02 Люминесценция ионов эрбия в скандий-иттриевой оксидной керамике

© А.В. Спирина¹, В.И. Соломонов¹, А.С. Макарова¹, В.В. Осипов¹, В.А. Шитов¹, Р.Н. Максимов^{1,2}

¹ Институт электрофизики Уральского отделения РАН, Екатеринбург, Россия

² Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, Россия e-mail: rasuleva@iep.uran.ru

Поступила в редакцию 08.04.2024 г. В окончательной редакции 13.09.2024 г. Принята к публикации 09.01.2025 г.

> Исследована люминесценция прозрачных образцов смешанной керамики состава Егу:(Sc_xY_{1-x})₂O₃ + 2 mol.% ZrO₂ при разном содержании скандия. Возбуждение образцов излучением лазерного диода с длиной волны 808 nm приводит к ап-конверсии, в результате которой в видимой и ближней инфракрасных областях спектра появляются полосы фотолюминесценции на переходах ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2} (530-575 \,\mathrm{nm})$ и ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2} (950-1050 \,\mathrm{nm})$. При возбуждении электронным пучком длительностью 2 ns со средней энергией электронов 170 keV и плотностью тока 130 A/cm² вместе с желтозеленой люминесценцией дополнительно проявляются полосы излучения ионов эрбия, соответствующие переходам ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2} (640-720 \text{ nm})$ и ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2} (840-900 \text{ nm})$. С ростом содержания скандия в образцах наблюдаются красный сдвиг и уширение длинноволновых компонент всех полос люминесценции эрбия. С помощью кинетических измерений определены времена жизни наблюдаемых излучательных уровней.

Ключевые слова: импульсная катодолюминесценция, время жизни, ап-конверсия, эрбий.

DOI: 10.61011/OS.2025.01.59874.6219-24

Введение

Твердотельные лазеры, генерирующие излучение в среднем инфракрасном (ИК) диапазоне $(1.5-2.1\,\mu\text{m})$, представляют большой интерес для практических применений в линиях связи, в медицине, в лидарных устройствах и др. В качестве активных сред таких лазеров используются кристаллы, стекла и керамические материалы, в частности, легированные ионами эрбия (Er^{3+}). К настоящему времени известно много оксидных и фторидных материалов, таких как Y₃Al₅O₁₂, YAlO₃, YVO₄, GdVO₄, KGd(WO₄)₂, LiYF₄, CaF₂ и др., легированных Er^{3+} , на переходах ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ (2.5–3.1 μ m) и ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ (1.5–1.6 μ m) которого получена лазерная генерация [1–5].

Для создания твердотельных лазеров ближнего и среднего ИК диапазонов, а также устройств, использующих ап-конверсионное излучение, перспективными материалами являются оксиды Y_2O_3 , Lu_2O_3 и Sc_2O_3 , активированные редкоземельными элементами [6,7]. У этих веществ термомеханические свойства выше, чем у материалов структуры граната, что является важным преимуществом [8,9], но в то же время есть сложность выращивания таких монокристаллов. Керамическая технология позволяет значительно снизить температуру синтеза (обычно до 1700–1800 °C), обеспечивает масштабируемость производства и упрощает изготовление высоколегированных материалов с заданным составом и равномерным распределением легирующих примесей, что необходимо для создания коммерчески доступных лазеров. Поэтому в настоящее время активно исследуется лазерная керамика на основе оксидов Y_2O_3 , Lu_2O_3 и Sc_2O_3 , активированных редкоземельными ионами [8,9].

Особый интерес представляет прозрачная керамика, структура которой образована твердыми растворами на основе смешанных оксидов $Y_2O_3-Lu_2O_3-Sc_2O_3$. В этом ряду сила кристаллических полей в позициях редкоземельных ионов, замещающих катионы оксида, увеличивается, что приводит к зависимости их штарковского расщепления от состава смеси [10]. В последние годы получена прозрачная керамика типа $(Lu_xSc_{1-x})_2O_3$, $(Lu_xY_{1-x})_2O_3$, легированная редкоземельными ионами Yb³⁺ [11–13], Tm³⁺ [14–16] и Ho³⁺ [17]. Показано, что в смешанной оксидной керамике редкоземельные ионы излучают широкие полосы, позволяющие получать короткие лазерные импульсы [18,19].

В работе [20] представлены технология и характеристики прозрачной керамики на основе смешанных в разной пропорции оксидов скандия и иттрия, активированных Er^{3+} . В ней также исследовалось поведение фотолюминесценции на лазерном переходе ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2} (2.55-3.1\,\mu\mathrm{m})$ иона эрбия. Показано, что в этой области спектр представлен широкой структурированной полосой с максимумом при 2.716 $\mu\mathrm{m}$ и менее интенсивной широкой длинноволновой полосой. С ростом содержания скандия наблюдается уширение (от 22 до 34 nm) компонент обеих полос, а также красное смещение максимума длинноволновой полосы излучения от 2.842 до 2.848 $\mu\mathrm{m}$.

Таблица 1. Характеристики объектов исследования $Er_{v}:(Sc_{x}Y_{1-x})_{2}O_{3} + 2 \text{ mol.}\% ZrO_{2}$

Образец	у	x	Постоянная решетки <i>a</i> , nm
1	0.075	0	1.05947
2	0.074	0.114	1.05067
3	0.073	0.227	1.04211
4	0.072	0.445	1.02521

Целью настоящей работы является дальнейшее изучение спектральных люминесцентных свойств этой керамики, но только в видимой и ближней ИК областях при возбуждении лазерным диодом с длиной волны 808 nm и импульсным электронным пучком.

Объекты исследования

В настоящей работе исследовались образцы прозрачной керамики состава $Er_y:(Sc_xY_{1-x})_2O_3 + 2 \text{ mol.}\% \text{ ZrO}_2$ в виде дисков диаметром около 12 mm, толщиной 1.8 mm. Их характеристики приведены в табл. 1.

Спекание керамики проводилось при температуре 1750 °C в течение 5 h под вакуумом 10^{-5} mbar в высокотемпературной печи с графитовыми нагревательными элементами. Полученные диски подвергались просветляющему отжигу на воздухе при температуре 1400 °C в течение 2 h, а затем полировались с обеих сторон до зеркального блеска. Небольшое количество (2 mol.%) диоксида циркония (ZrO₂) использовалось в качестве спекающей добавки.

Кристаллическая фаза всех образцов керамики представлена однофазным твердым раствором со структурой кубического биксбиита (*C*-тип, sp. gr. *Ia*-3). Вторых фаз, в том числе связанных с присутствием ZrO₂, не обнаружено. С увеличением содержания скандия в образцах постоянная кристаллической решетки (табл. 1) уменьшалась в соответствии с законом Вегарда. Более подробная характеристика и технология изготовления образцов керамики представлена в [20].

Аппаратура

Спектры пропускания регистрировались на спектрофотометре Shimadzu UV-1700 в диапазоне 200–1100 nm с шагом сканирования 1 nm.

Фотолюминесценция (ФЛ) возбуждалась лазерным диодом (808 nm) мощностью 4 W и плотностью излучения, не превышающей 0.5 W/mm², при комнатной температуре образцов и регистрировалась с помощью спектрометрического комплекса на базе монохроматора МДР-41, а также ФЭУ-100 и ФЭУ-62. Погрешность измерения длины волны не превышала 0.5 nm.

Импульсная катодолюминесценция (ИКЛ) возбуждалась с помощью ускорителя электронов, генерирующего

Рис. 1. Спектры пропускания образцов без добавления скандия и с разным его содержанием. В легенде указаны номера образцов согласно табл. 1.

пучок со средней энергией 170 keV, плотностью тока 130 A/cm², длительностью 2 ns при частоте следования 1 Hz. Образцы не диафрагмировались, облучались в воздухе при комнатной температуре. Интегральный спектр люминесценции регистрировался многоканальным фотоприемником на базе ПЗС-линейки в диапазоне 400–900 nm в одном кадре (экспозиция составляла 50 ms) и усреднялся по 60 импульсам, что обеспечивало стабильность амплитудных параметров спектра не хуже 90%. Диаметр поперечного сечения электронного пучка не изменялся в процессе облучения. Абсолютная погрешность измерения длины волны составляла ± 0.3 nm. Корректировка спектральной чувствительности проводилась с помощью галогенного калибрационного источника света AvaLigth-HAL-CAL (350–1100 nm).

При измерении кинетических характеристик использовался этот же источник возбуждения, но в качестве приемной аппаратуры выступали монохроматор МДР-41, ФЭУ-100 и ФЭУ-62, сигналы с которых регистрировались осциллографом Keysight DSOX2014A.

Результаты

На рис. 1 представлены спектры пропускания в области 600–1050 nm. Три структурированные полосы поглощения соответствуют электронным переходам с нижнего уровня ${}^{4}I_{15/2}$ в верхние уровни ${}^{4}F_{9/2}$, ${}^{4}I_{9/2}$, ${}^{4}I_{11/2}$ иона Er^{3+} . В каждой полосе болышинство линий при увеличении содержания скандия не изменяют своего положения, за исключением малоинтенсивных линий, находящихся на длинноволновых крыльях каждой полосы. В табл. 2 указаны длины волн, изменяющие свое положение при увеличении содержания скандия.

При помещении образцов под излучение лазерного диода с длиной волны 808 nm визуально красные прозрачные образцы излучают желто-зеленое све-

Рис. 2. Спектр фотолюминесценции образцов. В легенде указаны номера образцов согласно табл. 1.

Таблица 2. Положение длин волн в спектре пропускания образцов $Er_y:(Sc_xY_{1-x})_2O_3 + 2 \text{ mol.}\%$ ZrO₂ в зависимости от содержания скандия

Образец	x	Длина волны, nm				
		${}^{4}I_{15/}$	$_2 \rightarrow {}^4F_{9/2}$	${}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2}$	${}^{4}I_{15/2}$	$\rightarrow {}^4I_{11/2}$
1	0	677	684	846	1013	1031
2	0.114	677	685	847	1014	1031
3	0.227	678	685	848	1014	1031
4	0.445	679	687	850	1016	1034

чение, насыщенность которого спадает при увеличении содержания скандия в образцах. В спектре ФЛ всех образцов регистрируются две структурированные полосы на переходах ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2} (530-575 \text{ nm})$ и ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2} (950-1050 \text{ nm})$, и только в образцах состава № 2, кроме этих полос, проявляется красная люминесценция (640-690 nm) на переходе ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, которая трудно различима у образцов других составов (рис. 2).

С увеличением содержания скандия для всех линий в полосе ближнего ИК диапазона при 950-1050 nm наблюдается сдвиг максимумов в длинноволновую область на величину от 1.2 до 2.8 nm (рис. 2). Этот сдвиг происходит за счет увеличения кристаллического поля в позициях иона Er³⁺, что подтверждается уменьшением постоянной решетки с ростом содержания скандия в образцах (табл. 1), и к которому наиболее чувствительны нижние мультиплеты энергетических уровней иона. Верхние мультиплеты, как показывает спектр пропускания, практически не изменяются. В дифракционных картинах отсутствуют сверхструктурные линии, что указывает на разупорядоченность кристаллической структуры твердых растворов, которая приводит не только к сдвигу, но и к уширению полос люминесценции с ростом содержания скандия. Наиболее наглядно это проявляется в ИК спектре ФЛ (рис. 2) для длинноволновой линии: в образцах без скандия ($\lambda = 1030.5 \,\text{nm}$) ширина линии равна 8 nm, а в образцах с наибольшим содержанием скандия ($\lambda = 1033.3 \,\text{nm}$) она увеличивается до 11 nm.

Учитывая полученные результаты, были построены схема возбуждения энергетических уровней лазерным диодом и соответствующее излучение (рис. 3). При фотовозбуждении уровня ⁴I_{9/2} часть энергии безызлучательно "стекает" на уровень 4111/2, с которого в основное состояние происходит излучательный переход ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ с проявлением люминесценции в области 950-1050 nm (рис. 2). С этого же уровня ⁴*I*_{11/2} тем же возбуждающим излучением происходит накачка более высоко расположенного уровня ${}^{4}F_{7/2}$ (ап-конверсия), который безызлучательно разгружается на ниже расположенный уровень ⁴S_{3/2} с появлением желто-зеленой полосы люминесценции на переходе ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$. И только у образца состава № 2 еще дополнительно проявляется красное излучение на переходе ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$, верхний уровень которого возбуждается в результате безызлучательного переноса энергии с уровня ${}^{4}S_{3/2}$ (рис. 3).

На рис. 4 представлены спектры ИКЛ в диапазоне 520–900 nm. Инфракрасная полоса (950–1050 nm) перехода ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ не зарегистрирована в спектре ИКЛ из-за ограничения спектрального диапазона интегрирующего фотоприемника.

В спектре ИКЛ проявляются три структурированные полосы. При увеличении содержания скандия максимумы длинноволновых компонент каждой полосы ИКЛ, так же как и при фотовозбуждении, сдвигаются от 1.2 до 2.8 nm в длинноволновую область (табл. 3). Отличительной особенностью спектров при возбуждении электронным пучком (рис. 4) и ФЛ (рис. 2) является то, что в ИКЛ для всех образцов с разным содержанием скандия наблюдается красная полоса на переходе ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (640–720 nm) и дополнительная слабая полоса в ближней ИК области (840–900 nm) предположительно на переходе ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2}$ иона эрбия. Это отличие связано с большей эффективностью возбуждения уровней ${}^{4}S_{3/2}$ и ${}^{4}F_{9/2}$ электронным пучком

Рис. 3. Схема возбуждения энергетических уровней и излучения Er^{3+} при воздействии лазерным диодом с длиной волны 808 nm.

Рис. 4. Спектр ИКЛ образцов с разным содержанием скандия. В легенде указаны номера образцов согласно табл. 1.

Таблица 3. Положение длин волн в спектре люминесценции в образцах N_{0} 1 и N_{0} 4

Образец	Длина волны, nm					
	${}^4S_{3/2} \rightarrow {}^4I_{15/2}$	${}^4F_{9/2} \rightarrow {}^4I_{15/2}$	${}^4S_{3/2} \rightarrow {}^4I_{13/2}$			
1	563.6	683.7	853.5	859.3	866.2	
4	566.4	685.9	854.7	861.1	868.0	

относительно их возбуждения за счет ап-конверсии излучением лазерного диода с длиной волны 808 nm.

У всех образцов при возбуждении электронным пучком кинетика наблюдаемых полос и их компонент описывается экспоненциальным спадом интенсивностей с характерным временем, равным времени жизни излучательного уровня перехода. Для примера на рис. 5 приведены временные зависимости для самой интенсивной линии, наблюдаемой в ИК полосе ФЛ (рис. 2).

Рис. 5. Кинетические зависимости в максимумах ИК полосы ФЛ, измеренные на длинах волн 1030.5–1033.3 nm в зависимости от содержания скандия, и их аппроксимация. Номера кривых соответствуют номерам образцов согласно табл. 1.

Таблица 4. Характерные времена жизни уровней для образцов $Er_y:(Sc_xY_{1-x})_2O_3 + 2 \text{ mol.}\%$ ZrO₂

Образец	х	Время жизни уровня		
		${}^{4}S_{3/2}, \mu s$	${}^{4}F_{9/2}, \mu s$	$^{4}I_{11/2}$, ms
1	0	5.6	21.8	1.5
2	0.114	4.5	17.5	1.7
3	0.227	4.0	12.6	1.2
4	0.445	3.4	8.3	0.7

Времена спада интенсивностей для полос на переходах ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2}$ внутри образцов одного состава оказались равны, что дополнительно указывает на излучение этих полос с общего уровня ${}^{4}S_{3/2}$. В свою очередь характерные времена затухания каждой полосы в образцах разного состава заметно отличаются (табл. 4).

Видно, что время жизни излучательного уровня ${}^{4}F_{9/2}$ монотонно спадает с ростом содержания скандия в образцах. Подобный спад наблюдается и для времени жизни уровня ${}^{4}S_{3/2}$, в то время как для излучательного уровня ${}^{4}I_{11/2}$ поведение времени жизни носит экстремальный характер: для образца без добавления скандия оно составляет 1.5 ms, в образцах состава № 2 увеличилось до 1.7 ms, а далее с увеличением содержания скандия время жизни спадает до 0.7 ms. Напомним, что при фотовозбуждении только в образцах этого же состава № 2 наблюдалась красная полоса люминесценции, а в остальных — практически не проявилась. Причина такого поведения не совсем понятна и требует дополнительных исследований, включающих в том числе изготовление керамик промежуточных составов.

Заключение

При возбуждении уровня ⁴I_{9/2} иона эрбия излучением лазерного диода с длиной волны 808 nm во всех образцах наблюдается ап-конверсия, в результате чего излучаются полосы на переходах ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$ и ${}^4I_{11/2} \rightarrow {}^4I_{15/2}$, а у образцов состава № 2 дополнительно проявляется излучение на переходе ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$. При возбуждении импульсным электронным пучком зарегистрированы такие же, как и при фотовозбуждении, полосы излучения, соответствующие переходам ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (530–575 nm), ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2} \,(640-720 \,\mathrm{nm}),$ а также отсутствующая в ФЛ полоса ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2}$ (840–900 nm). С ростом содержания скандия наблюдается красный сдвиг и уширение длинноволновых компонент всех полос люминесценции эрбия. Кинетические измерения показали, что образцы состава № 2 имеют самое большое время жизни уровня ${}^{4}I_{11/2}$, которое равно 1.7 ms. У излучательных уровней ${}^{4}S_{3/2}$ и ${}^{4}F_{9/2}$ времена жизни составляют порядка единиц и десятков микросекунд и уменьшаются с ростом содержания скандия в образцах.

Финансирование работы

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (№ 124022200004-5).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] H. Strange, K. Petermann, G. Huber, E.W. Duczynski. Appl. Phys. B, **49**, 269 (1989). DOI: 10.1007/BF00714646
- [2] X.F. Yang, D.Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H.M. Kou, Y.B. Pan. Laser Physics, **21** (6), 1013 (2011). DOI: 10.1134/S1054660X1111034X
- [3] C. Brandt, V. Matrosov, K. Petermann, G. Huber. Opt. Lett., 36 (7), 1188 (2011). DOI: 10.1364/OL.36.001188
- [4] Д.Ю. Сачков. Науч.-техн. вестник СПбГУ инф. техн., мех. опт., **10** (1), 27 (2010).
- [5] М.А. Ногинов, В.А. Смирнов, А.Ф. Умысков, Г. Хубер, X. Штанге, И.А. Щербаков. Квант. электрон., 17 (10), 1277 (1990). [М.А. Noginov, V.A. Smirnov, А.F. Umyskov, G. Huber, H. Stange, I.A. Shcherbakov. Sov. J. Quant. Electron., 20 (10), 1185 (1990). DOI: 10.1070/QE1990v020n10ABEH007438].
- [6] L. Fornasiero, E. Mix, V. Peters, K. Petermann,
 G. Huber. Cryst. Res. Technol., 34 (2), 255 (1999).
 DOI: 10.1002/(SICI)1521-4079(199902)34:2<255::AID-CRAT255>3.0.CO;2-U
- [7] K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix,
 V. Peters, S.A. Basun. J. Lumin., 87 (89), 973 (2000).
 DOI: 10.1016/S0022-2313(99)00497-4
- [8] Ph.H. Klein, W.J. Croft. J. Appl. Phys., 38 (4), 1603 (1967).
 DOI: 10.1063/1.1709730

- [9] A.A. Kaminskii, M.S. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, K. Ueda. Crystallogr. Rep., 50 (5), 869 (2005).
- [10] P. Loiko, P. Koopmann, X. Mateos, J.M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, C. Krankel. IEEE J. Sel. Top. Quant. Electron., 24 (5), 1600713 (2018). DOI: 10.1109/JSTOE.2018.2789886
- [11] W. Liu, H. Kou, J. Li, B. Jiang, Y. Pan. Ceram. Int., 41 (5), 6335 (2015). DOI: 10.1016/j.ceramint.2015.01.063
- [12] G. Toci, A. Pirri, B. Patrizi, R.N. Maksimov, V.V. Osipov, V.A. Shitov, M. Vannini. J. Alloys Compd., 853, 156943 (2020). DOI: 10.1016/j.jallcom.2020.156943
- W. Jing, P. Loiko, L. Basyrova, Y. Wang, H. Huang, P. Camy, U. Griebner, V. Petrov, J.M. Serres, R.M. Solé, M. Aguiló, F. Díaz, X. Mateos. Opt. Mater., 117, 111128 (2021). DOI: 10.1016/j.optmat.2021.111128
- [14] H. Wu, G.H. Pan, Z. Hao, L. Zhang, X. Zhang, L. Zhang, H. Zhao, J. Zhang. J. Am. Ceram. Soc., **102** (8), 4919 (2019). DOI: 10.1111/jace.16325
- [15] N. Zhang, Z. Wang, S. Liu, W. Jing, H. Huang,
 Z. Huang, K. Tian, Z. Yang, Y. Zhao, U. Griebner,
 V. Petrov, W. Chen. Opt. Express., 30 (13), 23978 (2022).
 DOI: 10.1364/OE.462701
- [16] A. Pirri, R.N. Maksimov, J. Li, M. Vannini, G. Toci. Materials, 15 (6), 2084 (2022). DOI: 10.3390/ma15062084
- [17] W. Jing, P. Loiko, J.M. Serres, Y. Wang, E. Kifle, E. Vilejshikova, M. Aguiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, X. Mateos. J. Lumin., 203, 145 (2018). DOI: 10.1016/j.jlumin.2018.06.043
- [18] A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, G. Erbert. Opt. Lett., 35 (4), 511 (2010). DOI: 10.1364/OL.35.000511
- [19] Y. Wang, W. Jing, P. Loiko, Y. Zhao, H. Huang, X. Mateos, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, V. Petrov. Opt. Express., 26 (8), 10299 (2018). DOI: 10.1364/OE.26.010299
- [20] R. Maksimov, V. Shitov, V. Osipov, O. Samatov, D. Vakalov, F. Malyavin, L. Basyrova, P. Loiko, P. Camy. Opt. Mat., 137, 113542 (2023). DOI: 10.1016/j.optmat.2023.113542