03

Формирование турбулентных торнадоподобных структур в продольно ориентированной канавке на стенке канала при отклонении ее носовой части и вихревая интенсификация теплообмена

© С.А. Исаев^{1,2}, Д.В. Никущенко¹, А.А. Клюс², А.Г. Судаков², В.В. Сероштанов³, А.Ю. Чулюнин⁴

1 Санкт-Петербургский государственный морской технический университет, Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет гражданской авиации им. Главного маршала авиации А.А. Новикова, Санкт-Петербург, Россия

³ Санкт-Петербургский государственный университет Петра Великого, Санкт-Петербург, Россия

⁴ Научно-исследовательский институт механики Московского государственного университета им. М.В. Ломоносова, Москва, Россия

E-mail: isaev3612@yandex.ru

Поступило в Редакцию 12 сентября 2024 г. В окончательной редакции 10 ноября 2024 г. Принято к публикации 10 ноября 2024 г.

> Рассматривается формирование турбулентного торнадоподобного вихря с ростом длины отклоненной на угол 45° носовой части продольно ориентированной канавки на стенке канала. Перестройка структуры отрывного течения во входной части канавки связана с формированием растущего поперечного экстраординарного перепада давления и сопровождается резкой интенсификацией закрученного потока в канавке и вихревого теплообмена.

> Ключевые слова: отрывное течение, торнадоподобный вихрь, узкий канал, продольная канавка с отклоненным носом, интенсификация, теплообмен, численное моделирование.

DOI: 10.61011/PJTF.2025.06.59922.20115

Отрывные течения характеризуются образованием разнообразных вихрей. Например, при обтекании обращенной назад ступеньки за ней формируется поперечно ориентированный вихрь [1], а за наклонным ребром на стенке канала возникает спиралевидный вихрь [2]. Закрученные потоки типа торнадо могут образовываться в природных условиях [3] и в то же время самоорганизовываться в лунках на энергоэффективных структурированных поверхностях [4]. Механизмы генерации таких структур у боковых стенок канала с поперечным круговым ребром [5] и на боковых стенках сферической лунки по мере ее углубления [6] показывают, что закрученные потоки в отрывных зонах не обладают высокой интенсивностью и характеризуются умеренными скоростями порядка 30% от характерной скорости. При обтекании наклонных канавок на пластине в них генерируются торнадоподобные вихри. При этом установлена корреляция интенсивных возвратных и закрученных потоков с ультравысокими скоростями, сравнимыми с характерной скоростью, и экстраординарных сосредоточенных перепадов статического давления между зонами торможения на наветренном склоне входной части канавки и разрежения (с отрицательным давлением) в ядре торнадоподобного вихря [7–9]. Величина перепадов давления сравнима с разницей давления между критическими точками при обтекании затупленного тела типа поперечного цилиндра или шара. Как показали измерения теплового потока [10], изменение угла наклона канавки

от 0 до 90° приводит к интенсификации теплообмена в ней.

Прямоугольный канал с высотой $H = 0.05 \, \text{m}$, принятой в качестве характерного размера, имеет безразмерные ширину 2 и длину 12. Все линейные размеры берутся в долях Н. На входе в рабочий участок канала задается равномерный поток воздуха с толщиной пограничного слоя 0.1. Число Рейнольдса, определенное по характерной скорости входного потока U_0 и H, задается равным $1.65 \cdot 10^4$. Декартова система координат x, y, z привязана к середине нижней стенки канала во входном сечении, а оси ориентируются вдоль канала в вертикальном и поперечном направлениях. Декартовы составляющие скорости U, V, W отнесены к характерной скорости U₀. Ориентированная вдоль потока продольная канавка представляет собой две половинки сферической лунки, соединенные траншейной вставкой. Она имеет ширину 0.6, глубину 0.15 и длину 3. Ее носовой входной участок отклоняется на угол 45°, его относительная длина ξ варьируется от 0 до 0.15. В месте сопряжения наклонной и продольной частей канавки при значениях относительной длины ξ в диапазоне от 0.05 до 0.075 радиус кривизны составляет 0.5. При значениях ξ больше 0.1 радиус кривизны становится равным 1. Радиус скругления кромки канавки равен 0.02. Канавка располагается в середине канала на расстоянии 6 от входа. Безразмерная величина давления Р отнесена к удвоенному скоростному напору, определенному по характерной скорости U₀.

Таблица 1. Сравнение экспериментальных и расчетных относительных чисел Нуссельта на наветренном и подветренном склонах носовой части прямолинейной канавки в характерном сечении перехода от сферического сегмента к траншейной части при углах наклона 0 и 45°

Угол наклона, deg	Nu/Nu _{pl}		Nu/Nu _{pl w}	
	Эксперимент [10]	Расчет	Эксперимент [10]	Расчет
0	0.6	0.62	1	1
45	0.4	0.5	3.1	3.2

Рис. 1. Поверхностные поля перепадов давления $P - P_{pl}$ в продольно ориентированной канавке (*a*) и канавке с отклоненной носовой частью относительной длины $\xi = 0.15$ (*b*) с нанесенными картинами растекания и пространственными вихревыми структурами.

Степень турбулентности во входном сечении выбирается равной 0.5%, а масштаб турбулентности принимается равным Н. На стенках задается условие прилипания, а на выходной границе — условия продолжения решения. На входе в канал воздушный поток изотермический с температурой T_{ref} = 293 К. Нижняя омываемая стенка канала с канавкой нагревается при постоянном тепловом потоке q. Он пересчитывается в безразмерный вид по формуле $q^* = q/(\lambda \cdot \Pr \cdot \operatorname{Re} \cdot T_{ref}/H)$ и принимается равным 3.4 · 10⁻⁵. Здесь λ — теплопроводность воздуха, Pr = 0.7. Боковые стенки канала адиабатические, верхняя стенка изотермическая с температурой T_{ref}, принятой в качестве масштаба обезразмеривания. На выходе из канала температура Т подчиняется мягким граничным условиям. Число Нуссельта Nu определяется по градиенту температуры на стенке и перепаду между температурой стенки и среднемассовой температурой в соответствующем поперечном сечении канала.

Численное моделирование конвективного теплообмена при турбулентном низкоскоростном течении в канале с размещенной на нагретой стенке продольно ориентированной канавкой с отклоненной носовой частью переменной длины проводится на основе записанных для несжимаемой жидкости осредненных по Рейнольдсу уравнений Навье—Стокса и энергии [6–8]. Система уравнений замыкается с помощью модели переноса сдвиговых напряжений Ментера [11]. Исходные стационарные уравнения в линеаризованной форме решаются с использованием многоблочных вычислительных технологий и разномасштабных структурированных сеток с их частичным пересечением [12]. Многоблочная расчетная сетка состоит из четырех фрагментарных сеток и содержит порядка $4 \cdot 10^6$ ячеек. Пристеночный шаг равен 10^{-5} .

Валидация расчетной модели представлена в табл. 1. В ней удовлетворительно согласуются численные прогнозы и экспериментальные данные [10] для относительных чисел Нуссельта на наветренной кромке Nu/Nu_{pl} w и подветренном склоне Nu/Nu_{pl} канавки в характерном сечении перехода от сферического сегмента к траншейной части продольной ориентированной канавки и канавки, наклоненной под углом 45°. Характеристики с индексом pl берутся в точках плоскопараллельного канала, соответствующих проекциям криволинейной стенки канала с канавкой.

На рис. 1-3 и в табл. 2 показаны некоторые из полученных результатов. На поля давления и темпе-

Рис. 2. Сравнение профилей декартовых продольной U(a) и поперечной W(b) составляющих скорости при различных относительных длинах наклонной носовой части канавки ξ в центре переходного сечения между сферическим сегментом и траншейной частью C1. $\xi = 0$ (1), 0.05 (2), 0.06 (3), 0.075 (4), 0.1 (5) и 0.15 (6). На рисунке показаны контуры рассмотренных канавок.

Таблица 2. Влияние относительного удлинения наклонной носовой части продольно ориентированной канавки ξ на относительные гидравлические потери ξ/ξ_{pl} и $\xi_d/\xi_{d pl}$, а также на осредненные по площадям контрольного участка и прямоугольного участка, ограниченного контуром канавки, относительные числа Нуссельта Nu_m/Nu_{m pl} и Nu_{md}/Nu_{m pl}

ξ	ξ/ξ_{pl}	$\xi_d/\xi_{d\ pl}$	Nu _m /Nu _{m pl}	Nu _{md} /Nu _{md pl}
0	1.056	1.084	0.998	0.958
0.05	1.065	1.079	1.005	0.984
0.075	1.072	1.086	1.013	1.024
0.1	1.082	1.111	1.020	1.067
0.12	1.093	1.121	1.029	1.089
0.15	1.108	1.131	1.040	1.145

ратуры на поверхности нагретой стенки с продольно ориентированной канавкой, в том числе с отклоненной носовой частью, нанесены картины растекания — линии тока в пристеночном слое толщиной 10^{-5} (на рис. 3 стрелками показаны направления вектора скорости). На рис. 1 продемонстрированы струйно-вихревые структуры, проиллюстрированные пространственными траекториями жидких частиц, введенных, в частности, в особых точках типа фокусов на картинах растекания.

Как видно из рис. 1, *a*, обтекание нижней стенки канала с продольно ориентированной канавкой характеризуется отрывными зонами возвратного течения в носовой и концевой частях со сферическими сегментами, причем отрывная зона формируется также на плоской стенке канала за задней кромкой канавки. В то же время в траншейной части течение не содержит вторичных отрывов. Симметричная вихревая структура с парой противоположно вращающихся вихрей и двух взаимодействующих в плоскости симметрии закрученных струй, самоорганизующихся на боковых склонах носовой части канавки, подобна вихревым структурам в неглубокой сферической лунке на стенке канала [6]. Как следует из рис. 2, *a*, профиль скорости U(y) в центре характерного сечения носовой части *C*1 имеет характерную для возвратных токов наполненную форму с минимумом -0.245. Вихри в носовой отрывной зоне оказываются в области отрицательного избыточного давления $P - P_{pl}$ без поперечного перепада давления.

При образовании отклоненной носовой части в ней самоорганизуется торнадоподобная вихревая структура, которая с ростом ξ создает закрученный поток, распространяющийся по траншейной части канавки (рис. 1, b). Интенсивность закрутки струи растет, причем максимум поперечной скорости W при $\xi = 0.15$ достигает 0.3 (рис. 2, *b*), а минимум *U* — (-0.247). Длина зоны возвратных токов у стенки заметно сокращается. Интенсификация отрывного течения обусловливается растущим перепадом статического давления *P*-*P*_{pl} между зонами торможения на наветренном склоне отклоненной носовой части и отрицательного давления за передней кромкой в ядре торнадоподобного вихря аналогично изменению угла наклона канавки в [7]. При $\xi = 0.15$ он достигает 0.3. Важно отметить, что формирование торнадоподобной вихревой структуры внутри отрывного течения в продольно ориентированной канавке с наклонной носовой частью происходит постепенно. Как видно из рис. 2, а, присущий отрывным течениям близкий к наполненному профиль U(y) в точке C1 сохраняется в

Рис. 3. Поверхностные поля температуры в продольно ориентированной канавке (*a*) и канавке с отклоненной носовой частью относительной длины $\xi = 0.15$ (*b*) с нанесенными картинами растекания.

диапазоне изменения ξ от 0.05 до 0.1. При $\xi = 0.15$ в профиле U(y), как отмечается в [7], проявляется пристеночный возвратный поток, а также возникает сдвиговый участок, соответствующий интенсивному закрученному струйному течению.

Отклонение носика продольной канавки интенсифицирует теплообмен и способствует росту гидравлических потерь (табл. 2). Относительные числа Нуссельта Nu_m/Nu_{m pl} определяются на квадратном контрольном участке вокруг нее размером 3.3 \times 3.3, а Nu_{md}/Nu_{mdpl} на участке, ограниченном контуром канавки с отклоненной носовой частью. ξ/ξ_{pl} рассчитываются по методике [12] между сечениями канала, проходящими по передней и задней границам контрольного участка, а ξ_d/ξ_{dpl} оценивается между сечениями, проходящими через крайние передние и задние кромки канавки. Переход от канонического отрывного течения с сильными возвратными токами и слабыми закрученными струями в продольно ориентированной канавке к формированию отрывного течения с торнадоподобной структурой и вращающимся потоком приводит к весьма умеренному возрастанию относительных величин теплоотдачи и гидравлических потерь на контрольном участке. И в то же время на участке, ограниченном контуром канавки, темп роста $Nu_{md}/Nu_{md \ pl}(\xi)$ заметно увеличивается. Следует отметить, что максимумы температуры на поверхности канавки оказываются в местах самогенерации закрученных струй на боковых склонах при $\xi = 0$ (рис. 3, *a*) и на сферическом носовом отклоненном сегменте, а также на линии растекания на подветренном склоне (рис. 3, b). При этом по мере роста длины ξ от 0 до 0.15 максимум температуры T_w существенно снижается с 1.019 до 1.015. Также следует отметить растущее захолаживание наветренной кромки на носовом наклоненном участке канавки.

Таким образом, перестройка структуры отрывного течения во входной отклоненной части продольно ориентированной канавки, связанная с формированием торнадоподобного вихря, происходит в диапазоне изменения относительного удлинения ξ от 0.05 до 0.15. Она связана с формированием растущего поперечного экстраординарного перепада давления и сопровождается резкой интенсификацией закрученного потока в траншейной части канавки и вихревого теплообмена.

Финансирование работы

Исследования выполнены при финансовой поддержке РНФ (гранты 22-19-00056 (тестирование) и 23-19-00083 (расчеты)).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] P.K. Chang, Separation of flows (Elsevier, 2014).
- [2] V.I. Terekhov, A.Yu. Dyachenko, Y.J. Smulsky, T.V. Bogatko, N.I. Yarygina, *Heat transfer in subsonic separated flows* (Springer, 2022).
- [3] А.Ю. Вараксин, М.Э. Ромаш, В.Н. Копейцев, Торнадо (Физматлит, М., 2011).
- [4] Г.И. Кикнадзе, И.А. Гачечиладзе, В.В. Алексеев, Самоорганизация смерчеобразных струй в потоках вязких сплошных сред и интенсификация тепломассообмена, сопровождающая это явление (Изд-во МЭИ, 2005).

- [5] V.M. Molochnikov, A.B. Mazo, E.I. Kalinin, A.V. Malyukov, D.I. Okhotnikov, O.A. Dushina, Phys. Fluids, **31**, 104104 (2019). DOI: 10.1063/1.5120611
- S.A. Isaev, A.V. Schelchkov, A.I. Leontiev, P.A. Baranov, M.E. Gulcova, Int. J. Heat Mass Transfer, 94, 426 (2016). DOI: 10.1016/j.ijheatmasstransfer.2015.11.002
- [7] С.А. Исаев, С.В. Гувернюк, Д.В. Никущенко, А.Г. Судаков, А.А. Синявин, Е.Б. Дубко, Письма в ЖТФ, 49(15), 39 (2023). DOI: 10.21883/PJTF.2023.15.55863.19560 [S.A. Isaev, S.V. Guvernyuk, D.V. Nikushchenko, A.G. Sudakov, A.A. Sinyavin, E.B. Dubko, Tech. Phys. Lett., 49 (8), 33 (2023). DOI: 10.61011/TPL.2023.08.56684.19560].
- [8] С.А. Исаев, М. Судаков, Д.В. Никущенко, А.Е. Усачов, М.А. Зубин, А.А. Синявин, А.Ю. Чулюнин, Е.Б. Дубко, Изв. РАН. Механика жидкости и газа, **58** (5), 70 (2023). DOI: 10.31857/S1024708423600379 [S.A. Isaev, A.G. Sudakov, D.V. Nikushchenko, A.E. Usachov, M.A. Zubin, A.A. Sinyavin, A.Yu. Chulyunin, E.B. Dubko, Fluid Dyn., **58** (5), 894 (2023). DOI: 10.1134/S001546282360133X].
- [9] М.А. Зубин, А.Ф. Зубков, Изв. РАН. Механика жидкости и газа, 57 (1), 81 (2022). DOI: 10.31857/S0568528122010121
 [М.А. Zubin, А.F. Zubkov, Fluid Dyn., 57 (1), 77 (2022). DOI: 10.1134/S0015462822010128].
- [10] М.Д. Селезнева, С.А. Князев, А.А. Клюс, В.В. Сероштанов, Аэрокосмическая техника и технологии, 1 (4), 30 (2023). EDN IRPLRG
- [11] F.R. Menter, AIAA J., 32 (8), 1598 (1994).
 DOI: 10.2514/3.12149
- [12] S.A. Isaev, P.A. Baranov, A.E. Usachov, Multiblock computational technologies in the VP2/3 package on aerothermodynamics (LAP LAMBERT Academic Publ., 2013).