05,06

О ядерном магнитоэлектрическом резонансе в тетрагональном KNbO₃

© А.С. Юрков Омск, Россия E-mail: fitec@mail.ru (Поступила в Редакцию 19 июля 2011 г.)

> Теоретически исследуется магнитный отклик кристалла KNbO₃, вызванный прецессией ядерных спинов, возникающей в результате их возбуждения переменным электрическим полем. Также рассмотрен и обратный эффект: возникновение переменной электрической поляризации в результате магнитного возбуждения ядерных спинов.

1. Введение

Давно известно, что ядерные спины, обладающие квадрупольным моментом и находящиеся в диэлектрическом кристалле в нецентросимметричной позиции, могут быть возбуждены переменным электрическим полем [1,2]. Из-за этого, кроме обычных ядерного магнитного резонанса (ЯМР) и ядерного квадрупольного резонанса (ЯКР), оказывается возможным ядерный электрический резонанс (ЯЭР). Отличие этого резонансного явления заключается в том, что при этом возбуждение и регистрация резонансного отклика ядер осуществляется посредством не магнитного, а электрического поля.

Кроме ЯЭР оказывается возможен также и ядерный магнитоэлектрический резонанс (ЯМЭР), когда возбуждение ядер осуществляется магнитным полем, а регистрация — по электрическому отклику или наоборот. Хотя в отсутствие внешнего подмагничивания и магнитного упорядочения, статический магнитоэлектрический эффект запрещен симметрией по отношению к обращению времени, ядерный резонанс это принципиально динамическое явление, и в этом случае такого запрета нет.

Отметим, что ЯМР и ЯМЭР могут возникать не только по квадрупольному механизму. Известен также ЯЭР, связанный с магнитным взаимодействием ядерных спинов с носителями тока в полупроводниках [3]. Также в литературе обсуждается ЯМЭР в кристаллах с магнитным упорядочением [4], который тоже не связан непосредственно с квадрупольным взаимодействием. Обсуждение таких ядерных резонансных явлений лежит за рамками данной работы, ориентированной на описание кристаллов других типов.

Экспериментальное наблюдение ЯЭР и ЯМЭР, возникающих по квадрупольному механизму, обычно затрудняется тем, что в диэлектрических кристаллах взаимодействие ядерных спинов с электрическим полем обычно на несколько порядком слабее, чем их взаимодействие с магнитным полем. Поэтому возбуждение ядер переменным электрическим полем обычно наблюдается с помощью техники двойного резонанса по его влиянию на сигналы обычного ЯМР или ЯКР (см. экспериментальные работы [5–8]), но надо отметить, что "чистый" ЯЭР, связанный с рассматриваемым механизмом взаимодействия ядерных спинов с электрическим полем, наблюдался экспериментально [9,10].

В то же время существенно, что все указанные выше эксперименты проводились на кристаллах, не обладающих сегнетоэлектрическими свойствами. Вполне естественно предполагать, что в сегнетоэлектриках рассматриваемые явления могут существенно изменяться, по крайней мере в количественном отношении, благодаря самому факту сегнетоэлектрического упорядочения.

Действительно, в работе [11] было показано, что в тетрагональной фазе монодоменного сегнетоэлектрического KNbO₃ резонансный вклад ядерных спинов ниобия в диэлектрическую проницаемость вполне сравним по величине с вкладом тех же спинов в магнитную проницаемость. Это происходит благодаря тому, что вклад в диэлектрическую проницаемость, как оказывается, пропорционален квадрату "фоновой" диэлектрической восприимчивости, которая у сегнетоэлектриков может достигать значительных величин. В работе [12] был рассмотрен ЯЭР в условиях импульсного возбуждения ядерной подсистемы того же кристалла. В работах [11,12] фактически рассматривается только ЯЭР, а возможность ЯМЭР в тех же кристаллах рассмотрена не была. Цель данной работы заключается в том, чтобы этот пробел ликвидировать.

2. Уравнения движения ядерного спина в резонансном приближении

Ядро со спином I может обладать квадрупольным моментом только если I > 1/2. При этом имеется 2I + 1квантовых состояний, которые, вообще говоря, расщеплены по энергии квадрупольным и зеемановским взаимодействиями. В принципе, поскольку спиновые операторы это конечномерные матрицы, уравнения движения для одного спина в заданных внешних полях можно решить точно. Но соответствующее решение довольно громоздко, и его трудно интерпретировать с физической точки зрения. В то же время в точном решении по существу нет необходимости. В ядерных резонансных экспериментах обычно существенны лишь переходы между некоторыми из спиновых уровней ядер, когда частота перехода близка к частоте осцилляций внешнего поля. Остальные уровни можно не учитывать или, при необходимости, их можно учесть по теории возмущений. Этот факт позволяет сущестенно упростить уравнения движения ядерного спина и свести эти уравнения к паре уравнений типа Блоха.

Рассматриваем случай, когда магнитное квантовое число ядерного спина m является "хорошим", т.е. сохраняется в отсутствие внешних воздействий и взаимодействий с другими спинами. Иными словами, мы рассматриваем случай равного нулю параметра асимметрии η кристаллического поля, в котором находится ядерный квадрупольный момент, причем если есть внешнее подмагничивающее поле, то оно направлено по оси симметрии кристаллического поля.

Как показано в [11], в тетрагональной фазе ниобата калия разрешены лишь переходы с изменением *m* на единицу. Таким образом, нас интересует случай, когда частота осцилляций внешних полей близка к частоте перехода $|m\rangle \leftrightarrow |m+1\rangle$. Будем рассматривать вариант, когда зеемановское расщепление много меньше квадрупольного. Часто эксперименты проводятся и вообще без внешнего постоянного магнитного поля ("чистый" ЯКР), при этом зеемановского расщепления отсутствует. В таких условиях частота переходов $|m\rangle \leftrightarrow |m+1\rangle$ близка или, соответственно, совпадает с частотой переходов $|-m\rangle \leftrightarrow |-m-1\rangle$, и, если мы учитываем переходы $|m\rangle \leftrightarrow |m+1\rangle$, то должны одновременно учесть и переходы $|-m\rangle \leftrightarrow |-m-1\rangle$.

Таким образом, мы учитываем лишь резонансные состояния, которых в нашем случае четыре: $|m\rangle$, $|m + 1\rangle$, $|-m\rangle$ и $|-m-1\rangle$. В принципе возможны две исключительные ситуации, когда m = 0 или m = -1/2. В первом случае четверка состояний вырождается в тройку состояний, во втором — в пару состояний. Первая ситуация возможна лишь в случае целого ядерного спина, так что, интересуясь в основном ядрами ⁹³Nb, имеющими полуцелый спин I = 9/2, такой вариант мы рассматривать не будем. Во втором случае, как будет следовать из полученных далее формул, нет взаимодействия с электрическим полем.

Рассматривая только указанный выше случай, когда смешиваются лишь состояния $|m\rangle$ и $|m+1\rangle$ и, независимо от этого, смешиваются состояния $|-m\rangle$ и $|-m-1\rangle$, введем проекторы

$$\mathscr{P}^{(+)} = |m\rangle\langle m| + |m+1\rangle\langle m+1|, \tag{1}$$

$$\mathscr{P}^{(-)} = |-m\rangle\langle -m| + |-m-1\rangle\langle -m-1|, \qquad (2)$$

$$\mathscr{P}^{(NR)} = 1 - \mathscr{P}^{(+)} - \mathscr{P}^{(-1)}, \tag{3}$$

сумма которых очевидно есть единица. Отметим, что произведение пары разных проекторов тождественно равно нулю.

Умножим гамильтониан \mathcal{H} и слева и справа на единицу, представленную в виде суммы трех проекторов. В результате, после раскрытия скобок, гамильтониан представится в виде суммы слагаемых, в которой будут фигурировать слагаемые $\mathcal{P}^{(\alpha)}\mathcal{HP}^{(\beta)}$ как при $\alpha \neq \beta$, так и при $\alpha = \beta$. Все слагаемые первого типа, а также слагаемые, содержащие $\mathcal{P}^{(NR)}$, в нулевом порядке резонансного приближения отбрасываются. В итоге гамильтониан \mathcal{H} приближенно представляется в виде

$$\mathscr{H} = \mathscr{H}^{(+)} + \mathscr{H}^{(-)}, \tag{4}$$

995

где

$$\mathscr{H}^{(\pm)} = \mathscr{P}^{(\pm)} \mathscr{H} \mathscr{P}^{(\pm)}.$$
 (5)

Матрицу плотности ядерного спина ρ мы представляем аналогично в виде суммы двух резонансных составляющих $\rho^{(\pm)}$ и нерезонансной части $\rho^{(NR)}$. Так как в рассматриваемом приближении гамильтониан не смешивает разные подпространства состояний, учитывая, что до возбуждения ρ диагональна в энергетическом представлении, недиагональных по индексу (\pm) матричных элементов не возникает и в дальнейшем процессе движения. Поэтому уравнения движения матрицы плотности расщепляются

$$i\hbar\dot{\rho}^{(\pm)} = [\mathscr{H}^{(\pm)}, \rho^{(\pm)}],$$
 (6)

$$\dot{\rho}^{(NR)} = 0, \tag{7}$$

и наша задача сводится к задаче о движении двух независимых двухуровневых подсистем, которым можно поставить в соответствие эффективные спины 1/2.

Следует заметить, что при нахождении начальных (до возбуждения внешним полем) матриц плотности $\rho^{(\pm)}$ по распределению Гиббса, необходимо исходить из полной матрицы плотности ρ . Это связано с тем, что матрицы плотности эффективных спинов 1/2, обозначенные как $\rho^{(\pm)}$, не удовлетворяют условию Sp $\rho = 1$.

В рассматриваемом случае тетрагонального KNbO₃ можно записать выражения для $\mathscr{H}^{(\pm)}$ сразу, лишь заменив операторы проекций ядерного спина I_i на $I_i^{(\pm)} = \mathscr{P}^{(\pm)}I_i\mathscr{P}^{(\pm)}$. Такая возможность связана с тем, что согласно [11] гамильтониан содержит произведения спиновых операторов только лишь с одним¹ оператором I_x или I_y , а для диагонального оператора I_z справедливы тождества $I_z \mathscr{P}^{(\pm)} = \mathscr{P}^{(\pm)}I_z = \mathscr{P}^{(\pm)}I_z \mathscr{P}^{(\pm)}$.

Непосредственным вычислением далее легко убеждаемся, что

$$I_x^{(\pm)} = \frac{1}{2}\sqrt{(I-m)(I+m+1)}\,\sigma_x^{(\pm)},\tag{8}$$

$$I_{y}^{(\pm)} = \frac{1}{2} \sqrt{(I-m)(I+m+1)} \,\sigma_{y}^{(\pm)},\tag{9}$$

$$I_z^{(\pm)} = \frac{1}{2} \,\sigma_z^{(\pm)} \pm (m+1/2), \tag{10}$$

где матрицы $\sigma_i^{(\pm)}$ совпадают с матрицами Паули в соответствующих подпространствах и тождественно равны нулю вне этих подпространств. Произведение таких

¹ Имеющийся в гамильтониане оператор $I_x^2 + I_y^2$ сводится к I_z^2 .

матриц с разными верхними индексами тождественно равны нулю, а при одинаковом верхнем индексе они удовлетворяют обычным паулевским коммутационным соотношения.

Гамильтониан ядерного спина имеет в нашем случае вид [11]

$$\begin{aligned} \mathcal{H} &= -\hbar\gamma H_i I_i + \frac{3eQ\alpha P_0^2}{2I(2I-1)} I_z^2 + \frac{eQP_0}{2I(2I-1)} \\ &\times \left(6\alpha I_z^2 \tilde{P}_z + \beta \{I_x, I_z\} \tilde{P}_x + \beta \{I_y, I_z\} \tilde{P}_y \right), \end{aligned} \tag{11}$$

где H_i — компоненты внешнего магнитного поля, γ — гиромагнитное отношение, eQ — квадрупольный момент ядра, P_0 — спонтанная поляризация кристалла, \tilde{P}_i — переменная часть поляризации кристалла, параметры α и β определены в работе [11]. В (11) мы опустили несущественные постоянные слагаемые, по повторяющимся индексам подразумевается суммирование.

В этом выражении вполне можно исключить первый член в круглых скобках третьего слагаемого, так как переменная часть поляризации, параллельная спонтанной поляризации, не вызывает переходов. Опустив это слагаемое, делая указанную выше замену спиновых операторов, используя стандартную алгебру матриц Паули и выбрасывая дополнительно возникающие постоянные слагаемые, получаем

$$\mathscr{H}^{(\pm)} = \frac{\hbar}{2} H_i^{(\pm)} \sigma_i^{(\pm)}, \qquad (12)$$

где

$$H_z^{(\pm)} = -\gamma H_z \pm \frac{3eQ\alpha P_0^2(2m+1)}{2I(2I-1)\hbar},$$
 (13)

$$H_a^{(\pm)} = \sqrt{(I-m)(I+m+1)}$$
$$\times \left(-\gamma H_a \pm \frac{eQ\beta P_0(2m+1)}{2I(2I-1)\hbar}\tilde{P}_a\right), \qquad (14)$$

а индекс а пробегает значения х и у.

Поскольку задача свелась к задаче с гамильтонианом, линейным по матрицам Паули, далее стандартным способом легко получить уравнения типа Блоха

$$\frac{d\mathbf{S}^{(\pm)}}{dt} = \mathbf{H}^{(\pm)} \times \mathbf{S}^{(\pm)},\tag{15}$$

где компоненты векторов $\mathbf{S}^{(\pm)}$ представляют собой квантовостатические средние от матриц $\sigma_i^{(\pm)}$.

К уравнениям (15) неоходимо также добавить начальные условия, которые мы будем считать заданными в бесконечном прошлом, когда нет возбуждения ядер переменным полем и ядерные спины находятся в термодинамическом равновесии. Вычисляя средние значения операторов $\sigma_i^{(\pm)}$ по распределению Гиббса (при этом, как указывалось выше, надо использовать полную матрицу плотности ρ), получаем

$$S_{z}^{(\pm)}\big|_{t=-\infty} = \frac{\hbar\gamma H_{0}}{(2I+1)T} \mp \frac{3eQ\alpha P_{0}^{2}(2m+1)}{2I(2I-1)(2I+1)T}, \quad (16)$$

где T — температура в энергетических единицах, поперечные компоненты $S_a^{(\pm)}$ равны нулю, а внешнее посто-

янное магнитное поле H_0 предполагается направленным по тетрагональной оси z.

Получив уравнения (15) и (16), далее можно находить компоненты векторов $S^{(\pm)}$ для любых значений *t* и для любых временных зависимостей внешнего магнитного поля **B** и переменной части поляризации \tilde{P} . Но величины $S^{(\pm)}$ не являются физическими величинами и сами по себе не имеют смысла. Важно то, что через них можно выразить физические величины. Такими физическими величинами являются, прежде всего, компоненты магнитного момента ядра, которые даются формулами

$$\mu_{z} = \hbar \gamma \langle I_{z} \rangle = \frac{1}{2} \, \hbar \gamma (S_{z}^{(+)} + S_{z}^{(-)}), \qquad (17)$$

$$\mu_a = \hbar \gamma \langle I_a \rangle = \frac{1}{2} \, \hbar \gamma \sqrt{(I-m)(I+m+1)} \, (S_a^{(+)} + S_a^{(-)}), \tag{18}$$

причем в этих формулах опущена не интересующая нас постоянная, не зависящая от времени часть магнитного момента.

Также нас далее будут интересовать квантовостатистически усредненные операторы $\{I_a, I_z\}$, входящие в уравнения движения переменной части поляризации [11]. Их также легко выразить через $S^{(\pm)}$

$$\langle \{I_a, I_z\} \rangle = \frac{1}{2} (2m+1) \sqrt{(I-m)(I+m+1)} (S_a^{(+)} - S_a^{(-)}).$$
(19)

Соотношение между намагниченностью и электрической поляризацией кристалла, вызванными свободной прецессией ядерных спинов

Полученные в предыдущем разделе формулы позволяют сразу записать соотношение между электрической и магнитной поляризацией кристалла, вызванной прецессией ядерных спинов. При этом будем считать, что подмагничивающего поля нет (условия "чистого" ЯКР) и будем интересоваться только поперечной частью намагниченности, причем в те моменты времени, когда действие возбуждающих полей уже прекратилось. Фактически в данном разделе мы рассматриваем ситуацию типичного импульсного эксперимента.

Чтобы получить поперечную намагниченность кристалла M_a , надо магнитный момент ядра поделить на объем Ω , приходящийся на одно ядро. Добавка же к электрической поляризации, вызванная движением ядерных спинов, получается применением формулы (13) из [11] и выведенной выше формулы (19). В итоге получается

$$M_a = \frac{\mu\sqrt{(I-m)(I+m+1)}}{2\Omega} \left(S_a^{(+)} + S_a^{(-)}\right).$$
(20)

$$\tilde{P}_{a} = \frac{\chi_{\perp} p \sqrt{(I-m)(I+m+1)}}{2\Omega} \left(S_{a}^{(-)} - S_{a}^{(+)}\right).$$
(21)

где для удобства записи мы ввели новые параметры μ и p, определяемые выражениями

$$\mu = \gamma \hbar, \tag{22}$$

$$p = \frac{eQ\beta P_0(2m+1)}{2I(2I-1)}.$$
 (23)

Также мы учли, что поперечная, по отношению к тетрагональной оси, диэлектрическая восприимчивость χ_{\perp} кристалла сводится к скаляру в силу симметрии. Во избежание недоразумений заметим, что величина μ не равна магнитному моменту ядра μ_N , хотя и связана с ним простым соотношением $\mu = \mu_N/I$.

При отсутствии внешнего подмагничивающего поля, когда действие возбуждающих полей уже прекратилось, векторы $\mathbf{H}^{(+)}$ и $\mathbf{H}^{(-)}$ имеют только *z*-компоненты, равные по модулю и противоположные по знаку, причем их модули это ничто иное, как угловая частота ЯКР. Учитывая это и вводя для удобства обозначение $H_z^{(+)} = \omega_{NQR}$, из (15) легко получить уравнения

$$\frac{d}{dt}\left(S_{a}^{(+)}+S_{a}^{(-)}\right) = -\omega_{NQR}\varepsilon_{azb}\left(S_{b}^{(-)}-S_{b}^{(+)}\right), \qquad (24)$$

$$\frac{d}{dt}\left(S_{a}^{(-)} - S_{a}^{(+)}\right) = -\omega_{NQR}\varepsilon_{azb}\left(S_{b}^{(+)} + S_{b}^{(-)}\right),$$
(25)

где ε_{ijk} — единичный полностью асимметричный тензор третьего ранга, a, b = x, y, по повторяющимся индексам подразумевается суммирование.

С учетом (20), (21) уравнения (24) и (25) показывают, что производная по времени переменной части намагниченности, вызванная прецессией ядерных спинов, оказывается пропорциональна переменной части аналогичной электрической поляризации и наоборот. Отметим, что такая связь возможна только в динамическом случае, когда возникает производная по времени. Намагниченность и электрическая поляризация имеют разную четность по отношению к инверсии времени, но производная по времени как раз и меняет такую четность на противоположную.

В [11] показано, что возбуждение ядерных спинов в условиях "чистого" ЯКР приводит лишь к поляризации, параллельной возбуждающему электрическому полю. Пусть для определенности это будет направление оси *x*. Тогда, используя приведенные выше формулы и учитывая, что вблизи резонанса $\omega \approx \omega_{NQR}$ (с точностью до знака), для отношения модулей амплитуд мы можем записать

$$\frac{|\vec{P}_x|}{|M_y|} = \left|\frac{\chi_\perp p}{\mu}\right|,\tag{26}$$

причем других компонент у намагниченности и электрической поляризации при этом нет.

Отношение в левой части (26) имеет ясный физический смысл: это соотношение между электрическим и магнитным откликом кристалла на то или иное (магнитное или электрическое) импульсное возбуждение. Отношение же в правой части (26), как легко убедиться, равно квадратному корню из величины, определенной в [11] формулой (36). Там же было показано, что для тетрагонального KNbO₃ это величина порядка единицы.

Таким образом, в тетрагональном KNbO₃ отклик ядер на импульсное электрическое возбуждение можно регистрировать по ядерной намагниченности и наоборот, отклик на магнитное возбуждение можно регистрировать по электрической поляризации, причем амплитуда сигналов в том и другом случае будет сравнима с амплитудой обычного ЯКР, а направления электрической и магнитной поляризации взаимно перпендикулярны. Это означает, что возможен ядерный магнитоэлектрический резонанс (как прямой, так и обратный), причем в техническом отношении его наблюдение должно быть не сложнее, чем наблюдение обычного ЯКР.

Обратим также внимание, что магнитная и электрическая поляризация имеют противоположную четность не только по отношению к инверсии времени, но и по отношению к пространственной инверсии. Поэтому ЯМЭР возможен только в кристаллах, не имеющих центра пространственной инверсии. Все сегнетоэлектрики являются нецентросимметричными и в них запрета ЯМЭР, связанного с центральной симметрией, нет. Но в многодоменном образце с нулевой средней спонтанной поляризацией сигнал ЯМЭР усреднится в ноль. Поэтому наблюдать такой резонанс можно только в монодоменном образце или, по меньшей мере, в многодоменном образце с ненулевой спонтанной поляризацией, усредненной по доменной структуре. Применительно к тетрагональному ниобату калия это будет показано более формально в следующем резделе в результате вычисления магнитоэлектрической восприимчивости.

4. Ядерная магнитоэлектрическая восприимчивость

В предыдущем разделе мы рассматривали уравнения движения ядерных спинов в условиях, когда нет поперечных компонент внешних полей. Такое рассмотрение адекватно для описания отклика после импульсного возбуждения, в условиях же эксперимента с непрерывным облучением необходимо найти магнитоэлектрические восприимчивости. При этом, за исключением экспериментов по насыщению перехода, вполне можно обойтись линейным приближением.

В линейном приближении мы полагаем $\mathbf{S}^{(\pm)} = \mathbf{S}_0^{(\pm)} + \mathbf{s}^{(\pm)}$, $\mathbf{H}^{(\pm)} = \mathbf{H}_0^{(\pm)} + \mathbf{h}^{(\pm)}$, причем величины снабженные нулевым нижним индексом — это равновесные значения, реализующиеся в отсутствие возбуждения внешним полем, а малыми буквами обозначены малые поправки к этим величинам, возникающие при возбуждении. Подставив такие разложения в (15), учтя

параллельность векторов $\mathbf{H}_0^{(\pm)}$ и $\mathbf{S}_0^{(\pm)}$, с точностью до линейных членов мы получаем

$$\frac{d\mathbf{s}^{(\pm)}}{dt} = \mathbf{H}_0^{(\pm)} \times \mathbf{s}^{(\pm)} + \mathbf{h}^{(\pm)} \times \mathbf{S}_0^{(\pm)}, \qquad (27)$$

где

$$H_{z0}^{(\pm)} = -\gamma H_{z0} \pm \frac{3eQ\alpha P_0^2(2m+1)}{2I(2I-1)\hbar},$$
 (28)

 $S_{z0}^{(\pm)}$ дается формулой (16), других компонент у векторов $\mathbf{H}_{0}^{(\pm)}$ и $\mathbf{S}_{0}^{(\pm)}$ нет,

$$h_a^{(\pm)} = \sqrt{(I-m)(I+m+1)} \left(-\gamma H_a \pm \hbar^{-1} p \chi_{\perp} E_a\right), \quad (29)$$

 H_a и E_a — возбуждающее магнитное и электрическое поле, χ_{\perp} — "фоновая" поперечная диэлектрическая восприимчивость кристалла. При этом ядерно-резонансный отклик кристалла определяется записанными ранее формулами (20) и (21) с тем лишь отличием, что вместо $S^{(\pm)}$ следует подставить $s^{(\pm)}$.

Система уравнений (27) является линейной и легко решается. В результате для зависимости от времени вида $e^{-i\omega t}$ путем элементарных алгебраических выкладок мы получаем

$$\delta \tilde{P}_a = \chi_{ab}^{(EE)} E_b + \chi_{ab}^{(EM)} H_b,$$

$$\tilde{M}_a = \chi_{ab}^{(ME)} E_b + \chi_{ab}^{(MM)} H_b.$$
 (30)

Полагая для упрощения формул $H_{z0} = 0$, выражения для компонент восприимчивости χ при этом можно записать следующим образом:

$$\chi_{xx}^{(EE)} = \chi_{yy}^{(EE)} = \frac{\chi_{\perp}^2 p^2 (I - m) (I + m + 1)}{(2I + 1)\Omega T} \frac{\omega_{NQR}^2}{\omega_{NQR}^2 - \omega^2},$$
(31)
$$\chi_{xy}^{(ME)} = -\chi_{yx}^{(ME)} = \chi_{xy}^{(EM)} = -\chi_{yx}^{(EM)}$$

$$= \frac{\chi_{\perp} \mu p (I - m) (I + m + 1)}{(2I + 1)\Omega T} \frac{i\omega \omega_{NQR}}{\omega_{NQR}^2 - \omega^2},$$
(32)

$$\chi_{xx}^{(MM)} = \chi_{yy}^{(MM)} = \frac{\mu^2 (I - m)(I + m + 1)}{(2I + 1)\Omega T} \frac{\omega_{NQR}}{\omega_{NQR}^2 - \omega^2}.$$
(33)

Остальные компоненты равны нулю.

В данной работы мы учитывали процессы релаксации, которые малосущественны для целей настоящего исследования. Поэтому вычисленные восприимчивости обращаются в бесконечность при точном совпадении частоты ω с частотой ЯКР ω_{NQR} . Релаксацию легко учесть на феноменологическом уровне, заменив в резонансных знаменателях $\omega_{NQR}^2 - \omega^2$ на $\omega_{NQR}^2 - \omega^2 - 2i\omega v$, где v — феноменологический параметр релаксации. При использовании выведенных формул для описания реальных экспериментов конечно же надо сделать такую замену.

Теперь обратим внимание на то, что поскольку $p \sim P_0$, восприимчивость χ^{EE} пропорциональна P_0^2 и не меняет знака при смене знака P_0 . Магнитоэлектрические же восприимчивости $\chi^{(EM)}$ и $\chi^{(ME)}$ оказываются линейными по P_0 и меняют знак при смене спонтанной поляризации. Поэтому сигнал ЯЭР имеет одинаковый знак в доменах, имеющих противоположную спонтанную поляризацию, сигнал же ЯМЭР имеет в таких доменах противоположный знак.

Таким образом, прямой расчет подтверждает вывод предыдущего раздела, сделанный на основе симметрийных соображений, о том, что ЯМЭР, в отличие от ЯКР и ЯЭР, может наблюдаться только в монодоменизированном образце или, по крайней мере, в не полностью деполяризованном образце.

Из полученных формул также следует, что магнитоэлектрические восприимчивости пропорциональны ω и, как и должно быть в соответствии с симметрией по отношению к обращению времени, исчезают в статическом случае.

Используя численные параметры из [11], можно убедиться, что для перехода $7/2 \leftrightarrow 9/2$ $\chi_{\perp} p \approx 0.7 \mu$ и сигналы ЯЭР, ЯКР и ЯМЭР оказываются близкими по своим амплитудам.

5. Заключение

В данной работе показано, что в нецентросимметричных кристаллах, содержащих ядра с квадрупольным моментом, возможен не только ядерный квадрупольный резонанс (ЯКР) и ядерный электрический резонанс (ЯЭР), но и ядерный магнитоэлектрический резонанс (ЯМЭР). Для кристалла тетрагонального наиобата калия выведены формулы, описывающие ЯМЭР как в условиях импульсного возбуждения, так и в условиях, соответствующих эксперименту с непрерывным облучением.

Численные оценки показывают, что для рассмотренного кристалла все сигналы ЯКР, ЯЭР и ЯМЭР сравнимы по своему уровню, но сигналы ЯМЭР могут наблюдаться только в условиях монодоменного образца, или, по меньшей мере, образца с ненулевой поляризацией, усредненной по доменной структуре. Данный факт, подтвержденный прямыми расчетами, имеет ясную симметрийную природу и связан с тем, что магнитные и электрические векторы имеют разную пространственную четность.

В то же время, разная четность этих векторов по отношению к инверсии времени не приводит к запрету на магнитоэлектрический эффект в силу принципиально динамической ситуации, когда дифференцирование по времени меняет временную четность на противоположную. В частотном представлении это проявляется в том, что магнитоэлектрическая восприимчивость оказывается пропорциональна частоте, что почти не влияет на поведение этой восприимчивости вблизи резонанса.

Список литературы

- [1] N. Bloembergen. Sciecne 133, 1363 (1961).
- [2] R.W. Dixon, N. Bloembergen. Phys. Rev., 135, A1669 (1964).
- [3] А.Г. Аронов, Ю.Б. Лянда-Геллер. Письма в ЖЭТФ, **50**, 398 (1989).
- [4] Е.А. Туров, В.В. Николаев. УФН, 175, 457 (2005).
- [5] E. Brun, R. Hann, W.L. Pierce, W.H. Tanttila. Phys. Rev. Lett.
 8, 365 (1962); E. Brun, R.J. Mahler, H. Mahon, W.L. Pierce. Phys. Rev. 126, 1965 (1963).
- [6] M. Luukkala. Phys. Lett., 10, 20 (1964).
- [7] T. Kushida, W.H. Silver. Phys. Rev., 130, 1692 (1963).
- [8] W.J. Meyer, D.V. Lang, C.P. Slichter. Phys. Rev. B 8, 1924 (1973).
- [9] T. Sleator, E.L. Hahn, M.B. Heaney, C. Hilbert, J. Clarke. Phys. Rev. Lett. 57, 2756 (1986); T. Sleator, E.L. Hahn, M.B. Heaney, C. Hilbert, J. Clarke. Phys. Rev. B 38, 8609 (1988).
- [10] D.C. Newitt, E.L. Hahn. Bull. Magn. Reson. 16, 127 (1994).
- [11] А.С. Юрков. ФТТ 50, 1452 (2008).
- [12] А.С. Юрков. Изв. РАН. Сер. физ., 74, 1260 (2010).