13,07

Влияние температуры золь-гель синтеза на структуру и магнитные свойства Sr-замещенного феррита лантана $La_{0.5}Sr_{0.5}FeO_{3-\gamma}$

© В.Д. Седых¹, О.Г. Рыбченко¹, В.С. Русаков², А.М. Гапочка², А.И. Дмитриев³, Е.А. Першина¹, С.В. Зайцев¹, К.П. Мелетов¹, В.И. Кулаков¹, А.И. Иванов¹

Москва, Россия

Черноголовка, Россия

E-mail: sedykh@issp.ac.ru

Поступила в Редакцию 27 декабря 2024 г. В окончательной редакции 28 декабря 2024 г.

Принята к публикации 31 декабря 2024 г.

Влияние температуры, используемой на конечном этапе синтеза золь-гель методом, на структуру, валентные состояния Fe и температуру Heeля Sr-замещенного феррита лантана $La_{0.5}Sr_{0.5}FeO_{3-\gamma}$ исследовано методами просвечивающей электронной микроскопии, рентгеновской дифракции, мёссбауэровской спектроскопии, спектроскопии комбинационного рассеяния света и магнитометрии. Образцы были синтезированы золь-гель методом на воздухе при температурах 1100 и 1300° C и отожжены в вакууме в температурном интервале $200-650^{\circ}$ C для удаления кислорода и деокисления Fe. Обнаружено, что в образцах, синтезированных при более высокой температуре, выход кислорода, также как и переход Fe^{4+} в Fe^{3+} , в ходе вакуумного отжига происходит медленнее. Вследствие этого превращение исходной ромбоэдрической фазы в кубическую завершается при более высокой температуре отжига. Такое отличие объясняется разницей в размерах исходных кристаллов, образующихся при разных температурах синтеза. После длительного финального отжига при 650° C образцы становятся однофазными с кубической структурой в обоих случаях. Это подтверждается результатами мёссбауэровской и спектроскопии комбинационного рассеяния света, а также магнитными измерениями. Определены температуры Heeля для всех исследуемых образцов. Результаты, полученные разными методами, хорошо коррелируют между собой.

Ключевые слова: ортоферриты, валентные состояния железа, кислородные вакансии.

DOI: 10.61011/FTT.2025.01.59791.356

Введение

Перовскитные ортоферриты $R_{1-x}A_x$ FeO_{3- γ}, где R редкоземельный элемент, A — Ba, Ca, или Sr, в силу своих необычных электрических, магнитных и каталитических свойств являются перспективными материалами в самых разных областях, например, в качестве электродных материалов для топливных элементов, катализаторов, химических сенсоров, оптоэлектронных приборов, приборов магнитной памяти и пр. [1,2]. Также они проявляют антибактериальные свойства [3]. Для понимания процессов, происходящих в данных соединениях, необходимо знать, как замещение элементов, условия синтеза (атмосфера синтеза, температура, скорость охлаждения) влияют на структуру и те или иные физические свойства. Очень небольшие изменения условий синтеза могут приводить к существенным изменениям свойств. В этих системах ионы переходного металла Fe имеют смешанные валентные состояния, Fe^{3+} и Fe^{4+} , которые могут быть вызваны как введением двухвалентных ионов (A) на места трехвалентного элемента (R), так и образованием кислородных вакансий [4].

В настоящей работе проведены исследования влияния температуры финального отжига золь-гель синтеза на структуру и магнитные свойства в Sr-замещенном феррите лантана $La_{0.5}Sr_{0.5}FeO_{3-\gamma}$, а также их эволюции в ходе вакуумного отжига.

1. Эксперимент

Исходные поликристаллические образцы $La_{0.5}Sr_{0.5}FeO_{3-\gamma}$ (50Sr) получены методом золь-гель на воздухе. Для синтеза нитрат-глициновым методом в качестве исходных материалов использовали нитрат лантана $La(NO_3)_3 \bullet 6H_2O$, нитрат стронция $Sr(NO_3)_2$, нитрат железа $Fe(NO_3)_3 \bullet 9H_2O$ в стехиометрическом соотношении и глицин. Нитраты металлов и глицин растворяли в дистиллированной воде при интенсивном перемешивании до образования гомогенного раствора. Полученный раствор выпаривался при температуре $250^{\circ}C$ на лабораторной электроплитке. Далее прекурсор размалывался в агатовой ступке и отжигался при температуре $800^{\circ}C$ в течение 5 часов на воздухе.

¹ Институт физики твердого тела им. Ю.А. Осипьяна РАН,

Черноголовка, Россия

² Московский государственный университет им. М.В. Ломоносова,

³ Федеральный исследовательский центр проблем химической физики и медицинской химии РАН,

Образцы	Сокращения
Исходный образец, синтезированный при температуре 1100°C	50Sr-1100C
Исходный образец, синтезированный при температуре 1300°C	50Sr-1300C
Исходный образец, отожженный в вакууме (AV — annealing in vacuum) при температуре 650° C (650 AV) с длительностью отжига 8 часов	50Sr-1300C-650AV-8h
Исходный образец, отожженный в вакууме (AV — annealing in vacuum) при температуре 650°C (650AV) с длительностью отжига 10 часов	50Sr-1300C-650AV-10h

Сокращения, используемые в работе

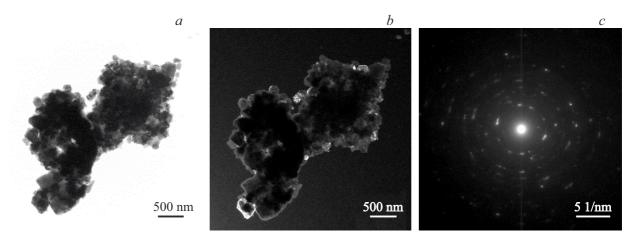
Отожженный порошок измельчался в течение 3 часов в циркониевом контейнере планетарной шаровой мельницы с добавлением этилового спирта. Финальный отжиг порошков длительностью 20 часов выполнен при температурах 1300 и 1100°C на воздухе с последующим медленным (вместе с печью) охлаждением до комнатной температуры. Для изменения состава $La_{0.5}Sr_{0.5}FeO_{3-\gamma}$ по кислороду использовался вакуумный отжиг $(10^{-3} \, \text{Torr})$ в интервале температур 200-650°C с длительностью 4 часа для образцов 50Sr-1100С и 8 часов для образцов 50Sr-1300С. Увеличенная продолжительность вакуумного отжига для образца 50Sr-1300C была выбрана для обеспечения максимально полного удаления кислорода из кристаллов, размер которых, а, следовательно, и пути диффузии в них, практически на порядок больше соответствующих величин в образце 50Sr-1100C. Это было показано методом просвечивающей электронной микроскопии и будет продемонстрировано ниже. Кроме того, дополнительно был проведен вакуумный отжиг образцов при 650°C в течение 10 часов. Используемые в работе сокращения представлены в таблице.

Морфологию и средний размер частиц и их агломератов исследовали методами просвечивающей электронной микроскопии (ПЭМ). Образцы для электронной микроскопии готовили следующим образом: исследуемые порошки размешивали в спирте при помощи ультразвукового воздействия в течение 2 минут. Полученную суспензию наносили на поддерживающие медные сетки с напыленной заранее тонкой углеродной пленкой. Ускоряющее напряжение при исследовании составляло 200 kV. Средний размер частиц и агломератов определялся по темнопольным ПЭМ-изображениям. Для характеристики элементного состава исследуемых образцов проводилось картирование в ПЭМ методом энергодисперсионной спектроскопии (ЭДС).

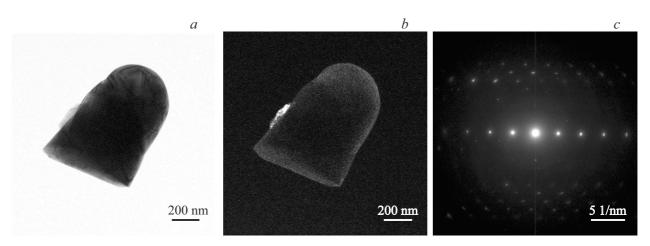
Структурная аттестация поликристаллических образцов проводилась при комнатной температуре на дифрактометре Rigaku SmartLab SE с CuK_{α} -излучением. Для фазового анализа и определения структурных параметров использовались программы Powder Cell 2.4 и Match3.

Мёссбауэровские измерения поликристаллических образцов проведены при комнатной температуре и 85 K на спектрометре СМ 1101, работающем в режиме постоянного ускорения. В эксперименте использовался

радиоактивный источник 57 Co(Rh). Обработка и анализ спектров выполнены методами модельной расшифровки и восстановления распределения сверхтонких параметров спектра с помощью программы SpectrRelax [5].


Комбинационное рассеяние света (КРС) (рамановская спектроскопия) на поликристаллических образцах было проведено при комнатной температуре. Спектры КРС измерялись в геометрии обратного рассеяния на установке, состоящей из спектрографа Acton SpectraPro-2500i с охлаждаемым до -70° С детектором ССD Pixis2K и микроскопом Olympus. Для возбуждения спектров КРС использовался непрерывный твердотельный лазер с диодной накачкой с $\lambda = 532\,\mathrm{nm}$. Лазерный пучок фокусировался на образец при помощи объектива Olympus $50 \times$ в пятно диаметром $\sim 3\,\mu\mathrm{m}$. Линия излучения лазера в рассеянном пучке подавлялась с помощью краевого фильтра для $\lambda = 532\,\mathrm{nm}$ с оптической плотностью OD = 6 и краем полосы пропускания $\sim 100 \, \text{cm}^{-1}$, а интенсивность лазерного возбуждения непосредственно перед образцом составляла $\sim 500 \,\mu\text{W}$.

Зависимости намагниченности порошкообразных образцов от температуры M(T) были измерены с помощью вибрационного магнитометра многофункциональной измерительной криомагнитной установки CFMS фирмы Cryogenic Ltd, UK. Зависимости M(T) измерены в режимах ZFC (образец предварительно охлажден в нулевом магнитном поле) и FC (образец предварительно охлажден в магнитном поле напряженностью $H=10\,\mathrm{kOe}$) в диапазоне температур $T=2{-}00\,\mathrm{K}$ в магнитном поле напряженностью $H=1\,\mathrm{kOe}$.


2. Результаты и обсуждение

2.1. Просвечивающая электронная микроскопия (ПЭМ)

На рис. 1 показаны ПЭМ-изображения порошкообразных образцов $La_{0.5}Sr_{0.5}FeO_{3-\gamma}$, синтезированных при температуре $1100^{\circ}C$ (50Sr-1100C). В структуре образца наблюдаются крупные агломераты произвольной формы, состоящие из плотно прилегающих друг к другу частиц неправильной формы. Средний размер частиц определялся по 50-100 частицам. Размер агломератов, зафиксированных методом ПЭМ, находится в интервале

Рис. 1. Светлопольное (a), темнопольное (b) ПЭМ-изображения и дифракционная картина (c) типичного агломерата в исходном образце 50Sr-1100C.

Рис. 2. Светлопольное (a), темнопольное (b) ПЭМ-изображения и дифракционная картина (c) типичной частицы в исходном образце 50Sr-1300C.

 $1.1-7\,\mu\mathrm{m}$ (средний размер $\sim 2.7\,\mu\mathrm{m}$). Дифракционная картина (рис. 1,c), полученная от наблюдаемых агломератов, близка к кольцевой и состоит из отдельных ярких рефлексов, что является характерным для скопления частиц размером более 50 nm, принадлежащих одной фазе. Согласно темнопольным изображениям (рис. 1,b), полученным в рефлексах, которые отвечают межплоскостным расстояниям $d_1 \sim 3.88\,\mathrm{\mathring{A}}$ и $d_2 \sim 2.74\,\mathrm{\mathring{A}}$, близким по значениям к d_{012} и d_{104} (и d_{110}) ромбоэдрического $\mathrm{La}_{0.5}\mathrm{Sr}_{0.5}\mathrm{FeO}_{3-\gamma}$ соответственно, размер большинства частиц распределен в диапазоне $100-230\,\mathrm{nm}$, а измеренный средний размер зерен в агломератах составляет около $165\,\mathrm{nm}$.

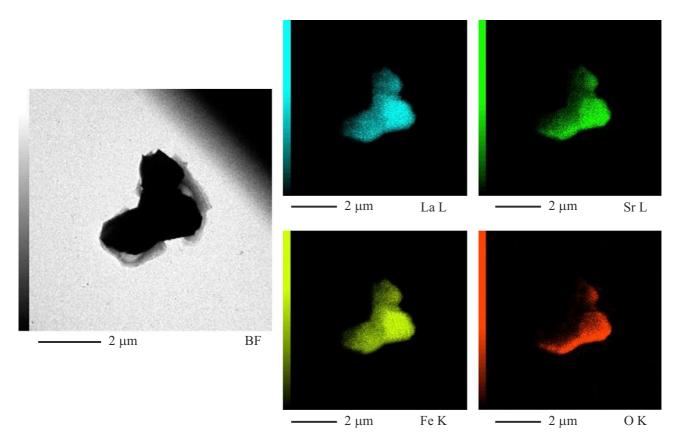
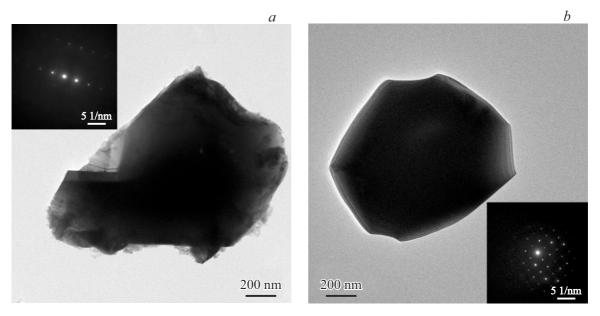
В образце, синтезированном при температуре 1300° С ($50\mathrm{Sr}{-}1300\mathrm{C}$), по данным ПЭМ, присутствуют только крупные частицы со средним размером около $1.6\,\mu\mathrm{m}$ (рис. 2). Дифракционная картина (рис. 2, c), полученная от наблюдаемых частиц, точечная, типичная для монокристаллической фазы. На темнопольных (рис. 2, b) ПЭМ-изображениях подсвечивается целиком вся части-

ца (рис. 2, b), что также указывает на однородную и монокристаллическую структуру.

Для более полной характеристики структуры образца 50Sr—1300С было проведено картирование в ПЭМ с ЭДС. Результаты картирования приведены на рис. 3 и показывают, что в результате синтеза при 1300°С в больших агломератах распределение каждого элемента, включая La, Sr, Fe и O, достаточно однородное.

В образце, отожженном в вакууме в течение 650° С 8 часов (50Sr-1300С-650AV-8h), наблюдается существенное увеличение размера частиц. ПЭМ-изображение типичной частицы приведено на рис. 4, a. По данным ПЭМ размер таких частиц находится в интервале $1-5.5\,\mu$ m, что указывает на его увеличение практически вдвое по сравнению с образцом без отжига. Дифракционная картина, полученная от наблюдаемых частиц, точечная, типичная для монокристаллической фазы (рис. 4, вставка).

При увеличении времени отжига до 10 часов в образце $50 \mathrm{Sr} - 1300 \mathrm{C} - 650 \mathrm{AV} - 10 \mathrm{h}$ наблюдаются достаточ-

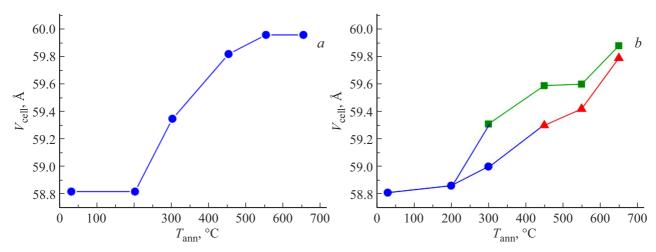

Рис. 3. Картина распределения элементов La, Sr, Fe и O в порошке 50Sr-1300C, полученная методом ПЭМ с ЭДС.

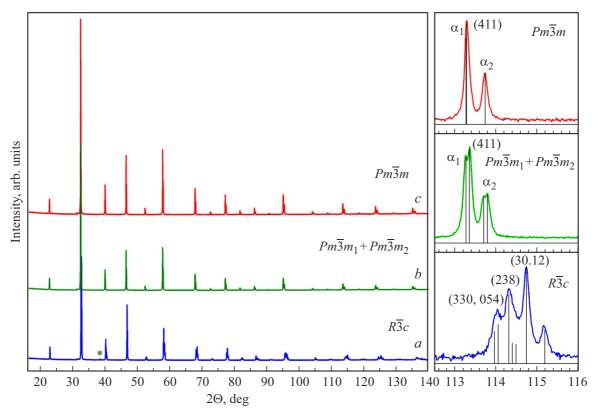
Рис. 4. ПЭМ-изображения наблюдаемых частиц и дифракционные картины (вставки) в образцах 50Sr-1300C-650AV-8h (a) и 50Sr-1300C-650AV-10h (b).

но большие частицы. ПЭМ-изображение, типичное для данного образца, показано на рисунке (рис. 4, b). По данным ПЭМ размер большинства частиц находится в интервале $1.1-11\,\mu\mathrm{m}$ со средним размером около

 $5.5\,\mu$ m, в образце также присутствуют крупные частицы размером $20-30\,\mu$ m. Дифракционная картина, полученная от наблюдаемых агломератов, точечная, типичная для монокристаллической фазы (рис. 4, b, вставка).

Рис. 5. Температурные зависимости объема кристаллической решетки, приходящегося на одну перовскитную ячейку ($V_{\rm cell}$): a — для образца 50Sr-130OC; b — для образца 50Sr-130OC. $V_{\rm cell}$ для ромбоэдрической (синим цветом) и кубических (зеленым и красным цветом) фаз в образце.

2.2. Рентгеновские данные


Результаты рентгеноструктурного анализа феррита $La_0 \, _5Sr_0 \, _5FeO_{3-\nu}$, синтезированного при 1100° C (образец 50Sr-1100C) и в дальнейшем отожженного в вакууме при температурах 200-650°C, подробно описаны в работе [6]. Было показано, что исходное соединение имеет ромбоэдрическую структуру, с ростом температуры вакуумного отжига параметры ячейки и, соответственно, ее объем монотонно увеличиваются, а ромбоэдрический угол α уменьшается. Отжиг при температуре 650°C в течение 10 часов приводит к окончательному переходу решетки в кубическую с параметром a = 3.914(1) Å. Зависимость объема кристаллической решетки исходного образца 50Sr-1100C, отнесенного к одной псевдокубической перовскитной ячейке, от температуры вакуумного отжига (T_{ann}) показана на рис. 5, a. Кроме того, было отмечено, что дифракционные линии на дифрактограммах всех образцов, кроме отожженного при 650°C, уширены. В случае исходного образца это связано с малым размером зерна, что подтверждается результатами электронно-микроскопических исследований, в остальных случаях, возможно, с неравномерным распределением кислорода после вакуумного отжига.

Исходный образец $50\mathrm{Sr}-1300\mathrm{C}$ также имеет ромбоэдрическую структуру (пр.гр. $R\bar{3}c$, a=5.511(1) Å, c=13.415(2) Å в гексагональных осях или a=5.488(1) Å, $\alpha=60.28(1)$ в ромбоэдрических осях). Дифракционные линии спектра исходного образца (рис. 6,a), в отличие от образца $50\mathrm{Sr}-1100\mathrm{C}$, достаточно узкие и хорошо разрешаются, что свидетельствует о крупном размере зерна. Этот факт подтверждается результатами ПЭМ, согласно которым средний размер зерен в исходном образце $50\mathrm{Sr}-1300\mathrm{C}$ составляет $1.6\,\mu\mathrm{m}$ и на порядок больше по сравнению с образцом $50\mathrm{Sr}-1100\mathrm{C}$.

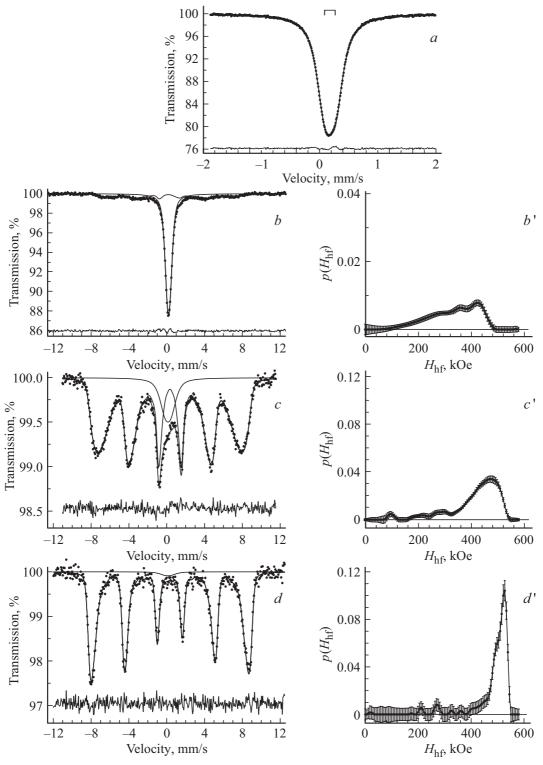
Дифракционная картина образца 50Sr-1300C после вакуумного отжига при $200^{\circ}C$ остается практически

неизменной и начинает меняться только после отжига при 300° С. Наилучшим образом такой спектр описывается двухфазной смесью, в которой, кроме исходной ромбоэдрической фазы (с a=5.513(1) Å, c=13.447(2) Å), присутствует кубическая $(Pm\bar{3}m)$ с a=3.900(1) Å. Кристаллические решетки этих фаз близки, в результате чего дифракционные линии в значительной степени перекрываются. Дальнейшее увеличение температуры отжига $T_{\rm ann}$ приводит к росту параметров решеток обеих фаз и, соответственно, росту объемов кристаллических ячеек.

На рис. 5, в приведены зависимости объема, приходящегося на одну перовскитную ячейку $(V_{\rm cell})$, от температуры вакуумного отжига $(T_{\rm ann})$ для ромбоэдрической и кубической фаз, составляющих двухфазную смесь, в образце 50Sr-1300C. Как видно, объем ячейки кубической фазы заметно превышает значение для ромбоэдрической, и для обеих фаз объемы монотонно увеличиваются с ростом $T_{\rm ann}$. Расчет параметров кристаллической ячейки фазы $R\bar{3}c$ в ромбоэдрической установке показывает также монотонное уменьшение угла α , что означает уменьшение ромбоэдрического искажения и перестройку решетки в кубическую, как и в случае образца 50Sr-1100C. Значение угла α практически равно 60.00° уже при температурах отжига 450 и 550°C, и соответствующие спектры хорошо описываются двумя кубическими решетками с разными параметрами. Маркером наличия ромбоэдрической структуры может служить слабая дифракционная линия (113) на $2\Theta \approx 38.4^{\circ}$ (отмечена символом (*) на рис. 6, *a*), которая отсутствует на этих спектрах. Следует отметить, что в силу близости ромбоэдрической и кубической структур, а также наложения их дифракционных линий, точность определения структурных параметров не является высокой. Дифракционные линии значительно уширены по сравнению с исходным образцом. Принимая

Рис. 6. Дифракционные картины образцов 50Sr-1300C: исходный образец (a); образец после отжига 650° C 8 часов (b) и 10 часов (c). На правой панели приведены соответствующие фрагменты дифракционных спектров в ограниченном угловом интервале. Символом (*) обозначена дифракционная линия (113) ромбоэдрической фазы $R\bar{3}c$.

во внимание данные ПЭМ, согласно которым размер кристаллитов растет в ходе отжигов, можно предположить, что это уширение связано не с малым размером зерна, а с несовершенством структуры в момент ее активной перестройки в процессе удаления кислорода при температурах 450—550°C, а также неравномерным распределением кислорода по объему кристаллитов.


Таким образом, можно заключить, что в отожженном образце 50Sr—1300С присутствуют две фазы, объем которых увеличивается в процессе вакуумного отжига, кроме того, параллельно происходит превращение ромбоэдрической структуры одной из этих фаз в кубическую.

Вакуумный отжиг при температуре 650° С в течение 8 часов приводит, на первый взгляд, к тому же результату, как и в случае образца 50Sr-1100C — окончательному переходу в кубическую фазу. Однако при более тщательном анализе спектра (рис. 6, b, правая панель) на дальних углах дифракции обнаруживается особенность: заметно, что каждая дифракционная линия состоит из двух. Объясняется это наличием в образце двух кубических решеток с очень маленькой разницей в параметре, $a_1 = 3.910(1)$ Å и $a_2 = 3.912(1)$ Å, их объемы приведены на рис. 5, b. При увеличении длительности отжига до 10 часов при той же температуре 650° С весь образец переходит в одну кубическую

фазу с a=3.912(1) Å (рис. 6,c); как видно на правой панели рисунка, раздвоения линий в этом случае не наблюдается.

Так как в данном случае, при фиксированном соотношении La/Sr, но изменяющимися количествами Fe⁴⁺ и кислорода в решетке, объем ячейки прямо коррелирует с содержанием кислорода (чем его меньше, тем больше объем), то можно предположить, что образец, отожженный в течение 8 часов, состоит из двух частей с разным содержанием кислорода, которое выравнивается при увеличении длительности отжига до 10 часов. Разница может быть связана с крупным размером зерен и большим их разбросом по размерам: пути диффузии в более мелких зернах короче, и выход кислорода из них протекает быстрее.

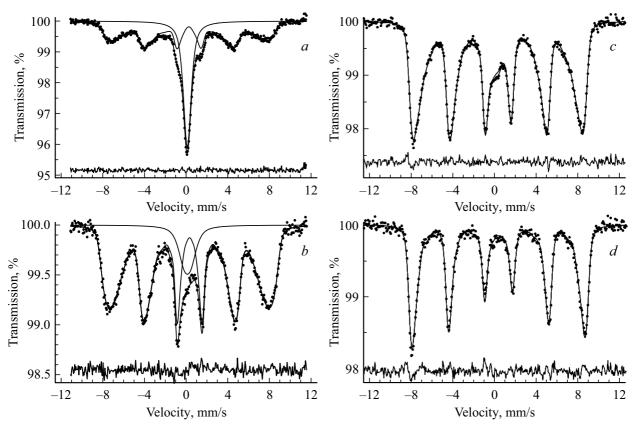

Сравнивая результаты, полученные на образцах с разной температурой синтеза (50Sr-1100С и 50Sr-1300С), можно отметить следующие общие моменты: исходные образцы имеют примерно одинаковый объем решетки, приходящийся на ячейку; объем как кубической, так и ромбоэдрической кристаллических ячеек увеличивается с ростом температуры вакуумного отжига. Различие же заключается в том, что для образца 50Sr-1100С объем с температурой отжига растет быстрее, чем для 50Sr-1300С, а параметры ячеек для результирующей кубической фазы, которой заканчивается структурное

Рис. 7. Результаты расшифровки мёссбауэровских спектров, измеренных при $300 \, \mathrm{K}$, исходного образца $50 \, \mathrm{Sr} - 1300 \, \mathrm{C} \, (a)$ и образцов, отожженных в вакууме при температурах $T_{\mathrm{ann}} \, 300 \, (b)$, $550 \, (c)$ и $650^{\circ} \mathrm{C} \, (d)$ по 8 часов и результаты восстановления распределений $p(H_{\mathrm{hf}})$ сверхтонкого магнитного поля H_{hf} с учетом парамагнитного вклада (b', c', d'). Под каждым спектром приведены разностные спектры.

превращение в обоих образцах, отличаются на две единицы в третьем знаке. Причем для образца 50Sr-1100C этот параметр больше, что соответствует, по-видимому,

меньшей концентрации кислорода в решетке. Все эти факты укладываются в объяснение, связанное с размером зерен в образцах 50Sr-1100С и 50Sr-1300С.

Рис. 8. Мёссбауэровские спектры, измеренные при 300 K, образцов 50Sr-130OC (a,b) и 50Sr-110OC (c,d), отожженных в вакууме при $T_{\rm ann}$ 450 (a,c) и 550°C (b,d).

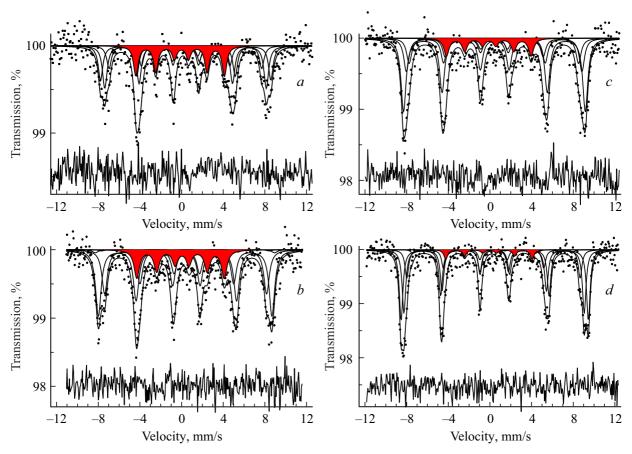
2.3. Мёссбауэровские данные

2.3.1. Измерения при 300 К

Используя мёссбауэровскую спектроскопию, можно определить все валентные состояния Fe и их относительное количество. После этого с хорошей точностью определяется количество кислорода и кислородных вакансий в образце. В нашей работе [6] были определены все параметры для исходного образца 50Sr-1100C и отожженного в вакууме в интервале температур 200-650°C. В настоящей работе по такой же схеме проведено исследование исходного образца 50Sr-1300C и отожженных в вакууме при разных температурах.

Для обработки спектров был использован метод восстановления распределения параметров спектра.

Исходный образец $50 {\rm Sr} - 1300 {\rm C}$, как и $50 {\rm Sr} - 1100 {\rm C}$, при $300 {\rm K}$ является парамагнетиком, их спектры практически не отличаются друг от друга и описываются квадрупольным дублетом. Значения изомерных сдвигов $(0.14-0.18\ {\rm mm/s})$ указывают на то, что ионы Fe находятся в усредненно—валентном состоянии, т. е. с дробной степенью окисления между 4+ и 3+. Такое состояние ионов Fe обусловлено быстрым (с характерным временем $< 10^{-8} {\rm s}$) переносом электронов между ионами ${\rm Fe}^{3+}$ и ${\rm Fe}^{4+}$ при $300 {\rm K}$, поэтому ионы ${\rm Fe}^{4+}$ в замещенных


ферритах не проявляются в мёссбауэровских спектрах, измеренных при 300 К [7–9].

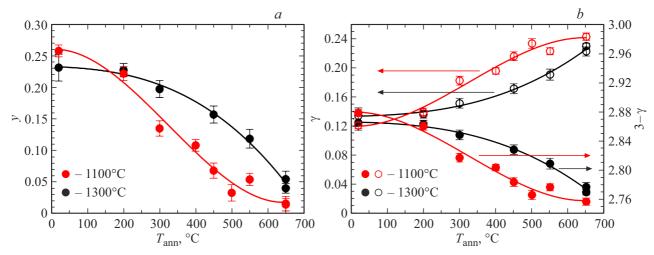
В образце $50 \mathrm{Sr} - 1300 \mathrm{C}$ с ростом T_{ann} ширины линий секстетов заметно больше, чем для образца $50 \mathrm{Sr} - 1100 \mathrm{C}$. После отжига при $650^{\circ} \mathrm{C}$ 10 часов линии сильно сужаются. Можно предположить, что такое поведение в образце $50 \mathrm{Sr} - 1300 \mathrm{C}$ обусловлено формированием двух фаз при отжиге выше $200^{\circ} \mathrm{C}$: кубической и ромбоэдрической.

Спектр образца $50\text{Sr}{-}1300\text{C}$, отожженного при 550°C , похож на спектр образца $50\text{Sr}{-}1100\text{C}$, отожженного при 450°C (рис. 8), т.е. у образца $50\text{Sr}{-}1300\text{C}$ по сравнению с $50\text{Sr}{-}1100\text{C}$ при вакуумном отжиге происходит запаздывание перехода в магнитоупорядоченное состояние. Это можно объяснить большим размером зерна образца $50\text{Sr}{-}1300\text{C}$, что приводит к уменьшению скорости диффузии кислорода и его более медленным выходом из решетки.

2.3.2. Измерения при 85 К

Для получения однозначной информации о наличии, количестве и поведении ионов ${\rm Fe}^{4+}$, числе парциальных спектров, обусловленных влиянием замещения La на Sr, и влиянием кислородных вакансий были проведены мёссбауэровские исследованияпри 85 К. Обработка и

Рис. 9. Результаты модельной расшифровки измеренных при $85\,\mathrm{K}$ мёссбауэровских спектров образцов $50\mathrm{Sr}-1300\mathrm{oC}$: исходного (a) и отожженных в вакууме при температурах 300~(b), 550~(c) и $650^{\circ}\mathrm{C}~(d)$ 8 часов. Красным цветом выделен парциальный спектр ионов $\mathrm{Fe^{4+}}$. Под каждым спектром приведен разностный спектр между экспериментальными и расчетными значениями интенсивностей в спектре.


анализ спектров проводились методом модельной расшифровки.

Измеренные при 85 К мёссбауэровские спектры исходного образца 50Sr-1300C и образцов после серии вакуумных отжигов приведены на рис. 9. Они представляют собой совокупность нескольких магнитных парциальных спектров, один из которых, с меньшим изомерным сдвигом $(-0.06 \pm 0.03 \, \text{mm/s})$ и сверхтонким магнитным полем ($264.4 \pm 2.4 \, \text{kOe}$), можно отнести к ионам Fe^{4+} , а остальные — к ионам Fe^{3+} с разным локальным окружением. Из спектров всех образцов, измеренных при 85 К, следует, что усредненно-валентное состояние не проявляется, т.е. с понижением температуры замораживается процесс переноса электронов между ионами Fe^{3+} и Fe^{4+} . Наличие в спектрах нескольких парциальных спектров для ионов Fe³⁺ связано с присутствием в ближайшем окружении этих ионов разного числа кислородных вакансий и ионов Fe^{4+} , т.е. с формированием разных типов локального окружения ионов Fe³⁺. При этом интенсивность каждого парциального спектра пропорциональна доле соответствующего состояния иона Fe (с учетом валентности, а для Fe³⁺ и типа локального окружения). Расшифровка спектров

проводилась с учетом возможного числа кислородных вакансий и ионов Fe^{4+} в локальном окружении Fe^{3+} до получения наилучшего разностного спектра, что соответствовало в общем случае пяти парциальным спектрам для Fe^{3+} и одному — для Fe^{4+} (рис. 9). На рис. 9 видно, что вакуумный отжиг исходных образцов приводит к уменьшению доли ионов Fe^{4+} , к росту числа кислородных вакансий и, следовательно, к перераспределению интенсивностей парциальных спектров ионов Fe^{3+} . Зная число ионов Fe^{4+} (у), из соображений электронейтральности в соответствии с химической формулой $\mathrm{La}_{0.5}^{3+}\mathrm{Sr}_{0.5}^{2+}\mathrm{Fe}_{1-y}^{3+}\mathrm{Fe}_{y}^{4+}\mathrm{O}_{3-y}^{2-}$ можно определить число кислородных вакансий ($\gamma=(0.5-y)/2$) и ионов кислорода ($3-\gamma=(5.5+y)/2$) в образцах.

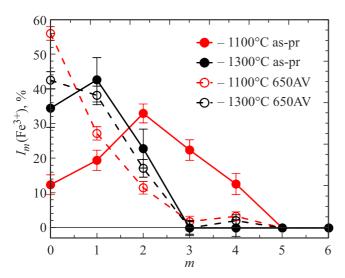
Зависимости числа ионов Fe^{4+} , а также кислородных вакансий и ионов кислорода на формульную единицу от температуры отжига $T_{\rm ann}$ для образцов $50{\rm Sr}{-}1300{\rm C}$ и $50{\rm Sr}{-}1100{\rm C}$ приведены на рис. 10.

Как видно на рис. 10, a, переход из Fe^{4+} в Fe^{3+} в образце 50Sr-1300C идет медленнее, чем в 50Sr-1100C. Кроме того, в отожженном образце 50Sr-1300C-650AV-8h число ионов кислорода немного больше по сравнению с образцом

Рис. 10. Зависимости числа ионов Fe^{4+} (y) (a), числа кислородных вакансий (γ) (b) и числа ионов кислорода ($3-\gamma$) (b) на формульную единицу от температуры отжига T_{ann} образцов 50Sr-1300C и 50Sr-1100C.

 $50 {
m Sr} - 1100 {
m C} - 650 {
m AV}$ (рис. 10,b), что коррелирует с наличием остаточной доли ионов ${
m Fe}^{4+}$ (4–5%). Оба этих факта можно объяснить различием в размерах зерен образцов $50 {
m Sr} - 1300 {
m C}$ и $50 {
m Sr} - 1100 {
m C}$: как свидетельствуют данные электронной микроскопии, размер зерна исходного образца $50 {
m Sr} - 1300 {
m C}$ на порядок больше, чем для $50 {
m Sr} - 1100 {
m C}$. Поэтому при вакуумном отжиге образца $50 {
m Sr} - 1300 {
m C}$ выход кислорода из решетки происходит медленнее. И, соответственно, медленнее идет переход из ${
m Fe}^{4+}$ в ${
m Fe}^{3+}$.

Исходя из мёссбауэровских данных, следует отметить, что начальные (исходные) и конечные (отожженные при 650°С) состояния образцов 50Sr-1100С и 50Sr-1300С мало отличаются друг от друга. Различия проявляются на пути перехода от начального состоянию к конечному при вакуумном отжиге.


Из мёссбауэровских данных можно как рассчитать усредненные макроскопические характеристики соединения, такие как доля четырехвалентного железа и концентрация кислорода, так и получить информацию о структуре на локальном уровне. Зависимость параметров каждого отдельного парциального спектра ионов Fe^{3+} от числа ионов Fe^{4+} и вакансий в ближайшем окружении позволяет связать его с конкретным вариантом такого окружения (набором ослабленных или оборванных обменных связей). Анализ интенсивностей парциальных спектров дает возможность оценить характер распределения таких дефектов в решетке.

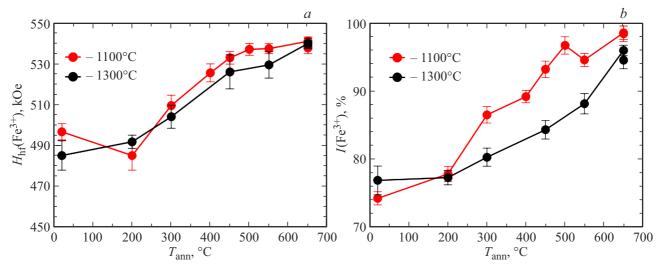
Введем число m оборванных или ослабленных обменных связей иона $\mathrm{Fe^{3+}}$. Значение m=0 означает, что ион $\mathrm{Fe^{3+}}$ в ближайшем октаэдрическом окружении имеет все шесть обменных связей $\mathrm{Fe^{3+}}\!-\!\mathrm{O^{2-}}\!-\!\mathrm{Fe^{3+}}$, т.е. нет кислородных вакансий и ионов $\mathrm{Fe^{4+}}$. Зависимости интенсивностей парциальных спектров $\mathrm{Fe^{3+}}$ от T_{ann} образцов $\mathrm{50Sr}\!-\!1100\mathrm{C}$ для разных значений m были получены в работе [6]. В настоящей работе был проведен подобный анализ для образцов $\mathrm{50Sr}\!-\!1300\mathrm{C}$. Используя

эти данные, можно построить и проанализировать их зависимости от числа m для исходных и отожженных при 650° C 10 часов образцов 50Sr-1300C и 50Sr-1100C (рис. 11).

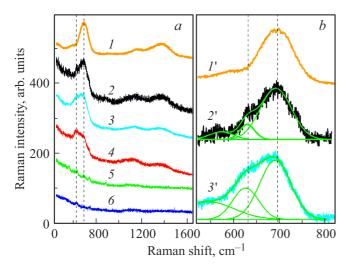
В исходных образцах интенсивность парциальных спектров, отвечающих состоянию m=0 (отсутствие вакансий и ионов Fe⁴⁺ в ближайшем окружении иона Fe^{3+}), невелика для образца $50Sr-1100C~(\sim 12\%)$ и значительно больше для образца 50Sr-1300C ($\sim 34\%$). Максимальную интенсивность имеют парциальные спектры с m=2 для $50 {
m Sr} - 1100 {
m C} \ (\sim 33\%)$ и с m=1 для 50 Sr - 1300 C ($\sim 43\%$). Парциальные спектры отожженных при 650°C образцов имеют максимальную интенсивность при m=0: $\sim 56\%$ для $50 {\rm Sr-} 1100 {\rm C}$ и $\sim 43\%$ для 50Sr-1300C. Таким образом, при m=0 (шесть обменных связей Fe^{3+} — O^{2-} — Fe^{3+}) вклады парциальных спектров исходного и отожженного при 650°C образцов 50Sr 1100C сильно отличаются друг от друга, тогда как для образцов 50Sr-1300С эта разница невелика. С ростом числа т интенсивности парциальных спектров сильно уменьшаются и стремятся к нулю. Следует отметить, что для исходных и отожженных при 650°C образцов 50Sr-1300С ход кривых отличается незначительно по сравнению с таковыми для образцов 50Sr-1100C (рис. 11).

Вышесказанное хорошо подтверждается результатами расчета сверхтонкого магнитного поля $H_{\rm hf}({\rm Fe^{3+}})$, усредненного по всем парциальным спектрам ионов ${\rm Fe^{3+}}$, в зависимости от температуры вакуумного отжига $T_{\rm ann}$ для обоих образцов (50Sr-1100C и 50Sr-1300C) (рис. 12, a). Зависимости средних значений интенсивностей парциальных спектров ионов ${\rm Fe^{3+}}$ от $T_{\rm ann}$ показаны на рис. 12, b. Рост полей $H_{\rm hf}({\rm Fe^{3+}})$ и интенсивностей парциальных спектров ионов ${\rm Fe^{3+}}$ с увеличением $T_{\rm ann}$ обусловлен увеличением числа обменных связей для ${\rm Fe^{3+}}$, уменьшением числа ионов ${\rm Fe^{4+}}$ и ростом температуры $T_{\rm N}$ (см. ниже).

Рис. 11. Зависимости относительной интенсивности парциальных спектров I_m для ионов Fe^{3+} от числа m оборванных или ослабленных обменных связей для исходных (as-pr.) и отожженных при 650° C образцов 50Sr-1100C и 50Sr-1300C.


Таким образом, в исходных образцах $50\mathrm{Sr}{-}1300\mathrm{C}$ и $50\mathrm{Sr}{-}1100\mathrm{C}$ основной вклад в мёссбауэровские спектры дают парциальные спектры с m=1 и 2. Это означает, что бо́льшая часть ионов Fe в исходных образцах имеет в своем локальном окружении одну или две оборванные (наличие кислородных вакансий) или ослабленные (наличие ионов $\mathrm{Fe^{4+}}$) обменные связи. В отожженных образцах основной вклад в спектры дают парциальные спектры с m=0 (шесть обменных связей $\mathrm{Fe^{3+}}{-}\mathrm{O^{2-}}{-}\mathrm{Fe^{3+}}$), когда нет ни ионов $\mathrm{Fe^{4+}}$, ни кислородных вакансий. Это свидетельствует о том, что в ходе отжигов, несмотря на увеличение количества вакансий, структура становится менее дефектной.

2.4. Данные комбинационного рассеяния света


Формирование двух фаз при вакуумном отжиге выше 200° С в образцах 50Sr-1300С подтверждается также при исследовании образцов методом комбинационного рассеяния света (KPC). На рис. 13 представлены спектры KPC образцов, отожженных после синтеза при разных температурах вакуумного отжига $T_{\rm ann}$.

Известно, что линии при частотах ниже $1000~{\rm cm^{-1}}$ в спектрах КРС ортоферритов ${\rm La_{1-x}Sr_xFeO_{3-\gamma}}$ обусловлены фононными колебаниями [10]. Так, наиболее сильная фононная мода при частотах $\sim 660-700~{\rm cm^{-1}}$ описывает синфазные колебания связей Fe—O в октаэдре FeO₆, т.н. "дышащая" мода октаэдра [10]. Из рис. 13, a видно, что на протяженном бесструктурном фоне интенсивные фононные пики наблюдаются только в образцах, отожженных при температуре $T_{\rm ann}^{\circ} > 450 {\rm ^{\circ}C}$. Подавление фононных мод в спектрах КРС замещенных ортоферритов лантана, отожженных при более низких температурах, свидетельствует о значительной доле ионов Fe⁴⁺ в образцах с низкой $T_{\rm ann}$, как было нами показано в работе [11].

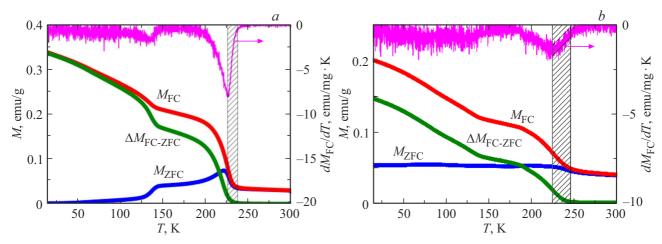
В образцах с высокой температурой синтеза 1300° С $(50\mathrm{Sr}-1300\mathrm{C})$ и отжигом при $T_{\mathrm{ann}}=550^{\circ}$ С и 650° С (как 8 часов, так и 10 часов) наиболее сильная фононная мода при $\sim 660\,\mathrm{cm}^{-1}$ синфазных колебаний октаэдра $\mathrm{FeO_6}$ аномально уширена и имеет структуру дублета, что хорошо видно после вычитания линейного фона в диапазоне $500-850\,\mathrm{cm}^{-1}$ и аппроксимации гауссианами (рис. 13,b). При этом отношение R интенсивностей I_{low} низкоэнергетичной ($E_1\sim 627\pm 2\,\mathrm{cm}^{-1}$) и I_{high} — высокоэнергетичной ($E_2\sim 690\pm 2\,\mathrm{cm}^{-1}$) компонент спектра КРС в образце после 8 часов отжига при $T_{\mathrm{ann}}=650^{\circ}\mathrm{C}$ существенно больше: $R=I_{\mathrm{low}}/I_{\mathrm{high}}\sim 0.43$, чем в образце после 10 часов отжига: $R\sim 0.09\pm 0.01$. Естественно отнести низкоэнергетичную и высокоэнергетичную компоненты фононной моды при $\sim 660\,\mathrm{cm}^{-1}$ к близким,

Рис. 12. Зависимости средних значений сверхтонких магнитных полей $H_{\rm hf}$ (Fe³⁺) (a) и интенсивностей парциальных спектров (b) для ионов Fe³⁺ от температуры отжига $T_{\rm ann}$ образцов 50Sr-1100С и 50Sr-1300С.

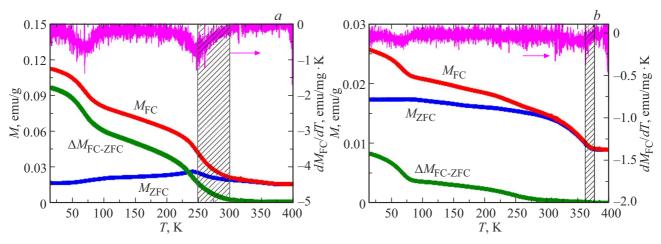
Рис. 13. a — спектры комбинационного рассеяния света образцов $50\mathrm{Sr}-1300\mathrm{C}$ (2-6, синтез $1300^\circ\mathrm{C}$), отожженных в вакууме при $T_{\mathrm{ann}}=650^\circ\mathrm{C}$, $10\,\mathrm{vacob}$ (2); $650^\circ\mathrm{C}$, $8\,\mathrm{vacob}$ (3); $550^\circ\mathrm{C}$, $8\,\mathrm{vacob}$ (4); $450^\circ\mathrm{C}$, $8\,\mathrm{vacob}$ (5) и $300^\circ\mathrm{C}$, $8\,\mathrm{vacob}$ (6). Спектры сдвинуты по вертикали. Штриховые линии проведены в районе наиболее сильной фононной моды $\sim 660-700\,\mathrm{cm}^{-1}$. Для сравнения также приведен спектр образца $50\mathrm{Sr}-1100\mathrm{C}$ (синтез $1100^\circ\mathrm{C}$) после отжига $10\,\mathrm{vacob}$ при $650^\circ\mathrm{C}$ ($1\,\mathrm{u}$ 1'). b — спектры КРС образцов с $T_{\mathrm{ann}}=650^\circ\mathrm{C}$, $10\,\mathrm{vacob}$ (2') и $650^\circ\mathrm{C}$, $8\,\mathrm{vacob}$ (3') после вычитания линейного фона на участке $500-850\,\mathrm{cm}^{-1}$. Зеленые линии — аппроксимация гауссианами.

но разным кубическим кристаллически фазам, идентифицированным при рентгеноструктурном анализе. Существенное ослабление низкоэнергетичной компоненты, более чем в 3 раза, в образце после 10 часов отжига подтверждают данные рентгеноструктурного анализа об исчезновении одной из кубических фаз с ростом времени отжига. Для сравнения на рис. 13 приведен спектр KPC образца 50Sr-1100C (I и I') после отжига при 650°C , который не имеет выраженной структуры фононной моды при $\sim 660~\text{cm}^{-1}$, а сама мода, активная в спектре KPC, существенно уже. Таким образом, спектроскопия KPC подтверждает возникновение в образце 50Sr-1300C специфического двухфазного состояния с кубической кристаллической структурой в процессе вакуумного отжига.

Отметим, что наличие выраженного широкого пика двухмагнонного рассеяния при $\sim 1350\,\mathrm{cm^{-1}}$ в спектрах КРС образцов, отожженных после синтеза при $T_{\rm ann}=550^{\circ}\mathrm{C}$ и $650^{\circ}\mathrm{C}$ (рис. 13,a), свидетельствует об антиферромагнитном типе упорядочения в них при комнатной температуре [12]. Аналогичная, но более сильная линия двухмагнонного рассеяния наблюдается в незамещенном феррите лантана LaFeO₃ с самой высокой температурой Нееля $T_{\rm N}=740\,\mathrm{K}$ и в браунмиллеритной фазе SrFeO_{2.5} с $T_{\rm N}=670\,\mathrm{K}$ [13]. Кроме двухмагнонного пика также наблюдается интенсивная линия двухфононного рассеяния при $\sim 1150\,\mathrm{cm^{-1}}$, которая проявляется


благодаря сильной связи фононной и спиновой систем в этих соединениях [14].

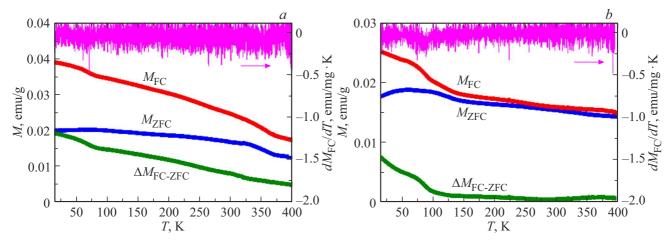
2.5. Магнитные измерения


Кривые намагниченности образца $50\mathrm{Sr}{-1300\mathrm{C}}$ имеют несколько температурных особенностей. Но в рамках данной работы основной интерес представляют температуры Нееля T_{N} и их зависимость от температуры синтеза и изменение с вакуумным отжигом. Подробный анализ кривых намагниченности во всем температурном интервале и связанных с ними магнитных особенностей будет представлен в отдельной работе, как это было сделано для синтезированного и отожженного в вакууме при $650^{\circ}\mathrm{C}$ образца $50\mathrm{Sr}{-1100\mathrm{C}}$ [15]. Поэтому ниже обсуждаются только температурные области, соответствующие переходу в магнитоупорядоченное состояние в точке Нееля.

Температурные зависимости намагниченности M(T), измеренные в режимах ZFC и FC, исходных образцов 50Sr-1300С и 50Sr-1100С, показаны на рис. 14. Данные для образца 50Sr-1100C, исследованного нами ранее, взяты из работы [15]. На рис. 14, а для образца 50Sr-1300C можно выделить характерную температурную область изменения магнитного состояния образца (показано штриховкой) в сравнительно узком интервале $T = 226 - 233 \,\mathrm{K}$, которая отвечает переходу в магнитоупорядоченное состояние. При температуре $T_1 = 226 \pm 4 \, {
m K}$ на кривой $M_{
m ZFC}$ наблюдается максимум, на кривой $M_{\rm FC}$ — перегиб, хорошо визуализируемый с помощью производной $dM_{\rm FC}/dT$ (рис. 14, a, фиолетовая кривая). При температуре $T_2 = 233 \pm 3 \,\mathrm{K}$ разность кривых $\Delta M_{\rm FC-ZFC} = M_{\rm FC} - M_{\rm ZFC}$ обращается в ноль, что соответствует окончательному переходу в парамагнитное состояние (рис. 14, а, зеленая кривая). С учетом погрешности $T_1 \approx T_2$. Это означает, что полный переход в магнитоупорядоченное состояние в исходном однофазном образце 50Sr-1300C происходит в окрестности $T_{
m N}\sim 230\,{
m K}$, такой же, как и в образце $50{
m Sr}{-}1100{
m C}$ (рис. 14, b) [15]. Небольшое уширение в температурном интервале перехода для образца 50Sr-1100C (рис. 14, b) может быть связано с меньшим на порядок размером зерна по сравнению с образцом 50Sr-1300C.

Учитывая рентгеновские мёссбауэровские И наличии двухфазного состояния 0 50Sr - 1300C - 450AV - 8h, были проведены магнитные измерения этого образца. На рис. 15, а представлены зависимости M(T)отожженного образца 50Sr-1300C-450AV-8h. Область, отвечающая переходу в магнитоупорядоченное состояние, имеет широкий температурный интервал T = 255 - 305 К. При температуре $T_1 = 255 \pm 5 \, \mathrm{K}$ на кривой M_{ZFC} наблюдается максимум, на кривой $M_{\rm FC}$ — перегиб, хорошо проявляющийся на производной $dM_{\rm FC}/dT$. Разность кривых $\Delta M_{\rm FC-ZFC} = M_{\rm FC} - M_{\rm ZFC}$ обращается в ноль при температуре $T_2 = 305 \pm 5 \, \mathrm{K}$, что соответствует переходу в парамагнитное состояние. Такая широкая область

Рис. 14. Зависимости намагниченности исходных образцов $50\mathrm{Sr}-1300\mathrm{C}$ (a) и $50\mathrm{Sr}-1100\mathrm{C}$ (b) от температуры M(T). Красные кривые соответствуют режиму FC, синие — режиму ZFC, зеленым цветом показана разность кривых $M_{\mathrm{FC}}-M_{\mathrm{ZFC}}=\Delta M_{\mathrm{FC}-\mathrm{ZFC}}$, фиолетовая кривая отвечает производной dM_{FC}/dT . Штриховкой показаны критические области.


Рис. 15. Зависимости намагниченности от температуры M(T) отожженных образцов $50 \mathrm{Sr} - 1300 \mathrm{C} - 450 \mathrm{AV} - 8 \mathrm{h}$ (a) и $50 \mathrm{Sr} - 1300 \mathrm{C} - 650 \mathrm{AV} - 8 \mathrm{h}$ (b). Красные кривые соответствуют режиму FC, синие — режиму ZFC, зеленым цветом показана разность кривых $M_{\mathrm{FC}} - M_{\mathrm{ZFC}} = \Delta M_{\mathrm{FC}}$, фиолетовая кривая отвечает производной dM_{FC}/dT . Штриховкой показаны критические области.

перехода обусловлена, по-видимому, двухфазным состоянием образца, а также неоднородным распределением кислорода по его объему и значительным разупорядочением структуры в момент ее интенсивной перестройки.

Зависимости M(T)отожженного образца 50Sr-1300C-650AV-8h показаны на рис. 15, b. Область, отвечающая переходу в магнитоупорядоченное состояние, сужается и смещается в сторону более высоких температур $T = 360 - 370 \, \mathrm{K}$. Перегиб на кривой MFC происходит при температуре $T_1 = 360 \pm 5 \, \mathrm{K}$ и хорошо наблюдается на производной $dM_{\rm FC}/dT$. При температуре $T_2=370\pm 5\,\mathrm{K}$ разность кривых $\Delta M_{\rm FC-ZFC} = M_{\rm FC} - M_{\rm ZFC}$ обращается в ноль. Важно отметить, что увеличение температуры вакуумного отжига до 650°C приводит к значительному сужению температурного интервала перехода в магнитоупорядоченное состояние. С учетом погрешности $T_{\rm N} \approx 365\,{\rm K}.$

Ha рис. представлены кривые M(T)50Sr-1300C-650AV-10h отожженных образцов 50Sr-1100C-650AV-10h, В которых область, магнитоупорядоченное отвечающая переходу состояние, смещается в сторону температур выше 400 К, превосходящих доступный на магнитометре диапазон. Для образца 50Sr-1300C-650AV-10h (рис. 16, a) вплоть до 400 K на кривых MZFC и MFC перестают проявляться максимумы и перегибы, соответственно. На производной $dM_{\rm FC}/dT$ не наблюдаются никакие особенности. Разность кривых $\Delta M_{\rm FC-ZFC} = M_{\rm FC} - M_{\rm ZFC}$ для двух образцов в рассматриваемом температурном интервале не обращается в ноль (рис. 16), т.е. переход в парамагнитное состояние в образцах происходит при температуре выше 400 К.

Таким образом, увеличение времени вакуумного отжига образца 50Sr-1300C всего на 2 часа при постоян-

Рис. 16. Зависимости намагниченности отожженных образцов $50\mathrm{Sr}-1300\mathrm{C}-650\mathrm{AV}-10\mathrm{h}$ (a) и $50\mathrm{Sr}-1100\mathrm{C}-650\mathrm{AV}-10\mathrm{h}$ (b) от температуры M(T). Красные кривые соответствуют режиму FC, синие — режиму ZFC, зеленым цветом показана разность кривых $M_{\mathrm{FC}}-M_{\mathrm{ZFC}}=\Delta M_{\mathrm{FC}-\mathrm{ZFC}}$, фиолетовая кривая отвечает производной dM_{FC}/dT . Штриховкой показаны критические области.

ной температуре 650° С приводит к заметному возрастанию $T_{\rm N}$. Уширения температурного интервала перехода в магнитоупорядоченное состояние не наблюдается (рис. 16, a). Для образца $50{\rm Sr}{-}1100{\rm C}{-}650{\rm AV}{-}10{\rm h}$ переход происходит также при температуре выше $400~{\rm K}$ (рис. 16, b) [15].

Таким образом, при вакуумном отжиге образцов $50 \mathrm{Sr} - 1300 \mathrm{C}$ и $50 \mathrm{Sr} - 1100 \mathrm{C}$ увеличение температуры приводит к заметному росту T_{N} из-за механизмов перераспределения вкладов ферро- и антиферромагнитного каналов в результирующий обмен и смещения баланса в сторону усиления антиферромагнетизма. Это вызвано уменьшением доли ионов Fe^{4+} при вакуумном отжиге, что подробно обсуждается в наших работах [15,16].

Оба образца $50\mathrm{Sr}{-1300\mathrm{C}}$ и $50\mathrm{Sr}{-1100\mathrm{C}}$, как в исходном состоянии, так и отожженные при $650^{\circ}\mathrm{C}$ в течение 10 часов, являются однофазными, поэтому на зависимостях M(T) температурный интервал перехода в магнитоупорядоченное состояние узкий.

Заметная разница в $T_{\rm N}$ образцов 50Sr-1300C, отожженных при температуре 650°C в течение 8 и 10 часов (рис. 15, b и 16, a) связана с тем, что после восьмичасового отжига в образце еще сохраняется двухфазное состояние и остается небольшое количество (5-6%) ионов Fe $^{4+}$, что заметно понижает $T_{\rm N}$.

3. Заключение

Из анализа данных, полученных методом ПЭМ, следует, что при увеличении температуры финального отжига золь-гель синтеза с 1100 до 1300° С средний размер зерна синтезированных образцов увеличивается почти на порядок, от 165 nm до $1.6\,\mu$ m (образуются крупные монокристаллические частицы). Анализ данных ПЭМ показывает, что средний размер частиц образца 50Sr-1300C, отожженного в вакууме при 650° C 8 часов,

увеличивается почти вдвое по сравнению с исходным образцом, а при отжиге в течение 10 часов — примерно в 3.5 раза.

Изменение структуры образца 50Sr—1300С в ходе вакуумных отжигов проходит через двухфазную стадию, причем при низких температурах отжига сосуществуют кубическая и ромбоэдрическая фазы, в более высокотемпературном интервале — две кубических. Объем как кубической, так и ромбоэдрической кристаллических ячеек увеличивается с ростом температуры вакуумного отжига. Для образца 50Sr—1100С объем ячейки с температурой отжига растет быстрее, чем для 50Sr—1300С, что может быть связано с разницей в размере зерен.

Параметры ячеек для результирующей кубической фазы различаются, причем для образца $50\mathrm{Sr}{-}1100\mathrm{C}$ этот параметр больше, что соответствует по данным мёссбауэровской спектроскопии меньшей концентрации кислорода в решетке. Этот факт также укладывается в объяснение, связанное с размером зерен в образцах $50\mathrm{Sr}{-}1100\mathrm{C}$ и $50\mathrm{Sr}{-}1300\mathrm{C}$.

Формированием двух фаз при отжиге выше 200° С и переходом в одну фазу при 650° С (10 часов) в образце 50Sr-130ОС можно объяснить начальное заметное уширение мёссбауэровских линий с ростом $T_{\rm ann}$ и их сужение после отжига при 650° С.

Из полученных месбауэровских данных определено количество валентных состояний ионов Fe, количество кислорода и вакансий во всех образцах. В исходных образцах число ионов Fe⁴⁺ и ионов кислорода слегка больше для 50Sr—1100С. Показано, что большая часть ионов Fe в исходных образцах имеет в своем локальном окружении один или два дефекта — оборванную и/или ослабленную обменную связь. При вакуумном отжиге, несмотря на увеличение количества вакансий, доля ионов Fe с дефектным окружением уменьшается, причем для образца 50Sr—1100С этот эффект более ярко выражен. В образцах, отожженных при 650°С,

содержание кислорода слегка больше для $50 \mathrm{Sr} - 1300 \mathrm{C}$. Обнаружено, что в образцах, синтезированных при более высокой температуре ($1300^{\circ}\mathrm{C}$), выход кислорода при вакуумном отжиге и, соответственно, переход Fe^{4+} в Fe^{3+} , происходит медленнее. Это связано с большим размером зерна в таких образцах.

Спектроскопия КРС подтверждает возникновение двухфазного состояния в образцах 50Sr-1300С при вакуумном отжиге выше 200°С, его трансформацию с повышением температуры вакуумного отжига и переходом в однофазное состояние при 650°С. Наличие пика двухмагнонного рассеяния в спектрах КРС образцов, отожженных в вакууме, свидетельствует об антиферромагнитном типе упорядочения в них при комнатной температуре.

Показано, что в исходном состоянии температура Нееля $T_{\rm N}$ образцов 50Sr-1300С и 50Sr-1100С примерно одинаковая (230 K). Температуры $T_{\rm N}$ отожженных при 650°C образцов в обоих случаях существенно выше по сравнению с исходными (превышают 400 К). На примере образца 50Sr-1300C показано, что при вакуумном отжиге температура $T_{\rm N}$ заметно растет с увеличением температуры (450 и 650°C) и продолжительности (8 и 10 часов) отжига, что является следствием смещения баланса в сторону усиления антиферромагнетизма, связанного с уменьшением доли ионов Fe⁴⁺. Формирование двухфазного состояния в образце 50Sr-1300C при вакуумных отжигах ниже 650°C приводит к сильному уширению температурного интервала перехода в магнитоупорядоченное состояние на зависимости M(T). Переход в однофазное состояние при 650°C сильно сужает этот температурный интервал.

Результаты, полученные разными методами, хорошо коррелируют между собой.

Благодарности

Авторы благодарны Центру коллективного пользования научным оборудованием ИФТТ РАН за предоставленные экспериментальные возможности для проведения структурных исследований.

Финансирование работы

Работа выполнена в рамках Госзаданий Института физики твердого тела имени Ю.А. Осипьяна РАН (075-00370-24-04) и ФИЦ проблем химической физики и медицинской химии РАН (124013100858-3). Рентгеноструктурные исследования выполнены с использованием оборудования Центра коллективного пользования Института физики твердого тела имени Ю.А. Осипьяна РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Petrovic, A. Terlecki, L. Karanovic, P. Kirilov-Stefanov, M. Zduji, V. Dondur, D. Paneva, I. Mitov, V. Rakic. Appl. Catal. B. Environ. 79, 186 (2008). https://doi.org/10.1016/J.APCATB.2007.10.022.
- J. Faye, A. Bayleta, M. Trentesauxb, S. Royera, F. Dumeignil,
 D. Duprez, S. Valange. Appl. Catal. B Environ. 126, 134 (2012). https://doi.org/10.1016/J.APCATB.2012.07.001.
- [3] E.K. Abdel-Khalek, D.A. Rayan, Ahmed.A. Askar, M.I.A. Abdel Maksoud, H.H. El-Bahnasawy. J. Sol-Gel Sci. Technol. 97, 27 (2021). https://doi.org/10.1007/s10971-020-05431-8.
- [4] J.B. Yang, W.B. Yelon, W.J. James, Z. Chu, M. Kornecki, Y.X. Xie, X.D. Zhou, H.U. Anderson, Amish G. Joshi, S.K. Malik. Phys. Rev. B 66, 184415 (2002). https://doi.org/10.1103/PhysRevB.66.184415.
- [5] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012). https://doi.org/10.1063/1.4759488.
- [6] V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceram. Int. 49, 15, 25640 (2023). https://doi.org/10.1016/j.ceramint.2023.05.105.
- [7] P.D. Battle, N.C. Gibb, S. Nixon. J. Solid State Chem. 79, 75 (1989). https://doi.org/10.1016/0022-4596(89)90252-1
- [8] G. Li, L. Li, M. Zhao. Phys. Stat. Sol. B 197, 165 (1996). https://doi.org/10.1002/pssb.2221970123
- [9] P.D. Battle, T.C. Gibb, S. Nixon. J. Solid State Chem. 77, 124 (1988). https://doi.org/10.1016/0022-4596(88)90099-0.
- [10] M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, J. Kreisel. Phys. Rev. B 94, 214103 (2016). https://doi.org/10.1103/PhysRevB.94.214103.
- [11] V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids 171, 111001 (2022). https://doi.org/10.1016/j.jpcs.2022.111001.
- [12] G.B. Wright. Light Scattering Spectra of Solids. Springer Berlin, Heidelberg (1969). P. 763.
- [13] O.I. Barkalov, S.V. Zaitsev, V.D. Sedykh. Solid State Commun. 354, 114912 (2022). https://doi.org/10.1016/j.ssc.2022.114912.
- [14] M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.-Y. Yang, Y.-H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan. Appl. Phys. Lett. 92, 2, 022511 (2008). https://doi.org/10.1063/1.2829681.
- [15] А.И. Дмитриев, С.В. Зайцев, М.С. Дмитриева, О.Г. Рыбченко, В.Д. Седых. ФТТ 66, 3, 386 (2024). https://doi.org/10.61011/FTT.2024.03.57479.1.
- [16] А.И. Дмитриев, С.В. Зайцев, М.С. Дмитриева. Письма в ЖТФ 50, 13, 24 (2024). https://doi.org/10.61011/PJTF.2024.13.58163.19894.

Редактор А.Н. Смирнов