11

Малогабаритная антенна круговой поляризации для спутниковых систем позиционирования, навигации и времени

© Е.Р. Гафаров, А.А. Ерохин, А.М. Александрин, Р.О. Рязанцев, С.В. Поленга, Ю.П. Саломатов

Сибирский федеральный университет, Красноярск, Россия E-mail: egafarov@sfu-kras.ru

Поступило в Редакцию 21 октября 2024 г. В окончательной редакции 14 ноября 2024 г. Принято к публикации 19 ноября 2024 г.

Представлено исследование новой антенны круговой поляризации с размером излучателя не более $\lambda_0/8$ для систем спутниковой радионавигации. Достигнуты высокие характеристики согласования в полосе рабочих частот всех существующих радионавигационных систем. Проведен анализ свойств направленности и поляризационных характеристик предложенной антенны.

Ключевые слова: малогабаритная антенна, круговая поляризация, системы спутниковой радионавигации, коэффициент отражения.

DOI: 10.61011/PJTF.2025.06.59929.20159

В настоящее время одной из составляющих по обеспечению услуг и сервисов позиционирования, навигации и времени [1,2] являются глобальные навигационные спутниковые системы (ГНСС). При помощи таких систем возможно получение точных временны́х данных для синхронизации различных сетей статической инфраструктуры либо, например, безошибочное и устойчивое позиционирование автономных транспортных средств [3].

Для бесперебойной работы сервисов и услуг ГНСС необходима антенна или антенная система, позволяющая выделить в пространстве полезный сигнал и обеспечить его прием без искажений и потерь. При этом наиболее перспективным является исследование малогабаритных антенн, которые могут выступать в качестве самостоятельных антенных систем либо могут функционировать в составе малогабаритной антенной решетки, применяемой в условиях повышенной помеховой обстановки (например, в условиях непреднамеренных помех, возникающих в плотной городской застройке).

Компактные антенны системы спутниковой радионавигации в настоящее время находят широкое применение ввиду микроминиатюризации при разработке устройств функциональной электроники. При этом не всегда решения в части антенных устройств обладают требуемыми характеристиками с одной стороны и компактными размерами с другой. В работе [4] представлена печатная двухчастотная антенна, малые габариты которой (около 0.35 λ_0) обеспечиваются благодаря короткозамкнутым шлейфам, расположенным по периметру антенны. Кроме того, в конструкции антенны используется полый экран специальной формы. Компактная конструкция печатной антенны обеспечивает работу в широком диапазоне углов возвышения (более 130°) с высоким коэффициентом эллиптичности. К недостаткам антенны следует отнести узкую полосу рабочих частот, позволяющую принимать сигналы только одной из систем ГНСС. Таким недостатком обладает большинство

известных компактных печатных антенн, в том числе выполненных на подложке с высокой диэлектрической проницаемостью.

Известна однослойная конструкция печатной антенны на подвешенной подложке с использованием сосредоточенных элементов [5]. Двухчастотный режим работы достигается за счет возбуждения резонаторов и щелевого излучателя. Согласование определяется сосредоточенным индуктивным элементом, расположенным в щелевом излучателе. Двухчастотный режим работы, круговая поляризация в широком секторе углов на частотах ГНСС и простота конструкции — преимущества антенны, к недостаткам можно отнести большие габариты, около 0.5λ₀. Большие габариты свойственны также спиральным антеннам круговой поляризации [6], что затрудняет их использование в ряде компактных приложений. Помимо печатных известны антенны круговой поляризации [7], составленные из нескольких монополей и схемы возбуждения. Размеры таких антенн не превышают 0.5 λ_0 , однако для использования в компактных устройствах такие антенны не пригодны.

В настоящей работе проведено исследование компактной квадрупольной антенны с размером, не превышающим 0.22. Малые размеры антенны обусловлены диэлектрической проницаемостью используемой подложки. Предложенная антенна выполнена из трех слоев фольгированного материала Wangling TP2500 с диэлектрической проницаемостью $\varepsilon = 25$, тангенсом угла диэлектрических потерь tg $\delta = 0.003$, толщина одного слоя 6 mm (рис. 1). Единичный элемент антенны — монополь, реализованный в объеме диэлектрика при помощи металлизации перфорированных отверстий (рис. 1, *a*). Каждый слой отличается по количеству таких отверстий. Так, в слое 1 — одно отверстие, в слое 2 три отверстия, слое 3 — пять отверстий (рис. 1, b). На поверхности слоев диэлектрика металлические шлейфы связывают металлизацию всех отверстий между собой,

Рис. 1. *а* — антенный элемент типа "монополь над экраном"; *b* — квадрупольная антенна, составленная из четырех монополей; *с* — квадрупольная антенна в объеме диэлектрика Wangling TP2500.

Рис. 2. Частотная зависимость модуля полного коэффициента отражения и полного входного сопротивления.

образуя электрический контакт между слоями. В основании монополя расположен экран антенны, при этом основание монополя лежит в плоскости экрана. Для гальванической развязки в экране выполнена щель по контуру монополя, как видно на рис. 1, b. Для получения круговой поляризации антенна составлена из четырех монополей, общие габариты которой составляют $38 \times 38 \times 18$ mm. Размер экрана совпадает с размером печатных плат и составляет 38 × 38 mm. Расстояние между монополями составляет 13 mm (рис. 1, c). В геометрическом центре антенны может быть установлен металлический стержень для фиксации трех слоев без ухудшения радиотехнических характеристик излучения. Схема питания для предложенной антенны может быть выполнена при помощи известных решений в части квадратурных мостов с общими вносимыми потерями, не превышающими 0.5 dB.

Для анализа предложенной компактной квадрупольной антенны проведен расчет характеристик согласония и модуля полного коэффициента отражения при равноамплитудном возбуждении четырех монополей с фазовым набегом 90°. Заданная частота $f_0 = 1.4 \, \text{GHz}$ средняя частота между диапазонами частот ГНСС. Как видно, входное сопротивление имеет резонансный характер с реактивной частью, близкой к нулю на частотах спутниковых навигационных систем. Благодаря этому удается обеспечить коэффициент отражения не более -10 dB в рабочем диапазоне частот систем ГНСС. Двухчастотный режим работы обеспечивается благодаря реализации монополя в объеме диэлектрика с высокой диэлектрической проницаемостью, т.е. происходит возбуждение как монополей, так и диэлектрического резонатора предложенной антенны. Данный эффект не выполняется для антенны типа "монополь в воздушной среде", в которой, как правило, наблюдается согласование в широкой полосе частот, как указано в [7].

вания и свойств направленности. На рис. 2 приведена частотная зависимость полного входного сопротивле-

Рис. 3. Амплитудная диаграмма направленности (а) и коэффициент эллиптичности (b).

На рис. 3 представлены амплитудные диаграммы направленности и коэффициент эллиптичности для верхней и нижней частот ГНСС. Коэффициент усиления антенны составляет 5-6 dBi для разных частот ГНСС, при этом максимум диаграммы направленности сосредоточен в зените ($\theta = 0^\circ$), а не распределен по азимуту ($\theta = 90^{\circ}$) благодаря использованию монополей треугольной формы. Коэффициент эллиптичности благодаря малым размерам антенны составляет не менее 0.7 в угловом диапазоне $\theta = [-80^\circ; 80^\circ]$. КПД антенны не хуже 80% в полосе рабочих частот по критерию коэффициента отражения не более -10 dB. Диссипативные потери в диэлектрическом материале составляют $\sim 10\,\%$ и при использовании диэлектрических подложек из керамических материалов могут быть уменьшены.

Таким образом, в проведенном исследовании представлена компактная антенна для применения в системах ГНСС. Благодаря малым размерам около $0.2\lambda_0$ и простоте конструкции, реализованной по печатной технологии, предложенная антенна может быть применена как в составе компактной антенной решетки, так и в качестве самостоятельной антенны. Преимуществами компактной квадрупольной антенны по сравнению с печатными антеннами при равных габаритах являются меньшая добротность и, как следствие, работа в более широком диапазоне частот, охватывающем частоты всех известных систем ГНСС.

Финансирование работы

Исследование выполнено в рамках государственного задания Сибирского федерального университета (номер FSRZ-2023-0008).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- T. Hadas, K. Kazmierski, I. Kudłacik, G. Marut, IEEE Geosci. Remote Sensing Lett., 21, 8000905 (2024). DOI: 10.1109/LGRS.2024.3354293
- [2] I.T. McMichael, E. Lundberg, D. Hanna, in 2017 IEEE Int. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting (IEEE, 2017), p. 2495. DOI: 10.1109/APUSNCURSINRSM.2017.8073290
- S.R. Ganti, Y. Kim, in 2015 IEEE 12th Int. Conf. on Information Technology — New Generations (IEEE, 2015), p. 273–279. DOI: 10.1109/ITNG.2015.50
- Z.-P. Zhong, G.-L. Huang, W. He, X.-C. Chen, in 2019 IEEE Int. Conf. on Microwave and Millimeter Wave Technology (ICMMT) (IEEE, 2019), p. 1–3.
 DOI: 10.1109/ICMMT45702.2019.8992469
- [5] S. Lee, Y. Yang, K.-Y. Lee, K.C. Hwang, IEEE Trans. Anten. Propag., 68 (12), 8197 (2020).
 DOI: 10.1109/TAP.2020.2997990
- [6] A.A. Erokhin, E.R. Gafarov, Y.P. Salomatov, S.V. Polenga, A.M. Aleksandrin, in 2024 IEEE 25th Int. Conf. of Young Professionals in Electron Devices and Materials (EDM) (IEEE, 2024), p. 380–383.
 DOI: 10.1109/EDM61683.2024.10615086
- [7] E.R. Gafarov, A.A. Erokhin, Y.P. Salomatov, in 2017 IEEE Int. Siberian Conf. on Control and Communications (SIBCON) (IEEE, 2017), p. 1–4. DOI: 10.1109/SIBCON.2017.7998468