04

Спектральные и дифракционные свойства голографических фотополимерных материалов с фотоинициирующими системами на основе комплекса с переносом заряда и красителя—соинициатора

© Д.И. Деревянко^{1,2}, В.В. Шелковников^{1,3}, Е.Ф. Пен^{2,3}, С.И. Алиев¹, В.В. Бардин¹, А.Д. Бухтоярова¹

 ¹ Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН, Новосибирск, Россия
 ² Институт автоматики и электрометрии СО РАН, Россия, Новосибирск, Россия
 ³ Новосибирский государственный технический университет, Новосибирск, Россия
 e-mail: derevyanko@nioch.nsc.ru

Поступила в редакцию 03.05.2024 г. В окончательной редакции 17.09.2024 г. Принята к публикации 17.09.2024 г.

Разработаны новые фотоинициирующие системы (*Photoinitiating system*, PIS) на основе светочувствительного комплекса с переносом заряда (*Charge Transfer Complex*, CTC), бутилтрис(4-анизил)бората диэтил-9-оксо-10-(4-гептилоксифенил)-9H-тиоксантенония, и красителя — соинициатора, Метиленовый голубой (MB) с бутилтрис(4-анизил)боратом тетрабутиламмония. Исследованы спектральные свойства и чувствительность фотополимерных материалов на основе отдельных и объединенных PIS (CTC, MB, CTC-MB) в режиме голографической записи. Показано, что PIS-MB и PIS-CTC обладают чувствительностью в широком спектральном диапазоне (400–700 nm). С использованием лазерного излучения с длинами волн $\lambda_1 = 457$ nm, $\lambda_2 = 532$ nm и $\lambda_3 = 639$ nm сформированы монохромные и цветные отражательные голографмые свысокой дифракционной эффективностью (50–90%). Экспериментально подтверждено предотвращение кислородного ингибирования радикальной полимеризации в слоях фотополимерных материалов толщиной 30 μ m при использовании бутилтрис(4-анизил)бората тетрабутиламмония в качестве донорной компоненты в СTC, а также в качестве соинициатора в PIS MB. Модуляция коэффициента преломления при записи голограмм, как в случае использования защитной пленки, предотвращающей доступ кислорода, так и без неё составила $\Delta n \approx 0.008$.

Ключевые слова: фотоинициирующие системы, комплексы с переносом заряда, фотополимерные материалы, отражательные голограммы.

DOI: 10.61011/OS.2025.01.59877.6562-24

Введение

Голографические фотополимерные материалы (*holographic photopolymer materials*, HPPM) известны и находят практическое применение в области защитных голограмм, оптической памяти, дисплеев и сенсоров благодаря своим характеристикам и простоте использования [1–7].

Наряду с этим продолжаются исследования механизмов голографической записи и модификации данного типа материалов [8–13]. Основными компонентами НРРМ являются полимерное связующее, мономер и фотоинициирующая система (*Photoinitiating system*, PIS) [14–16]. Важными характеристиками PIS являются спектральный диапазон чувствительности, эффективность инициирования полимеризации и способность к обесцвечиванию красителя сенсибилизатора [17].

В случае формирования цветных голограмм НРРМ должны обладать спектральной чувствительностью в широком диапазоне видимого спектра 400–700 nm и энергией записи в пределах 30–70 mJ/cm² [18–23].

Одним из подходов для сенсибилизации радикальной полимеризации является использование светочувствительных комплексов с переносом заряда (Charge Transfer Complex, CTC) [24,25]. Механизм образования СТС можно качественно описать как результат передачи электрона с высшей занятой молекулярной орбитали (highest occupied orbital, HOMO) донора на низшую вакантную молекулярную орбиталь (lowest unoccupied orbital, LUMO) акцептора. Такие PIS имеют следующие особенности, важные для применения в голографических технологиях: спектральный сдвиг чувствительности в длинноволновую область по сравнению с исходными донорными и акцепторными компонентами, а также меньший коэффициент экстинкции СТС ($\varepsilon = 10 - 10^3 \, \text{L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$) [24] в отличие от традиционных красителей-сенсибилизаторов $(\varepsilon \approx 10^4 - 10^5 \, \text{L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1})$ [26], что находит применение для однородной фотополимеризации в толстых слоях [27]. В качестве донорных компонент широкое распространение получили амин/фосфинсодержащие соединения, а в качестве акцепторов — соли иодо-

Dye
$$\xrightarrow{h\psi}$$
 1,3Dye $\xrightarrow{R_3BR'^-}$ Dye^{-•} + R₃B + R'• \rightarrow Initiation

Рис. 1. Механизм инициирования алкильного радикала с использованием солей боратов в качестве соинициатора.

ния/сульфония [24,28]. Под действием света происходит распад СТС с образованием алкильного/арильного радикала. Отметим, что использование СТС в качестве инициаторов голографической записи мало изучено.

Также в качестве сенсибилизаторов в видимой области спектра широкое распространение получили PIS на основе краситель-соинициатор(ы) [29–31]. Одним из эффективных соинициаторов являются соли (алкил)(арил)боратов [32,33], а механизм инициирования радикальной полимеризации объясняется с точки зрения фотоиндуцированного электронного перехода от боратаниона к возбужденному красителю в синглетном или триплетном состоянии [34]. После переноса электрона происходит распад алкилтрифенилбората, приводящий к образованию алкильного радикала $R^{\prime \bullet}$ и борана R_3B . На рис. 1 показана схема механизма, который приводит к образованию алкильного радикала.

Отметим, что недостатком свободно-радикальной фотополимеризации является её ингибирование атмосферным кислородом в тонких пленках [35]. Ингибирование происходит из-за образования пероксидных радикалов, которые являются ловушками свободных радикалов и предотвращают дальнейшую полимеризацию. Общеизвестным подходом нивелирования эффекта кислородного ингибирования радикальной полимеризации является использование тиолсодержащих соединений в фотополимерных композициях [36], которые не всегда совместимы с другими компонентами композиции. В связи с этим разработка эффективных PIS без тиолсодержащих соединений, способных эффективно инициировать свободнорадикальную полимеризацию при мягких условиях облучения (низкая интенсивность света и возможность проведения полимеризации на воздухе), по-прежнему актуальна [37,38]. Отметим, что использование таких PIS позволит записывать голограммы в HPPM без каких-либо защитных покрытий поверх регистрирующих слоев, которые вносят дополнительные переотражения света и ухудшают качество формируемой голограм-МЫ.

Ранее в [39] нами был описан новый комплекс с переносом заряда на основе солей бората и сульфония: бутилтрис(4-анизил)борат 2,4-диэтил-9-оксо-10-(4-гептилоксифенил)-9Н-тиоксантенония, поглощающий во всем видимом диапазоне спектра. Целью данной работы является разработка и исследование спектральной чувствительности голографических фотополимерных материалов на основе разных PIS (НРРМ-МВ и НРРМ-СТС, НРРМ-МВ-СТС) к лазерному излучению ($\lambda = 457, 532, 639$ nm), оценка дифракционной эффективности отра-

жательных голограмм, а также выявление возможности формирования голограмм в HPPM с защитной пленкой, предотвращающей доступ кислорода, и без нее.

Экспериментальная часть

Состав НРРМ на основе СТС

В работе использован базовый состав фотополимерной композиции на основе акриламидного мономера и полимерного связующего поливинилацетата [40]. В качестве PIS использовали комплекс с переносом бутилтрис(4-анизил)борат 2,4-диэтил-9-оксозаряда 10-(4-гептилоксифенил)-9Н-тиоксантенония ([S]-[B]), а также двухкомпонентную систему фотоинициирования краситель-соинициатор метиленовый голубой бутилтрис(4-анизил)борат тетрабутиламмония ([Bu₄N][B]). На рис. 2 представлены структурные формулы PIS.

В спектрах исходных компонент PIS СТС, гексафторфосфата 2,4-диэтил-9-оксо-10-(4-гептилоксифенил)-9Нтиоксантенония ($[S][PF_6]$) и $[Bu_4N][B]$, поглощение в видимой области отсутствует, а при их смешении происходит батохромный сдвиг в спектре поглощения (рис. 3).

Композиция на основе СТС была получена добавлением [S][PF₆] и [Bu₄N][B] в раствор мономера и полимерной матрицы в хлороформе (c[S][PF₆] = [Bu₄N][B] = 40 вес.% к массе мономера). В случае превышения данной концентрации наблюдали кристаллизацию образцов. Концентрацию МВ в НРРМ-МВ подбирали с учетом рекомендаций в [41], в которой оптическая плотность на длине волны записи для отражательных голограмм должна быть в диапазоне D = 0.25 - 0.7, концентрация [Bu₄N][B] составляла 40 mass% к массе мономера. Также в работе были получены голографические слои НРРМ-СТС-МВ на основе комбинации двух PIS. На рис. 4 представлены спектры поглощения НРРМ.

Толщина высушенного фотополимерного слоя НРРМ составляла $d_0 = 30 - 40 \,\mu$ m. После испарения растворителя на фотополимерный слой накатывали защитную полиэтилентерефталатную плёнку, которая предотвращает доступ кислорода к фоточувствительному слою. Измерения толщин образцов проводили с помощью модернизированного интерференционного микроскопа МИИ-4 [42].

Регистрацию спектральных откликов записанных голограмм осуществляли с помощью спектрометра (Avantes), непосредственно после облучения НРРМ.

Запись и характеризация отражательных голограмм

Формирование монохромных и трёхцветных голограмм осуществляли путём последовательной запи-

Рис. 2. Структурные формулы PIS (СТС) и PIS (МВ).

си лазерным излучением: в синей области (длина волны $\lambda = 457$ nm), зеленой ($\lambda = 532$ nm) и красной ($\lambda = 639$ nm). Голограммы были записаны по схеме с двумя противонаправленными лучами, угол схождения которых составлял 110° (в воздухе) при соотношении интенсивностей в плоскости записи 1 : 1. Период формируемых решеток составлял ($p_{457} = 0.3$, $p_{532} = 0.35$, $p_{639} = 0.41 \,\mu$ m). Отражательные голограммы записывали на подробно описанной в [43] установке, оптическая схема которой представлена на рис. 5.

Экспериментальные значения дифракционной эффективности (DE) отражательных голограмм оценивали с помощью формулы:

$$\eta_r = \left(1 - \frac{T_r}{T_0}\right) \times 100\%,\tag{1}$$

где T_r — значения пропускания на длинах волн минимума контура спектрального отклика и T_0 вблизи его основания [44,45]. Примеры полученных спектральных откликов приведены далее на рис. 6.

Характеризация полученных голограмм включала в себя измерение спектра пропускания отражательной голограммы с помощью цифрового спектрофотометра [46] непосредственно в процессе её записи, оценку величин *DE*, модуляции показателя преломления и степени усадки толщины HPPM. Для расчета кинетики формирования отражательных голограмм были зарегистрированы спектры пропускания в режиме реального времени на спектрофотометре с периодичностью 0.62 s. Кинетическая кривая сформирована с помощью программного обеспечения.

Представленные ниже расчётные кривые построены с учётом формул Когельника [43,47]. Расчетные данные получены с помощью пакета программ [48] для оценки амплитуды модуляции коэффициента преломления и характера изменений пространственной структуры го-

Рис. 3. УФ видимые спектры поглощения S][PF6] (1), [Bu4N][B] (2) и СТС [S]–[B] на их основе (3). (c[S][PF6] = c[Bu4N][B] = $2.5 \cdot 10^{-6}$ mol/L) 1.5 mg в 1 ml CHCl₃. Длина оптического пути 1 ст.

Рис. 4. УФ видимые спектры поглощения НРРМ-МВ (1), НРРМ-СТС (2) и комбинированного НРРМ-СТС-МВ (3).

лографических решёток. Расчёт производился с учётом поглощения материала.

Результаты и обсуждения

Формирование отражательных голограмм

Из рис. 3 и 4 видно, что спектры СТС в растворе и слое НРРМ обладают поглощением вплоть до 600-650 nm в отличие от исходных компонент, поглощающих только до 430 nm. Появление дополнительного плеча поглощения связано с образованием СТС [S]-[B]. Большой батохромный сдвиг спектра поглощения СТС по сравнению с исходными компонентами даёт возможность записи цветных голограмм с помощью лазерного излучения с длинами волн, расположенных во всем видимом диапазоне (400-650 nm). В пленке НРРМ поглощение СТС носит близкий характер, но видно отличие в значениях оптической плотности. Так, в среде хлороформа значение оптической плотности СТС в области 425-475 nm лежит в диапазоне $D \approx 0.4 - 0.45$, а в пленке поливинилацетата $D \approx 0.05 - 0.1$, что связано с разной толщиной поглощающего вещества. Отметим, что растворитель может оказывать влияние на спектральные свойства СТС, а также на устойчивость комплексных соединений [49].

Согласно рис. 4, в спектре поглощения НРРМ с системой фотоинициирования краситель/со-инициатор метиленовый голубой/бутилтрис(4-анизил)борат тетрабутиламмония присутствуют основной пик поглощения красителя в красной области видимого спектра с максимумом 670 nm и слабое плечо поглощения в области 440—540 nm. Оптическая плотность в области плеча поглощения близка к таковой для НРРМ-СТС, что позволяет провести и сопоставить запись голограмм в данной области для обоих типов PIS в близких условиях исходного поглощения фотослоя.

Также из рис. 4 можно видеть, что комбинация двух PIS позволила увеличить значение оптической плотности в сине-зеленой области видимого спектра до D = 0.1 - 0.17.

На рис. 6 представлены спектры пропускания отражательных голограмм (рефлексов), полученных на фотополимерных плёнках НРРМ-СТС, НРРМ-МВ, НРРМ-СТС-МВ при экспонировании излучением лазеров с длинами волн 457, 532 и 639 nm. На рис. 6, a-c представлены наложенные спектры записанных монохромных голограмм (в разных участках НРРМ). На рис. 6, d представлен спектр трехцветной голограммы, сформированной с помощью параллельной (одновременной) записи тремя лазерами).

Наблюдаемый на вышеприведенных графиках спектральный сдвиг рефлексов голограмм относительно значения длины волны излучения лазера, используемого при записи, связан с различием угла схождения пучков при записи голограммы и угла падения зондирующего пучка, а также влиянием усадки толщины голограммы ($\approx 2 - 3\%$) вследствие фотополимеризации. Сводные данные о характеристиках записанных отражательных голограмм приведены в таблице.

Из таблицы видно, что максимально достижимая дифракционная эффективность, модуляция коэффициента преломления и спектральная чувствительность записи голограмм в случае НРРМ на основе СТС уменьшается по мере увеличения длины волны записи с $DE_{457} \approx 84\%$ ($E_{457} = 76 \text{ mJ/cm}^2$) до $DE_{532} = 57\%$ ($E_{532} = 105 \text{ mJ/cm}^2$). В случае записи голограмм красным лазером наблюдали $DE_{639} \approx 21\%$, при этом энергия записи была наибольшей ($E_{639} = 223 \text{ mJ/cm}^2$), что связано с уменьшением оптической плотности НРРМ-СТС с $D_{457} \approx 0.1$ до $D_{639} = 0.01$ и, как следствие, малой поглощённой энергией.

Примечательно, что на HPPM-MB при облучении красным лазером с $\lambda = 639$ nm, в области которого

Рис. 5. Схема установки записи цветных объёмных отражательных голограмм. *1* — лазеры; *2* — автоматизированные фотозатворы; *3* — коллиматоры; *4* — диафрагмы; *5* — нейтральные светофильтры; *6* — дихроичные зеркала; *7* — светоделительный кубик; *8*, *9*, *10* — плоские зеркала, *11* — образец НРРМ; *12* — галогенная лампа для формирования зондирующего пучка белого света; *13* — цифровой спектрофотометр; *14* — блок управления фотозатворами; *15* — компьютер; *16* — монитор. Символы B, G, R относятся к соответственно "синему" (457 nm), "зелёному" (532 nm) и "красному" (639 nm) каналам.

HPPM	Голограммы	$\lambda_{rec},$ nm	D (Optical density)	$d_{ef},\ \mu{ m m}$	P, mW/cm ²	E, mJ/cm ²	DE, %	Δn (refractive index modulation)
CTC	Монохромные	457	0.09	29	3.8	76	84	0.0077
		532	0.02	31	3.5	105	57	0.006
		639	0.01	33	9	223	21	0.0031
MB	Монохромные	457	0.06	35	3.8	45	43	0.0037
		532	0.05	36	3.5	50	54	0.0051
		639	0.62	30	1	18	72	0.01
CTC-MB	Монохромные	457	0.15	30	3.8	38	47	0.005
		532	0.07	28	3.5	45	48	0.0067
		639	0.63	30	1	17	72	0.0097
CTC-MB	Параллельная запись,	457	0.15	25	3.8	19	39	0.0051
	трехцветные	532	0.07	27	3.5	17	41	0.0058
		639	0.63	27	1	5	21	0.0042

Характеристики НРРМ и записанных отражательных голограмм на их основе

МВ имеет основное поглощение (D = 0.62), была получена $DE \approx 72\%$, при этом энергия записи составила $E_{639} = 18 \text{ mJ/cm}^2$. более 40%, однако для достижения максимальной *DE* потребовалось увеличить энергию записи до 50 mJ/cm².

Слабое поглощение в НРРМ-МВ в сине-зеленой области ($D_{457} = 0.06 \ D_{532} = 0.05$) позволило записать голограммы с помощью лазеров с $\lambda = 457$ и 532 nm с DE

Известно, что в НРРМ вследствие поглощения излучения запись голограмм неравномерна по толщине, в связи с этим вводят понятие эффективной толщины сформированной голограммы (d_{ef}) , которую можно оце-

Рис. 6. Экспериментальные графики спектров пропускания отражательных цветных голограмм ($\lambda_{rec} = 639, 532, 457 \, \text{nm}$) с толщинами HPPM $d_0 = 25 - 30 \, \mu \text{m}$: (a) HPPM-CTC; (b) HPPM-MB; (c) HPPM-CTC-MB в режиме последовательной записи, на вставке внешний вид голограмм при облучении белым светом; (d) HPPM-CTC-MB в режиме параллельной записи.

нить по формуле [41,50]

$$d_{ef} = d_0 \exp\left(-\frac{D}{2}\right),\tag{2}$$

где d_0 — физическая толщина НРРМ, D — оптическая плотность голограммы на длине волны записи.

В таблице можно видеть значения эффективной толщины голограмм. Эффективная толщина оказывается различной для исследованных нами НРРМ-СТС и НРРМ-МВ на указанных длинах волн из-за отличий в оптимальных значениях *D*. В частности, при увеличении длины волны лазерного излучения в НРРМ-СТС можно увидеть увеличение $d_{ef457} = 29 \,\mu$ m до $d_{ef639} = 33 \,\mu$ m, в то же время для НРРМ-МВ эффективная толщина уменьшилась с $d_{ef457} = 35 \,\mu$ m до $d_{ef639} = 30 \,\mu$ m.

Из полученных данных видно, что с увеличением длины волны записи снижаются чувствительность НРРМ СТС и дифракционная эффективность сформированных голограмм. В то же время НРРМ-МВ обладает высокой чувствительностью в красной области спектра, что создало предпосылки для совмещения PIS и создания НРРМ-МВ-СТС. Из таблицы видно, что объединение двух PIS в НРРМ-МВ-СТС позволило несколько увеличить чувствительность фотополимеров в синей области видимого спектра ($E_{457} = 38 \text{ mJ/cm}^2$) по сравнению с НРРМ-МВ ($E_{457} = 45 \text{ mJ/cm}^2$), что связано с увеличением оптической плотности НРРМ в сине-зеленой области с 0.06 до 0.15.

Примечательно, что в контуре спектра поглощения голограммы, полученной на HPPM-CTC-MB при длине волны 639 nm, видны боковые лепестки, что можно объяснить формированием более однородной пространственной структуры решетки.

На рис. 6, *d* приведен спектр пропускания трехцветной голограммы, сформированной в НРРМ-СТС-МВ в режиме параллельной записи. Создание голограмм с близкой DE спектральных откликов осуществляли одновременным облучением тремя лазерами с оптимизированной плотностью мощности для формирования спектральных откликов с близким значением дифракционной эффективности (таблица). В итоге была записана трехцветная голограмма, обладающая $DE_{457} \approx 39\%$, $DE_{532} \approx 41\%$, $DE_{639} \approx 21\%$, суммарная модуляция коэффициента преломления достигает ≈ 0.015 .

Отметим, что характеристики разработанных голограмм: усадка, спектральный диапазон чувствительности, значение чувствительности близки к коммерчески доступным фотополимерам, которые широко используют для создания цветных голограмм [51].

Рис. 7. Кинетические кривые изменения модуляции коэффициента преломления материалов с нанесенной защитной пленкой и без неё при записи отражательных голограмм ($\lambda_{rec} = 457 \text{ nm}, I = 29 \text{ mW} \cdot \text{cm}^{-2}$): HPPM-MB (D = 0.03) (I, 2), HPPM-CTC (D = 0.1) (3, 4) с доступом (I, 3) и без доступа (2, 4) кислорода.

Кинетика формирования отражательной голограммы

На рис. 7 приведены кинетические кривые записи отражательных голограмм в НРРМ на основе МВ и СТС. Образцы обладали одинаковой оптической плотностью на длине волны записи $D_{457} = 0.05$.

Из рис. 7 видно, что HPPM-CTC обладают меньшей реакционной способностью по сравнению с HPPM-MB. Индукционный период увеличен с 0.6 до 1.2 s у HPPM-CTC, а насыщение кривой наблюдается для HPPM-CTC за 5 s, после чего происходит небольшой рост *DE* с 45 до 50% на протяжении 5 s. Выход кинетической кривой на насыщение для HPPM-MB наблюдается за 4 s, после чего дальнейший рост прекращается. Итак, можно заключить, что увеличение плотности мощности записи позволило провести инициирование радикальной полимеризации в HPPM-MB более эффективно, чем в образцах HPPM-CTC.

Предотвращение кислородного ингибирования в HPPM-CTC, HPPM-MB

Для выявления возможности предотвращения кислородного ингибирования в тонких слоях HPPM-MB и HPPM-CTC нами были зарегистрированы кинетики записи отражательных голограмм в HPPM без защитных пленок, предотвращающих доступ кислорода (рис. 7).

Видно, что голограммы, записанные на HPPM-MB и HPPM-CTC, как с защитной пленкой, предотвращающей доступ кислорода, так и без нее, обладают близкими кинетическими кривыми (рис. 7). Индукционный период для HPPM составляет не более 1 s. Спектры HPPM-CTC с нанесенной защитной пленкой обладают более высокой начальной скоростью изменения модуляции коэффициента преломления, чем при ее отсутствии. Для HPPM-MB скорости записи голограмм носят близкий характер. После выхода на насыщение сформированные голограммы обладали близким значением модуляции коэффициента преломления материалов $\Delta n \approx 0.008$. Таким образом, использование соли бората как в качестве донорной компоненты в PIS-CTC, так и в качестве соинициатора с MB эффективно предотвращает кислородное ингибирование радикальной полимеризации и позволяет проводить голографическую запись без защитных покрытий регистрирующих слоев.

Заключение

Разработаны голографические фотополимерные материалы с использованием новых фотоинициирующих систем на основе светочувствительного комплекса с переносом заряда: бутилтрис(4-анизил)борат диэтил-9-оксо-10-(4-гептилоксифенил)-9Н-тиоксантенония и системы фотоинициирования Метиленовый голубой: бутилтрис(4-анизил)борат тетрабутиламмония. Исследованы спектральные характеристики CTC и полимерной матрице, проведено в растворе сопоставление голографических характеристик НРРМ с характеристиками различных PIS при последовательной и параллельной записи цветных голограмм.

Показано, что PIS обладают чувствительностью в широком спектральном диапазоне. Совмещение двух PIS позволило увеличить чувствительность HPPM в синей области с 45 mJ/cm² до 38 mJ/cm².

С использованием лазерного излучения с длинами волн 457, 532 и 639 nm сформированы монохромные отражательные голограммы. С помощью параллельной записи тремя лазерами в HPPM-CTC-MB сформирована трехцветная голограмма с $DE_{457nm} \approx 40\%$, $DE_{532nm} \approx 43\%$, $DE_{639nm} \approx 19\%$.

Выявлено, что использование PIS на основе бутилтрис(4-анизил)бората позволяет эффективно предотвращать кислородное ингибирование, что проведение допускает записи отражательных голограмм без использования защитных плёнок поверх регистрирующего слоя.

Благодарности

Авторы выражают благодарность Химическому исследовательскому центру коллективного пользования СО РАН за проведение спектральных и аналитических измерений.

Финансирование работы

Исследование выполнено за счет средств государственного задания НИОХ СО РАН № 075-00365-25-00 и в рамках проекта по программе ФНИ государственных академий наук на 2021-2025 годы 0238-2021-0006 и НИР "Высокоинформативные оптические методы исследования состава и микроструктуры материалов и веществ: физические основы, методы реализации и применения" № 124041700108-6 (FWNG-2024-0022).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G.S. Zheng, Y. Jiang, T. Wang, Huang A., Y. Zhang, P. Tang, S. Zhuang, Y. Liu, S. Yin. Opt. Express, **19** (3), 2216 (2011). DOI: 10.1364/OE.19.002216
- [2] J. Guo, M.R. Gleeson, J.T. Sheridan. Physics Research International, 1, 2090 (2012). DOI: 10.1155/2012/803439
- [3] A. Zanutta, E. Orselli, T. Facke, A. Bianco. Optical Materials Express, 6 (1), 252 (2016). DOI: 10.1364/OME.6.000252
- [4] N. Vorzobova, P. Sokolov. Polymers, 11 (12), 2020 (2019).
 DOI: 10.3390/polym11122020
- [5] Холоэкспо. Наука и практика [Электронный ресурс] URL: http://www.holoexpo.ru
- [6] W.S. Colburn, K.A. Haines. Applied Optics, 10 (7), 1636 (1971).
- [7] V. Mikerin, V. Ugozhaev. J. Opt. Technol., 9 (4), 213 (2023).
 DOI: 10.1364/JOT.90.000213
- [8] J. Li, P. Hu, Z. Zeng, J. Jin, J. Wu, X. Chen, J. Liu, Q. Li, M. Chen, Z. Zhang. Molecules, 27 (19), 6283 (2022). DOI: 10.3390/molecules27196283.
- [9] M.D. Alim., D.J. Glugla, S. Mavila, C. Wang, P.D. Nystrom, A.C. Sullivan, C.N. Bowman. ACS Applied Materials & Interfaces, 10 (1), 1217 (2017). DOI: 10.1021/acsami.7b15063
- [10] F.K. Bruder, T. Facke, T. Rolle. Polymers, 9 (12), 472 (2017).
 DOI: 10.3390/polym9100472
- [11] D. Cody, S. Gul, T. Mikulchyk, M. Irfan, A. Kharchenko, Goldyn, S. Martin, S. Mintova, J. Cassidy, I. Naydenova. Appl. Opt., 57, 173 (2018). DOI: 10.3390/polym11122020
- [12] D.A. Belousov, R.I. Kuts, K.A. Okotrub, V.P. Korolkov.
 Photonics, 10 (7), 771 (2023).
- DOI: 10.3390/photonics10070771
- [13] B. Guo, M. Wang, D. Zhang, M. Sun, Y. Bi, Y. Zhao. ACS Applied Materials & Interfaces, **15** (20), 24827 (2023). DOI: 10.1021/acsami.3c01446
- [14] A. Ibrahim, X. Allonas, C. Ley, K. Kawamura, H. Berneth, F.K. Bruder, T. Facke, R. Hagen, D. Honel, T. Rolle, G. Walze, M.S. Weiser. Chemistry — A European Journal, **20** (46), 15102 (2014). DOI: 10.1002/chem.201404072
- [15] E.M. Mihaylova. Coatings, **12** (11), 1765 (2022).
- DOI: 10.3390/coatings12111765
 [16] D. Zhang, Y. Zhao, B. Guo, Z. Zhang, D. Hu, Z. Wang, J. Zhu, Y. Ye, Y. Zhao. European Polymer Journal, 198, 112436 (2023). DOI: 10.3390/polym15132908
- [17] A. Ibrahim, X. Allona, C. Ley, B.E. Fouhaili, C. Carre.
 J. Photopolymer Science and Technology, 27 (1), 517 (2014).
 DOI: 10.1021/cm402262g
- [18] G. Ding, C. Jing, X. Qin, Y. Gong, X. Zhang, S. Zhang, Z. Luo, H. Li, F. Gao. Dyes Pigm., 137, 456 (2020).
 DOI: 10.1016/j.dyepig.2016.10.034
- [19] W. Liao, C. Xu, X. Wu, Q. Liao, Y. Xiong, Z. Li, H. Tang. Dyes Pigm., **178**, 108350 (2020).
 DOI: 10.1016/j.dyepig.2020.108350

- [20] A. Ibrahim, C. Ley, X. Allonas, C. Carre, I. Pillin. J. Displ. Technol., 10, 456 (2014). DOI: 10.1109/JDT.2014.2314863
- [21] J. Kabatc, K. Iwinska, A. Balcerak, D. Kwiatkowska,
 A. Skotnicka, Z. Czech, M. Bartkowiak. RSC Advances,
 10 (42), 24817 (2020). DOI: /10.1039/D0RA03818K
- [22] C. Forster, A. Andrieu-Brunsen. Chem. Commun., 59 (12), 1554 (2023). DOI: 10.1039/D2CC06595A
- [23] K. Kawamura, H. Berneth, F. K. Bruder, T. Facke, R. Hagen, D. Honel, T. Rolle, G. Walze, M.S. Weiser. Chemistry — A European J., 20 (46), 15102 (2014). DOI: 10.1002/chem.201404072
- [24] D. Derevyanko, V. Shelkovnikov, V. Kovalskii, I. Zilberberg, S. Aliev, N. Orlova, V. Ugozhaev. Chemistry Select, 5 (38), 11939 (2020). DOI: 10.1002/slct.202002163
- [25] Q. Ma, L. Buchon, V. Magné, B. Graff, F. Morlet-Savary, Y. Xu, M. Benltifa, S. Lakhdar, J. Lalevée. Macromolecular Rapid Commun., 43 (19), 2200314 (2020). DOI: 10.1002/marc.202200314
- [26] I.Y. Kargapolova, N.A. Orlova, K.D. Erin, V.V. Shelkovnikov. Russian J. Organic Chemistry, **52**, 37 (2016). DOI: 10.1134/S1070428016010073
- [27] P. Garra, B. Graff, F. Morlet-Savary, C. Dietlin, J.-M. Becht, J.-P. Fouassier, J. Lalevée. Macromolecules, 51 (1), 57 (2018). DOI: 10.1021/acs.macromol.7b02185
- [28] D. Wang, P. Garra, S. Lakhdar, B. Graff, J. Fouassier, H. Mokbel, M. Abdallah, J. Lalevée. ACS Appl. Polym. Mater, 1 (3), 561 (2019). DOI: 10.1021/acsapm.8b00244
- [29] V.V. Shelkovnikov, E.V. Vasil'ev, V.V. Russkikh. Optoelectronics, Instrumentation and Data Processing, 52, 404 (2016). DOI: 10.3103/S8756699016040130
- [30] F. Dumur. Catalysts, **13**, 493 (2023). DOI: 10.3390/catal13030493.
- [31] C.Y. Shih, J.-S. Ni, Y.-C. Chen. Macromolecular Chemistry and Physics, 1 (2024). DOI: 10.1002/macp.202300428
- [32] G.C. Weed, B.M. Monroe. United States Patent 5143818. Borate coinitiators for photopolymerizable compositions (1992).
- [33] J. Kabate, K. Iwińska, A. Balcerak, D. Kwiatkowska, A. Skotnicka, Z. Czech, M. Bartkowiak. SC Advances., 10, 24817 (2020). DOI: 10.1039/D0RA03818K
- [34] X. Allonas, A. Ibrahim, C. Ley, H. Saimi, J. Bugnet, K. Kawamura. J. Photopolymer Science and Technology, 24 (5), 531 (2011). DOI: 10.2494/photopolymer.24.531
- [35] N. Li, X.-C. Pan. Chinese J. Polymer Science, 39, 1084 (2021). DOI: 10.1007/s10118-021-2597-9
- [36] V.V. Shelkovnikov, D.I. Derevyanko, L.V. Ektova. Polymer Science, Series B, 58 (5), 519 (2016).
 DOI: 10.1134/S1560090416050109
- [37] S. Ke, X. Pu, D. Frederic, L. Jacques. J. Polymer Science, 59 (13), 1338 (2021). DOI: 10.1002/pol.20210225
- [38] F. Dumur. European Polymer J., **195**, 112193 (2023). DOI: 10.1016/j.eurpolymj.2023.112193
- [39] Д.И. Деревянко, Е.Ф. Пен, В.В. Шелковников, В.В. Бардин. В сб.: *НОLOEXPO 2022, Тезисы докладов. XIX международная конференция по голографии и прикладным оптическим технологиям* (Санкт-Петербург, 2022), с. 322–329.
- [40] C. Choi, E.V. Vasiliev, V.V. Shelkovnikov, V. Loskutov. Patent US9874811B2 Photopolymer composition for holographic recording (2016).
- [41] V.V. Shelkovnikov, E.F. Pen, V.I. Kovalevsky. Optical Memory and Neural Networks, 16, 75 (2007).
 DOI: 10.3103/S1060992X07020038

- [42] В.П. Корольков, А.Е. Качкин, Р.В. Шиманский. Мир измерений, 10, 37 (2012).
- [43] D.I. Derevyanko, E.F. Pen, V.V. Shelkovnikov, S.I. Aliev. Optoelectronics, Instrumentation and Data Processing, 57 (6), 584 (2021). DOI: 10.3103/S8756699021060042
- [44] W.K. Smothers et al. Dry film process for altering wavelength response of holograms. US Patent 5024909. 1991. https://www.freepatentsonline.com/5024909.pdf
- [45] В.В. Шелковников, Е.В. Васильев, В.В. Русских. Автометрия, 52 (4), 107 (2016). DOI: 10.15372/AUT20160413
- [46] С.А. Бабин, Е.В. Васильев, В.И. Ковалевский, Е.Ф. Пен, А.И. Плеханов, В.В. Шелковников. Автометрия, **39** (2), 57 (2003).
- [47] H. Kogelnik. The Bell System Technical J., 48, 2909 (1969).
- [48] E.F. Pen, M.Y. Rodionov, V.V. Shelkovnikov. J. Optical Technology, 73 (7), 475 (2006). DOI: 10.1364/JOT.73.000475
- [49] С.В. Душина, В.А. Шарнин. Химия и химическая технология, **56**, 3 (2013).
- [50] S.H. Stevenson, K.W. Steijn. Proc. SPIE, 2405, 88 (1995). DOI: 10.1117/12.205352
- [51] I. Vazquez-Martín, M. Gomez-Climente, J. Marin-Saez, M.V. Collados, J. Atencia. Proc. SPIE., **10233**, 64 (2017). DOI: 10.1117/12.2265802