05,13

Рассеяние и генерация обменных спиновых волн в магнитной структуре с конкурирующими обменными взаимодействиями

© В.Д. Пойманов

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН,

Москва, Россия

Московский государственный технический университет им. Баумана,

Москва, Россия

E-mail: v.poymanov@ispm.ru

Поступила в Редакцию 21 августа 2024 г. В окончательной редакции 10 декабря 2024 г.

Принята к публикации 12 декабря 2024 г.

В рамках решеточной модели исследованы условия возникновения основного состояния типа спиновой геликоиды, обусловленного конкуренцией двух обменных взаимодействий магнитных ионов двух первых координационных сфер. Для однородного основного состояния получены коэффициенты рассеяния и генерации обменных спиновых волн границей раздела такой структуры с одноосным ферромагнетиком. Показана возможность возникновения в рассматриваемой структуре нового типа объемно-поверхностных волн.

Ключевые слова: обменная спираль (спиновая геликоида), дальний порядок обменного взаимодействия, эванесцентная спиновая волна, рассеяние и генерация обменных спиновых волн.

DOI: 10.61011/FTT.2025.01.59780.221

1. Введение

В настоящее время использование устройств терагерцевого диапазона в магнонике представляется недалекой перспективой [1,2]. Магноны с высокими энергиями, принадлежащие обменному диапазону длин волн (обменные спиновые волны, ОСВ), соответствуют обменным спиновым модам в антиферромагнетиках. Практическое применение ОСВ позволяет уменьшить размеры и тепловые потери в магнонных волноводах [1]. Вместе с тем для создания, в частности, магнонных вентилей представляют интерес магнитные структуры с невзаимными свойствами. Эти свойства могут проявляться в структурах как с неоднородным основным состоянием с определенной киральностью спиновой геликоиды [2], так и при распространении обменнодипольных волн [3].

Основное состояние в виде спиновой геликоиды реализуется, в частности, в структурах с взаимодействием Дзялошинского. В работах [4,5] были изучены рассеяние и генерация ОСВ релятивистской спиралью. Другим механизмом ее формирования может быть конкуренция обменных взаимодействий ближнего и дальнего порядка. Магнитные материалы, в которых существуют такие структуры, подробно рассмотрены в монографии [5]. Их характерный пространственный период имеет порядок величины 100-200 постоянных решетки, так что ее можно считать длиннопериодической. Для решения задач рассеяния ОСВ в работе [6] в континуальном приближении получены граничные условия (ГУ) для волн в неоднородных структурах. В недавних работах [7-9] было показано, что в ограниченных магнитных структурах ОСВ могут быть как объемными, так и эванесцентными,

которые также отличаются от объемных киральностью прецессии. Поэтому в более сложных магнитных структурах с конкурирующими обменными взаимодействиями (МСКОВ) можно ожидать как проявления невзаимных свойств, так и большего разнообразия возможных типов волн.

В настоящей работе теоретически исследовано распространение, рассеяние и генерация ОСВ в таких длиннопериодических структурах.

2. Основное состояние в МСКОВ

Рассмотрим неограниченную МСКОВ в которой динамические переменные являются функциями только координаты z. Будем полагать, что обменное взаимодействие между ближайшими атомами носит ферромагнитный, а между атомами второй координационной сферы — антиферромагнитный характер. Гамильтониан такой структуры запишем в виде:

$$W_H = \frac{A_H}{16} \sum_{n} (\mathbf{S}_n \mathbf{S}_{n+2} - (4 + \Delta) \mathbf{S}_n \mathbf{S}_{n+1}), \tag{1}$$

где \mathbf{S}_n — спин n-го узла решетки, $A_H > 0$ — обменная константа, Δ — безразмерный параметр, смысл которого станет ясен позже.

Первое слагаемое в (1) описывает обменное взаимодействие со спинами второй координационной сферы и носит антиферромагнитный характер. Второе соответствует ферромагнитному обменному взаимодействию соседних атомов и его минимум обеспечивается их коллинеарной взаимной ориентацией. Таким образом — между двумя типами обмена возникает конкуренция, которая может приводить к возникновению обменной спирали.

Спиновая динамика рассматриваемой структуры описывается уравнением Ландау-Лифшица:

$$\hbar \dot{\mathbf{S}} = \frac{1}{S_H} \left[\mathbf{S} \times \frac{\partial W_H}{\partial S} \right],\tag{2}$$

где S_H — величина спина, \hbar — константа Планка.

После подстановки (1) в (2), представим уравнение линамики в виле:

$$\hbar S_H \dot{\mathbf{S}}_n = \frac{A_H}{16} \Big[\mathbf{S}_n \times \big((\mathbf{S}_{n+2} + \mathbf{S}_{n-2} - 2\mathbf{S}_n) - (4 + \Delta)(\mathbf{S}_{n+1} + \mathbf{S}_{n-1} - 2\mathbf{S}_n) \big) \Big].$$
(3)

Отсюда следует уравнение, определяющее основное состояние:

$$(\mathbf{S}_{n+2}^{(0)} + \mathbf{S}_{n-2}^{(0)} - 2\mathbf{S}_{n}^{(0)}) - (1 + \Delta)(\mathbf{S}_{n+1}^{(0)} + \mathbf{S}_{n-1}^{(0)} - 2\mathbf{S}_{n}^{(0)}) = 0.$$

Решение (5) в виде спиновой геликоиды $(z_n = nd_H)$ имеет вид:

$$S_{n\pm}^{(0)} = S_{nx}^{(0)} \pm i S_{ny}^{(0)} = S_H e^{\pm i K_H z_n}$$
 (5)

и после подстановки в (3) дает возможные значения волнового числа:

$$K_H = \frac{2}{d_H} \arcsin(\sqrt{-\Delta}), \quad \Delta \le 0,$$
 $K_H = 0, \qquad \Delta > 0.$ (6)

Таким образом дальний порядок обменного взаимодействия искажает коллинеарную структуру при условии $\Delta < 0$. В реальных длиннопериодических структурах $K_H d_H \ll 1$. Если $N \gg 1$ — период структуры в постоянных решетки, то $|\Delta| \approx \left(\frac{\pi}{N}\right)^2 \ll 1$. Для N=100 получаем оценку $|\Delta| \sim 10^{-3}$. В случае же $\Delta \geq 0$ основное состояние однородно.

Типы волн в однородно намагниченной МСКОВ и одноосном ферромагнетике

Положим $\mathbf{S}_{Hn}^{(0)} = S_N \mathbf{e}_x$ считая основное состояние однородным $(\Delta \geq 0)$. Малые возмущения будем искать в виде ОСВ, описываемых уравнением (3) в первом приближении ($\mathbf{s}_H \sim e^{-i\omega t}$):

$$-i\mathscr{E}\mathbf{s}_{Hn}S_{H} = \left[\mathbf{S}_{Hn}^{(0)} \times \boldsymbol{\chi}_{Hn}\right],\tag{8}$$

где

$$\chi_{Hn} = \frac{A_H}{16} \Big((\mathbf{s}_{H(n+2)} + \mathbf{s}_{H(n-2)} - 2\mathbf{s}_{Hn}) - 4(1+\Delta)(\mathbf{s}_{H(n+1)} + \mathbf{s}_{H(n-1)} - 2\mathbf{s}_{Hn}) \Big),$$
(9)

а $\mathscr{E}=\hbar\omega$ — энергия магнона.

Тогда для циклических компонент динамического спи-

$$s_{Hn}^{(l/r)} = s_{Hny} \pm i s_{Hnz},$$

$$\chi_{Hn}^{(l/r)} = \frac{A_H}{16} \left(\left(s_{H(n+2)}^{(l/r)} + s_{H(n-2)}^{(l/r)} - 2 s_{Hn}^{(l/r)} \right) - 4 (1 + \Delta) \left(s_{H(n+1)}^{(l/r)} + s_{H(n-1)}^{(l/r)} - 2 s_{Hn}^{(l/r)} \right) \right)$$
(10)

из (8) следует система

$$\chi_{Hn}^{(l/r)} \pm \mathscr{E}s_{Hn}^{(l/r)} = 0 \tag{11}$$

и после подстановки $s_{Hn}^{(l/r)} = D_H^{(l/r)} e^{ik_H n d_H}$ получим:

$$\left(\sin^2\frac{k_Hd_H}{2}\left(\sin^2\frac{k_Hd_H}{2} + \Delta\right) \pm \frac{\mathscr{E}}{A_H}\right)D_H^{(l/r)} = 0. \quad (12)$$

Прямой правополяризованной волне $(D_H^l=0,$ $D_{\scriptscriptstyle H}^{(r)}
eq 0$) соответствует два значения волнового числа:

$$k_{H\pm}^{(r)} d_H = 2 \arcsin \sqrt{\pm \sqrt{\frac{\Delta^2}{4} + \frac{\mathscr{E}}{A_H}} - \frac{\Delta}{2}}.$$
 (13)

Границе первой зоны $k_{H\pm}^{(r)}d_H\cup [0\dots 2\pi]$ соответствует интервал энергий $\mathscr{E} \cup \{0, (1+\Delta)A_H\}$, где $k_{H+}^{(r)}$ — вещественно, а $k_{H-}^{(r)}$ — чисто мнимо. Волновые числа левоп

левополяризованных $(D_H^{(r)} = 0, D_H^{(l)} \neq 0)$

$$k_{H\pm}^{(l)} d_H = 2 \arcsin \sqrt{\pm \sqrt{\frac{\Delta^2}{4} - \frac{\mathscr{E}}{A_H}} - \frac{\Delta}{2}}$$
 (14)

в интервале энергий магнона $\mathscr{E} \cup [0, \frac{\Delta^2}{4} A_H]$ чисто мнимы. Вне этого диапазона $k_{H\pm}^{(l)}$ имеют вещественную и мнимую части и являются взаимно сопряженными, соответствуя объемно-поверхностным волнам.

Зависимости от энергии вещественных и мнимых частей волновых чисел представлены на рис. 1.

Таким образом, учет дальнего порядка обменного взаимодействия приводит к повышению порядка дисперсионного уравнения и удвоению количества волн. Четыре его решения образуют полную систему в рамках линеаризованного уравнения Ландау-Лифшица.

В одноосном ФМ с анизотропией типа "легкая ось" (ox), решеточный гамильтониан:

$$W_F = -\frac{1}{4} \sum_{n} (A_F \mathbf{S}_n \mathbf{S}_{n+1} + 2B_F S_{nx}^2)$$
 (15)

(все константы положительны). В основным состоянии ФМ однородно намагничен в направлении оси х. Линеаризованное уравнение (3) для ФМ имеет вид:

$$-i\mathscr{E}S_F\mathbf{s}_n = [\mathbf{S}_n^{(0)} \times \boldsymbol{\chi}_{Fn}], \tag{16}$$

$$\chi_{Fn} = -\frac{A_F}{4} (\mathbf{s}_{n+1} + \mathbf{s}_{n-1} - 2\mathbf{s}_n) + B_F(s_{ny}\mathbf{y} + s_{nz}\mathbf{z}). \quad (17)$$

140 В.Д. Пойманов

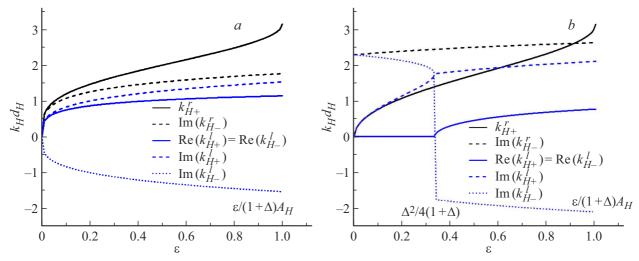


Рис. 1. Зависимость приведенных волновых чисел $k_{H\pm}^{(r/l)}d_H$ от энергии магнона для $\Delta=0$ (a) и $\Delta=2$ (b).

Решение (16) представим в виде:

$$s_{Fn}^{(l/r)} = D_{Fn}^{(l/r)} e^{i(k_F n d_F - \omega t)}$$
 (18)

и после подстановки получим

$$\left(A_F \sin^2 \frac{k_F d_F}{2} + B_F \pm \mathscr{E}\right) D_{Fn}^{(l/r)} = 0$$
(19)

Правополяризованная волна в ФМ $(s_F^{(r)} \neq 0, s_F^{(l)} = 0)$ имеет вещественное волновое число, а левополяризованная — чисто мнимое:

$$k_F^{(r)}d_F = 2\arcsin\left(\sqrt{\frac{\mathscr{E} - B_F}{A_F}}\right),$$
 $k_F^{(l)}d_F = 2i \operatorname{arsh}\left(\sqrt{\frac{\mathscr{E} + B_F}{A_F}}\right).$ (20)

Установив типы волн в МСКОВ и ФМ перейдем к решению задачи о рассеянии и генерации ОСВ их границей раздела.

4. Рассеяние ОСВ изолированной границей ФМ-МСКОВ

Рассмотрим нормальное падение ОСВ из ФМ (z < 0), на МСКОВ (z > 0). Такой выбор модели обусловлен наличием закрепляющей легкой оси x в ФМ структуре. Благодаря ФМ связи на границе, основное состояние в МСКОВ фиксируется вдоль оси x.

Так как в рассматриваемой модели все волны имеют круговую поляризацию, то при ФМ связи между ФМ и МСКОВ в ФМ выше энергии активации возбуждаются только бегущие волны — падающая (с амплитудой, принимаемой за единицу) $k_F^{(r)}$ и отраженная $(-k_F^{(r)})$, а в МСКОВ — бегущая $(k_{H+}^{(r)})$ и эванесцентная $(k_{H-}^{(r)})$. При АФМ связи в МСКОВ физичными являются волны с числами $k_{H+}^{(l)}$ и $-k_{H-}^{(l)}$.

В каждом случае определению подлежат амплитуды трех волн, для чего требуется три граничных условия. Запишем гамильтониан всей системы с учетом обменного взаимодействия ферромагнитного типа:

$$W = \frac{A_H}{16} \sum_{n \le 0} (\mathbf{S}_n \mathbf{S}_{n+2} - (4 + \Delta) \mathbf{S}_n \mathbf{S}_{n+1})$$
$$- \frac{1}{4} \sum_{n \ge 0} (A_F \mathbf{S}_n \mathbf{S}_{n+1} + 2B_F S_{nx}^2) - \sigma J \mathbf{S}_{F0} \mathbf{S}_{H0}, \quad (21)$$

где J — константа межслойного обменного взаимодействия, $\sigma \pm 1$ для ферромагнитного/антиферромагнитного межслойного взаимодействия.

Граничные условия представляют собой уравнения динамики для граничных спинов 0 и 1 для МСКОВ и 0 — для Φ М в решеточной модели [6]:

$$i\mathscr{E}\mathbf{s}_{F0} + \left[\mathbf{x} \times \left(-\frac{A_F}{4} \left(\mathbf{s}_{F1} - \mathbf{s}_{F0}\right) + B_F\left(\left(\mathbf{s}_{F0}\mathbf{y}\right)\mathbf{y} + \left(\mathbf{s}_{F0}\mathbf{z}\right)\mathbf{z}\right)\right.$$

$$\left. - \sigma J\left(\mathbf{s}_{H0} - \frac{s_H}{s_F}\mathbf{s}_{F0}\right)\right)\right] = 0,$$

$$i\mathscr{E}\mathbf{s}_{H0} + \left[\sigma\mathbf{x} \times \left(\frac{A_H}{16} \left(\left(\mathbf{s}_{H2} - \mathbf{s}_{H0}\right) - 4(1 + \Delta)(\mathbf{s}_{H1} - \mathbf{s}_{H0})\right)\right.$$

$$\left. - \sigma J\left(\mathbf{s}_{F0} - \frac{s_F}{s_H}\mathbf{s}_{H0}\right)\right)\right] = 0,$$

$$i\mathscr{E}\mathbf{s}_{H1} + \left[\sigma\mathbf{x} \times \left(\frac{A_H}{16} \left(\left(\mathbf{s}_{H3} - \mathbf{s}_{H1}\right)\right)\right.$$

$$\left. - 4(1 + \Delta)(\mathbf{s}_{H2} - \mathbf{s}_{H0}) - 2\mathbf{s}_{H1}\right)\right)\right] = 0. \tag{22}$$

Их структура, с одной стороны, отличается от уравнений для внутренних спинов. С другой — их решение также представляет собой волну.

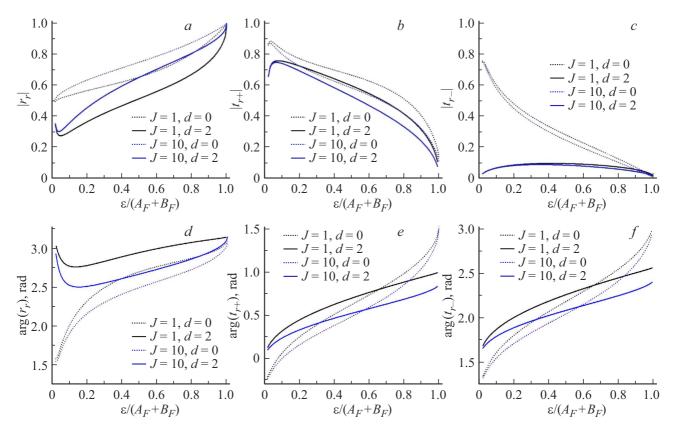


Рис. 2. Коэффициенты (a-c) и фазы (d-f) рассеяния правополяризованных волн для указанных на вкладке значений констант межслойного взаимодействия и обмена в первой зоне Бриллюэна. a,d — отраженная волна; b,e — прошедшая объемная; c,f — прошедшая поверхностная. Зависимости построены для следующих модельных значений констант $A_F = A_H = 1$ (отн. единиц), $S_F = S_H = 1$ (отн. единиц), $B_F = 0.01$.

После линеаризации и перехода к циклическим переменным, уравнения (22) принимают вид:

$$(B_F \pm \mathscr{E})s_{F0}^{(l/r)} - \frac{A_F}{4} \left(s_{F1}^{(l/r)} - s_{F0}^{(l/r)} \right)$$

$$- \sigma J \left(s_{H0}^{(l/r)} - \frac{s_H}{s_F} s_{F0}^{(l/r)} \right) = 0,$$

$$\pm \sigma \mathscr{E} s_{H0}^{(l/r)} + \frac{A_H}{16} \left(\left(s_{H2}^{(l/r)} - s_{H0}^{(l/r)} \right) - 4(1 + \Delta) \right)$$

$$\times \left(s_{H1}^{(l/r)} - s_{H0}^{(l/r)} \right) - \sigma J \left(s_{F0}^{(l/r)} - \frac{s_F}{s_H} s_{H0}^{(l/r)} \right) = 0,$$

$$\pm \sigma \mathscr{E} s_{H1}^{(l/r)} + \frac{A_H}{16} \left(\left(s_{H3}^{(l/r)} - s_{H1}^{(l/r)} \right) - 4(1 + \Delta) \right)$$

$$\times \left(s_{H2}^{(l/r)} + s_{H0}^{(l/r)} - 2s_{H1}^{(l/r)} \right) = 0.$$

$$(23)$$

Учтем, что падающая волна имеет правую поляризацию, и представим динамические компоненты спина в каждой среде в виде:

$$s_{Fn}^{(r)} = 1 \cdot e^{ik_F^{(r)}nd_F} + r_r e^{-ik_F^{(r)}nd_F} \quad (n = 0, -1, -2, ...),$$

$$s_{Hn}^{(r)} = t_{r+} e^{ik_{H+}^{(r)}nd_H} + t_{r-} e^{ik_{H-}^{(r)}nd_H} \quad (n = 0, 1, 2, ...). \quad (24)$$

При подстановке (24) в (23) получаем систему для амплитуд для $\sigma=+1$. Левополяризованные волны не возбуждаются правополяризованным полем исходной волны из-за противоположной киральности [9,10]. Зависимости полученных из (23) коэффициентов рассеяния и их фаз от энергии магнона представлены на рис. 2.

5. Генерация ОСВ изолированной границей раздела МСКОВ

Рассмотрим модель, в которой основное состояние однородно ($\Delta>0$) и введем в гамильтониан (21) закрепляющее поле одноосной анизотропии — $\frac{B_H}{2}S_{nx}^2$ и внешнее переменное поле накачки — $\mathbf{h}\cdot\mathbf{S}_n$. Уравнения динамики в неограниченной МСКОВ в этом случае с учетом затухания Гильберта:

$$-i\mathscr{E}\mathbf{s}_n = [\boldsymbol{\sigma}\mathbf{x} \times (\boldsymbol{\chi}_{Hn} - \mathbf{h} - i\mathscr{E}\alpha_H\mathbf{s}_n)] \tag{25}$$

в циклических переменных примут вид

$$\chi_{H_n}^{(l/r)} + (B_H + \mathcal{E}(\pm \sigma - i\alpha_H))s_{H_n}^{(l/r)} = h_{l/r},$$
 (26)

где $\chi_{H_n}^{(l/r)}$ определяются формулой (10).

142 В.Д. Пойманов

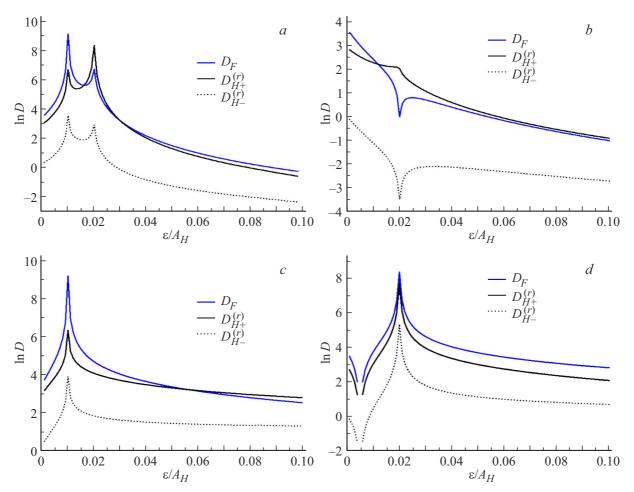


Рис. 3. Логарифмы относительных амплитуд генерации волн для указанных в таблице случаев при единичной амплитуде циркулярного поля накачки. Синяя кривая соответствует волне в Φ M, черные сплошная — объемная, пунктирная — поверхностные волны в МСКОВ. Значения констант $\Delta=2, J=A_F=A_H=1$ (отн. единиц), $S_F=S_H=1$ (отн. единиц), $B_F=0.01, B_H=0.02$. Константы затухания Гильберта $\alpha_F=\alpha_H=0.01$.

Решение (26) содержит общее решение однородного уравнения $s_n^{(U)}$ в виде суперпозиции волн (24) и частное решение неоднородного уравнения в каждой среде, соответствующее однородным колебаниям $s_{(h)Hn}^{(l/r)} = \text{const:}$

$$s_{(h)H}^{(l/r)} = \frac{h_{l/r}}{B_H + \mathscr{E}(\pm \sigma - i\alpha_H)}.$$
 (27)

Волновые числа (13)—(14) с учетом одноосной анизотропии и затухания запишутся в виде:

$$k_{H\pm}^{(r)}d_{H}=2\arcsin\sqrt{\pm\sqrt{\frac{\Delta^{2}}{4}+\frac{(\sigma+i\alpha_{H})\mathscr{E}-B_{H}}{A_{H}}}-\frac{\Delta}{2}},$$

$$k_{H\pm}^{(l)}d_{H} = 2\arcsin\sqrt{\pm\sqrt{\frac{\Delta^{2}}{4} - \frac{(\sigma - i\alpha_{H})\mathscr{E} + B_{H}}{A_{H}}} - \frac{\Delta}{2}}.$$
(28)

Рассмотрим четыре случая, соответствующих различным поляризациям поля накачки и основного состояния

MCKOB, для которых возможные типы волн указаны в таблице.

В силу (27) граничные условия, аналогичные (23), будут иметь вид:

$$-\frac{A_F}{4}(s_{F1}^{(l/r)}-s_{F0}^{(l/r)})-\sigma J(s_{H0}^{(l/r)}-\frac{s_H}{s_F}s_{F0}^{(l/r)})=0,$$

$$\frac{A_H}{16} \Big((s_{H2}^{(l/r)} - s_{H0}^{(l/r)}) - 4(1+\Delta)(s_{H1}^{(l/r)} - s_{H0}^{(l/r)}) \Big)$$

$$-\sigma J(s_{F0}^{(l/r)} - \frac{s_F}{s_H} s_{H0}^{(l/r)}) = 0,$$

$$\frac{A_H}{16} \Big((s_{H3}^{(l/r)} - s_{H1}^{(l/r)}) \Big)$$

$$-4(1+\Delta)(s_{H2}^{(l/r)}+s_{H0}^{(l/r)}-2s_{H1}^{(l/r)}))=0, \qquad (29)$$

куда следует подставить:

$$s_{Fn}^{(r)} = D_F^{(r)} e^{-ik_F^{(r)} n d_F} + \frac{h_r}{B_F - \mathcal{E}(1 + i\alpha_F)},$$

	Поляризация поля накачки	Поляризация ОС МСКОВ, σ	Волны в ФМ	Волны в МСКОВ
a b c d	Правая $(h=1,h_+=0)$ Правая $(h=1,h_+=0)$ Левая $(h_+=1,h=0)$ Левая $(h_+=1,h=0)$	+1 -1 +1 -1	$-k_F^{(r)} \ -k_F^{(r)} \ -k_F^{(l)} \ -k_F^{(l)}$	$\begin{array}{c} k_{H+}^{(r)}, -k_{H-}^{(r)} \\ k_{H+}^{(r)}, -k_{H-}^{(r)} \\ k_{H+}^{(l)}, -k_{H-}^{(l)} \\ k_{H+}^{(l)}, -k_{H-}^{(l)} \end{array}$
2 - 2 - -2 - -4 - -50 -	-40 -30 -20 -10 0 10 20 30 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-20 -10 0 10 n	b 20 30 40 50
20 -		c 1.0		d

Поляризация поля накачки и основного состояния МСКОВ

Рис. 4. Распределение динамического спинового поля в единицах амплитуды поля накачки относительно границы вдоль нормали к ней для случаев равновесной ориентации в ФМ и МСКОВ, представленных в таблице.

$$\begin{split} s_{Fn}^{(l)} &= D_F^{(l)} e^{-ik_F^{(l)} n d_F} \\ &+ \frac{h_l}{B_F + \mathscr{E}(1 - i\alpha_F)}, \ (n = 0, -1, -2, \ldots), \\ s_{Hn}^{(r)} &= D_{H+}^{(r)} e^{ik_{H+}^{(r)} n d_H} + D_{H-}^{(r)} e^{ik_{H-}^{(r)} n d_H} + \frac{h_r}{B_H - \mathscr{E}(\sigma + i\alpha_H)}, \\ s_{Hn}^{(l)} &= D_{H+}^{(l)} e^{ik_{H+}^{(l)} n d_H} + D_{H-}^{(l)} e^{-ik_{H-}^{(l)} n d_H} \\ &+ \frac{h_l}{B_H + \mathscr{E}(\sigma - i\alpha_H)}, \ (n = 0, 1, 2, \ldots). \end{split}$$
(30)

Решение (29) при подстановке в него разложений (30) дает искомые амплитуды генерации, представленные на

рис. 3, которые определяются величиной константы связи J и различием восприимчивостей граничащих сред. Рассчитанное распределение динамического спинового поля для случаев равновесной ориентации в ΦM и MCKOB представлено на рис. 4.

0

10

20

30 40

6. Заключение

-50 -40 -30 -20 -10

В представленной работе получен спектр магнонов для ферромагнетика с учетом дальнего порядка обменного взаимодействия. Установлено, что помимо эванесцентных волн в таких структурах возникают объемноповерхностные волны, отличающиеся направлением пре-

144 В.Д. Пойманов

цессии и имеющие противоположную к объемным и эванесцентным киральность. Рассеяние и генерация ОСВ на границе такой структуры с ферромагнетиком рассмотрены в рамках решеточной модели, так как континуальное приближение для структур с дальним порядком взаимодействия неприменимо.

Благодарности

Автор выражает благодарность В.В. Кругляку (университет г. Эксетер (Великобритания)) за плодотворные обсуждения и рекомендации.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- Spin Wave Confinement: Propagating Waves, 2-nd edition, ed. by S.O. Demokritov. Pan Stanford Publishing, Singapour (2017).
- [2] А.П. Пятаков, А.К. Звездин. УФН 82, 6, 593-620 (2012).
- [3] В.Д. Пойманов, В.В. Кругляк. ЖЭТФ 161, 5, 720 (2022).
- [4] V.D. Poimanov, A.N. Kuchko, V.V. Kruglyak. Phys. Rev. B 102, 104414 (2020).
- [5] Ю.А. Изюмов. Дифракция нейтронов на длиннопериодических структурах. Наука, М. (1984). 245 с.
- [6] В.Д. Пойманов. ФТТ 64, 5, 541 (2022).
- [7] V.D. Poimanov, V.G. Shavrov. J. Phys.: Conf. Ser., **1389**, 012134 (2019)
- [8] V.D. Poimanov, V.V. Kruglyak, V.G. Shavrov. Zhurnal Radioelektroniki J. Radio Electron. 11, 1 (2018). (in Russian). http://jre.cplire.ru/jre/nov18/17/text.pdf
- [9] V.D. Poimanov, V.V. Kruglyak. J. Appl. Phys. 130, 13, 133902 (2021).
- [10] V.D. Poimanov, A.N. Kuchko, V.V. Kruglyak. Phys. Rev. B 98, 104418 (2018).

Редактор А.Н. Смирнов