гранта № 21-72-20029 "Суперкомпьютерное моделирование и технология биомолекулярных пленочных структур" (https://rscf.ru/project/21-72-20029).

С.В. Филиппов, А.Г. Колосько и Е.О. Попов проводили эмиссионный анализ образцов в рамках развития экспериментальной исследовательской методики по программе государственного задания № 0040-2019-0024 и FFUG-2024-0031.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J. Wang, Electroanalysis, 17(1), 7 (2005). DOI: 10.1002/elan.200403113
- J.R. Siqueira, L. Caseli, F.N. Crespilho, V. Zucolotto, O.N. Oliveira, Biosens. Bioelectron., 25 (6), 1254 (2010).
 DOI: 10.1016/j.bios.2009.09.043
- [3] W. Putzbach, N.J. Ronkainen, Sensors, 13 (4), 4811 (2013).
 DOI: 10.3390/s130404811
- [4] L. Ma, H.L. Zhuang, S. Wei, K.E. Hendrickson, M.S. Kim, G. Cohn, R.G. Hennig, L.A. Archer, ACS Nano, 10 (1), 1050 (2016). DOI: 10.1021/acsnano.5b06373
- [5] R. Yadav, K. Kumar, P. Venkatesu, in *Handbook of carbon nanotubes*, ed. by J. Abraham, S. Thomas, N. Kalarikkal (Springer, Cham, 2021).
 DOI: 10.1007/978-3-319-70614-6_65-1
- [6] R.G. Forbes, Solid-State Electron., 45 (6), 779 (2001).
 DOI: 10.1016/S0038-1101(00)00208-2
- [7] H.M. Oh, J.H. Ryu, N.Y. Bae, E.H. Lee, A.N. Ha, W.M. Bae, J. Jang, K.C. Park, in *Int. Vacuum Nanoelectronics Conf.* (IEEE, 2010), p. 127–128.
 DOI: 10.1109/IVNC.2010.5563137
- [8] S. Srividya, S. Gautam, P. Jha, P. Kumar, A. Kumar, U.S. Ojha, J.S.B.S. Rawat, S. Pal, P.K. Chaudhary, Harsh, R.K. Sinha, Appl. Surf. Sci., **256** (11), 3563 (2010). DOI: 10.1016/j.apsusc.2009.12.155
- [9] A. Kumar, V.L. Pushparaj, S. Kar, O. Nalamasu, P.M. Ajayan,
 R. Baskaran, Appl. Phys. Lett., 89 (16), 163120 (2006).
 DOI: 10.1063/1.2356899
- [10] Y.J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F.S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, P.M. Ajayan, Nano Lett., 6 (3), 413 (2006). DOI: 10.1021/nl052238x
- [11] H. Jung, S.Y. An, D.M. Jang, J.M. Kim, J.Y. Park, D. Kim, Carbon, **50** (3), 987 (2012).
 DOI: 10.1016/j.carbon.2011.10.001
- [12] L.T. Cheng, M. Zheng, W. Mahler, D. Roach, A. Fennimore, G. Reynolds, I.H. Kim, C.S. Lee, H.S. Kim, SID Symp. Digest Tech. Papers, **39** (1), 155 (2008). DOI: 10.1889/1.3069457
- [13] P. Wilhite, A.A. Vyas, J. Tan, J. Tan, T. Yamada, P. Wang,
 J. Park, C.Y. Yang, Semicond. Sci. Technol., 29 (5), 054006 (2014). DOI: 10.1088/0268-1242/29/5/054006
- [14] F. Banhart, Nanoscale, 1 (2), 201 (2009).DOI: 10.1039/B9NR00127A
- [15] S.Y. Yew, G. Shekhawat, N. Wangoo, S. Mhaisalkar, C.R. Suri, V.P. Dravid, Y.M. Lam, C.R. Suri, V.P. Dravid, Y.M. Lam, Nanotechnology, 22 (21), 215606 (2011). DOI: 10.1088/0957-4484/22/21/215606
- [16] I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman,
 I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc., 132 (12),
 4131 (2010). DOI: 10.1021/ja907328r
- [17] E.O. Popov, A.G. Kolosko, S.V. Filippov, E.I. Terukov,
 R.M. Ryazanov, E.P. Kitsyuk, J. Vac. Sci. Technol. B, 38 (4),
 043203 (2020). DOI: 10.1116/6.0000072
- [18] A.G. Kolosko, E.O. Popov, S.V. Filippov, Y. Gotoh, J. Vac. Sci. Technol. B, **37** (3), 031803 (2019).
 DOI: 10.1116/1.5090461

- [19] A.G. Kolosko, S.V. Filippov, P.A. Romanov, E.O. Popov, R.G. Forbes, J. Vac. Sci. Technol. B, 34 (4), 041802 (2016). DOI: 10.1116/1.4946834
- [20] V. Barone, J.E. Peralta, J. Uddin, G.E. Scuseria, J. Chem. Phys., **124** (2), 024709 (2006). DOI: 10.1063/1.2150213
- [21] A.N. Zavilopulo, A.I. Bulhakova, S.S. Demes, E.Yu. Remeta, A.V. Vasiliev, Eur. Phys. J. D, 75, 287 (2021).
 DOI: 10.1140/epjd/s10053-021-00294-2