# 01,07

# Эволюция структуры аморфного сплава Al<sub>87</sub>Ni<sub>8</sub>Y<sub>5</sub> при ультразвуковой обработке

© В.В. Чиркова, Н.А. Волков, Г.Е. Абросимова

Институт физики твердого тела им. Ю.А. Осипьяна РАН, г. Черноголовка, Россия E-mail: valyffkin@issp.ac.ru

Поступила в Редакцию 18 ноября 2024 г. В окончательной редакции 4 декабря 2024 г. Принята к публикации 5 декабря 2024 г.

Методом рентгеноструктурного анализа исследована эволюция структуры аморфного сплава  $Al_{87}Ni_8Y_5$  при ультразвуковой обработке. Установлено, что после ультразвуковой обработки происходит образование небольшого количества нанокристаллов алюминия. Размер нанокристаллов зависит от условий обработки: изменение мощности и продолжительности ультразвукового воздействия приводит к увеличению среднего размера нанокристаллов. Причины появления нанокристаллов в аморфной фазе в процессе ультразвуковой обработки обсуждаются в контексте свободного объема.

Ключевые слова: металлические стекла, кристаллизация, нанокристаллы, свободный объем, рентгеноструктурный анализ.

DOI: 10.61011/FTT.2025.01.59769.310

## 1. Введение

В последние годы развитие науки и техники особенно нуждается в разработке функциональных материалов с уникальным комплексом эксплуатационных характеристик. Очевидно, что в век экономии энергии и природных ресурсов в приоритете является разработка легких и особо прочных материалов. К таким материалам относятся аморфные сплавы на основе алюминия [1-3]. Среди аморфных сплавов на основе алюминия наиболее привлекательны сплавы вида Al-ПМ-РЗМ, где ПМ (ТМ) — переходный металл, РЗМ (RE) — редкоземельный элемент, с содержанием алюминия от 80 до 90 at.%. Эти сплавы в сочетании с низким удельным весом проявляют чрезвычайно высокую прочность [4-6]. Так, например, прочность аморфного сплава Al<sub>87</sub>Ni<sub>5</sub>Y<sub>8</sub> составляет 1 GPa при плотности всего лишь 3.3 g/cm<sup>3</sup>, что примерно в 2-3 раза больше прочности традиционных кристаллических сплавов на основе алюминия [7]. Известно, что образование нанокристаллов в аморфной фазе приводит к заметному улучшению физических свойств [8-10]. Авторы работы [8] впервые показали, что при образовании в аморфной фазе нанокристаллов прочность сплава на основе алюминия может достигать 1.6 GPa. Естественно ожидать, что параметры наноструктуры (фазовый состав, доля кристаллической фазы, размер нанокристаллов и другое) будут играть главную роль в проявлении уникальных свойств нанокристаллических сплавов, формируемых из аморфных сплавов [11-13].

Основным способом получения наноструктуры является термообработка аморфной фазы. Частичная кристаллизация аморфной фазы в сплавах Al-ПМ-РЗМ при их нагреве (или выдержке при постоянной температуре) была подробно исследована во многих работах [10,14–16]. Предметом интенсивных исследований последних лет является кристаллизация аморфной фазы под воздействием пластической деформации [17-20]. Пластическая деформация аморфных сплавов (при комнатной температуре) локализуется в полосах сдвига [21]. Полосы сдвига — области толщиной ~ 20 nm, в которых плотность аморфной фазы существенно отличается от плотности окружающей аморфной фазы. Было показано, что плотность в полосах сдвига может быть на 1-10% ниже плотности аморфной фазы в окружающей матрице [22]. Такое понижение плотности в полосах сдвига означает, что в этих местах повышено содержание свободного объема [23]. Свободный объем является неотъемлемой характеристикой аморфной фазы [24], его содержание в аморфной фазе сильно зависит от условий получения аморфного сплава. При термообработке доля свободного объема в аморфной фазе уменьшается за счет выхода его на поверхность, при деформировании величина свободного объема возрастает. Увеличение содержания свободного объема в аморфной фазе наблюдалось при использовании различных методов пластической деформации [23,25-28]. Увеличение свободного объема означает увеличенное расстояние между атомами, поэтому величина (доля) свободного объема в образце играет решающую роль в фазовых превращениях при термообработке и/или деформации и, в частности, в образовании наноструктуры. Так, например, процессы кристаллизации аморфной фазы при деформировании начинаются в полосах сдвига и их окрестностях.

В последнее время большой интерес вызывает другой способ воздействия на аморфную фазу — ультразвуко-

вая обработка. Метод ультразвуковой обработки также приводит к увеличению содержания свободного объема в аморфной фазе [29-31]. В некоторых работах было показано, что содержание свободного объема зависит от условий ультразвукового воздействия [30,31]. Также было обнаружено, что при ультразвуковом воздействии пластичность сплавов заметно увеличивается, что авторы [29] связывают с ростом (или перераспределением) свободного объема. Имеющиеся на данный момент работы посвящены в основном исследованию влияния ультразвука на физические свойства аморфных сплавов; очень мало внимания уделено исследованиям изменений структуры аморфной фазы при такой обработке. Известно много работ, посвященных влиянию ультразвуковой обработки на образование кристаллов в жидкости. Так, например, в работах [32-34] показано, что ультразвуковая обработка способствует кристаллизации жидкой фазы; существенную роль при этом играют процессы кавитации. В случае кристаллизации аморфной фазы ситуация не столь однозначна, литературные данные достаточно противоречивы. С одной стороны, известно, что ультразвуковая обработка может способствовать восстановлению аморфной структуры, так называемому "омоложению" (rejuvenation) [35]. Согласно другим исследованиям, ультразвуковая обработка может приводить к кристаллизации аморфной фазы [36]. Столь разные результаты, очевидно, связаны с особенностями процессов кристаллизации аморфных сплавов. Можно отметить хотя бы два фактора. При образовании кристалла в жидкой фазе (расплаве) процесс кристаллизации может прекратиться из-за выделения теплоты превращения; в случае кристаллизации металлического аморфного сплава выделяющаяся теплота превращения разогревает окрестности растущего кристалла, процесс кристаллизации ускоряется, и при определенных условиях может носить взрывной характер. Другим важным фактором является возникновение механических напряжений вокруг растущего кристалла. Поскольку плотность кристаллической фазы больше, чем жидкой, образование и рост кристаллов сопровождается ростом напряжений вокруг растущего кристалла. В отличие от кристаллизации из жидкости, процесс кристаллизации аморфных сплавов происходит при относительно низких температурах (много ниже температуры плавления), в условиях существенно более медленной диффузии. Поскольку образование кристаллов в аморфной фазе в большинстве случаев следует первичной реакции кристаллизации по диффузионному механизму, перераспределение элементов происходит много медленнее, чем при температурах, близких к образованию расплава (жидкой фазы). Настоящая работа посвящена исследованию влияния ультразвуковой обработки на структуру одного из представителей легких высокопрочных сплавов вида Al-ПМ-РЗМ, а именно, аморфного сплава Al<sub>87</sub>Ni<sub>8</sub>Y<sub>5</sub>.

# 2. Материалы и методы

Слиток сплава Al-Ni-Y (8 at.% Ni и 5 at.% Y) был получен методом дуговой плавки в очищенном аргоне из чистых Al (> 99.99%) и Ni (> 99.9%) и соединения Al<sub>3</sub>Y (99.7%). Перед закалкой расплава слиток переплавлялся несколько раз для повышения степени однородности. Аморфный сплав Al<sub>87</sub>Ni<sub>8</sub>Y<sub>5</sub> был получен в виде ленты скоростной закалкой расплава на быстровращающийся медный диск (скорость охлаждения  $10^6$  K/s). Толщина ленты составляла  $40 \, \mu$ m.

Образцы аморфной ленты подвергались ультразвуковой обработке в ультразвуковой ванне (мощность 100 W) и в ультразвуковом диспергаторе (мощность 1600 W). Продолжительность ультразвукового воздействия на образцы составляла 120 и 270 min. Структура исходных образцов и образцов после ультразвуковой обработки исследовалась на рентгеновском дифрактометре Rigaku SE SmartLab (излучение Cu K $_{\alpha}$ , длина волны  $\lambda = 1.541$  Å). При обработке и анализе рентгенограмм использовались специальные программы, позволяющие проводить коррекцию, сглаживание и вычитание фона, а также разделение перекрывающихся максимумов. Анализ структуры аморфной фазы проводился с использованием уравнения Эренфеста, которое позволяет по экспериментальной кривой рассеяния оценить радиус первой координационной сферы R<sub>1</sub> (кратчайшего расстояния между атомами) [37]

$$2R_1\sin\theta=1.23\,\lambda,$$

где  $\lambda$  — длина волны используемого рентгеновского излучения,  $\theta$  — угол рассеяния.

Размер кристаллов определялся по данным рентгеноструктурного анализа с помощью формулы Селякова-Шеррера [38]

$$L = \frac{\lambda}{\Delta(2\theta) \cdot \cos\theta}$$

где L — размер кристалла,  $\Delta(2\theta)$  — полуширина соответствующего отражения.

# 3. Результаты

#### 3.1. Обработка в ультразвуковой ванне

Анализ рентгенограмм образцов (исходных, после ультразвуковой обработки) проводился в области первого диффузного максимума. Это связано с тем, что наиболее точные значения параметров структуры (размера и доли кристаллов) могут быть получены в интервале с минимальным вкладом фона [39]. На рис. 1 представлены рентгенограммы образцов (область первого диффузного гало): *1* — исходный образец, не подвергавшийся ультразвуковой обработке, *2* — образец, подвергавшийся обработке в ультразвуковой ванне в течение 120 min. На рентгенограмме образца после ультразвуковой обработки наблюдается небольшое увеличение интенсивности диффузного максимума. Рост интенсивности при

**Рис. 1.** Рентгенограммы образцов: кривая *1* — исходный, *2* — после обработки в ультразвуковой ванне в течение 120 min.

совпадении фона рентгенограмм указывает на уменьшение полуширины диффузного максимума. Это означает, что максимум становится суперпозицией кривых, соответствующих диффузному рассеянию от аморфной фазы и дифракционному отражению от кристаллической фазы. Таким образом, увеличение интенсивности диффузного максимума является свидетельством начала процесса кристаллизации в результате ультразвуковой обработки. Наблюдаемое различие в интенсивностях невелико, однако неоднократно повторенные измерения позволяют заключить, что полученные данные воспроизводимы. Следует также отметить, что обе рентгенограммы несимметричны: со стороны больших углов 20 наблюдается дополнительное плечо. Наличие дополнительного плеча на рентгенограммах является признаком расслоения первоначально однородной аморфной фазы.

Поскольку на начальной стадии кристаллизации структура сплавов состоит из кристаллов и аморфной матрицы, проводилось разделение перекрывающихся максимумов на составляющие, соответствующие диффузному рассеянию от аморфной фазы и дифракционному отражению от кристаллов. На рис. 2 представлены рентгенограммы исходного образца (рис. 2, a) и образца после ультразвуковой обработки в течение 120 min (рис. 2, b) с разложением экспериментальной кривой на диффузную и дифракционную составляющие. На рис. 2 цифрами обозначены: 1 — полученная экспериментальная кривая, 2 — сумма диффузных и дифракционной кривых после разложения (сумма кривых 3,4 и 5), 3 и 4 — диффузное рассеяние от двух аморфных фаз, 5 — отражение (111) от кристаллов алюминия. Образование двух аморфных фаз часто наблюдается в аморфных сплавах вида Al-ПМ-РЗМ при

внешнем воздействии (например, при термической или деформационной обработке) или в результате получения аморфного сплава [40,41]. Разное угловое положение диффузных максимумов (кривые 3 и 4 на рис. 2) указывает на наличие областей с разным расстоянием между атомами, т.е. на образование областей с разным типом ближнего порядка. Согласно уравнению Эренфеста, аморфная фаза, описываемая диффузным максимумом на меньших углах  $2\theta$  (кривая 3), характеризуется большим радиусом первой координационной сферы. Аморфная фаза, описываемая максимумом на больших углах  $2\theta$  (кривая 4), отличается меньшим радиусом первой координационной сферы (или меньшей величиной кратчайшего расстояния между атомами). Различие угловых положений может быть обусловлено как присутствием областей с разной плотностью, так и неоднородными распределением компонентов. В состав исследуемого аморфного сплава входят алюминий, никель и иттрий. Атомные радиусы этих элементов составляют 1.43, 1.24 и 1.81 Å для алюминия, никеля и иттрия, соответственно. Аморфная фаза с большим радиусом первой координационной сферы обогащена элементом с большим атомным радиусом — иттрием. Аморфная фаза с меньшим радиусом первой координационной сферы, соответственно, обеднена иттрием. В исходном образце, не подвергавшемся ультразвуковой обработке, радиусы первой координационной сферы двух аморфных фаз составляют 2.87 Å (кривая 3) и 2.54 Å (кривая 4). Изменение радиуса первой координационной сферы обеих аморфных фаз (кривые 3 и 4) в образцах после ультразвуковой обработки по сравнению с исходным образцом находится в пределах точности эксперимента.

Расчет интегральной интенсивности отражения от кристаллов алюминия показал, что количество нанокристаллов, которые образуются в аморфной фазе в результате ультразвукового воздействия в течение 120 min, невелико. Средний размер нанокристаллов составляет не более 8 nm. При увеличении продолжительности ультразвукового воздействия до 270 min средний размер нанокристаллов практически не изменился (изменение находится в пределах ошибки) и составил около 9 nm.

## 3.2. Обработка в ультразвуковом диспергаторе

Аналогичная обработка исходных образцов проводилась в ультразвуковом диспергаторе. Образцы подвергались обработке в диспергаторе в течение такого же промежутка времени, что и в ультразвуковой ванне (120 и 270 min). На рис. З представлены рентгенограммы образцов, подвергавшихся обработке в ультразвуковом диспергаторе: a) в течение 120 min и b) в течение 270 min. После обработки в ультразвуковом диспергаторе также происходит образование кристаллической фазы: на вершине диффузного максимума (рис. 3, a) появляется небольшой острый пик (на рисунке он обозначен стрелкой), который соответствует дифракционному





**Рис. 2.** Рентгенограммы образцов с разделенными максимумами: *a*) исходный, *b*) после обработки в ультразвуковой ванне в течение 120 min (*1* — экспериментальная кривая, *2* — суммарная кривая, *3* и *4* — диффузное рассеяние от аморфных фаз, *5* — дифракционное отражение (111) от кристаллов алюминия).



Рис. 3. Рентгенограммы образцов после обработки в ультразвуковом диспергаторе в течение a) 120 min, b) 270 min.

Рис. 4. Рентгенограммы образцов после обработки в ультразвуковом диспергаторе: кривая  $1 - 120 \min, 2 - 270 \min$ .

отражению от кристаллов алюминия. С увеличением продолжительности ультразвукового воздействия наблюдается увеличение интенсивности этого пика.

При увеличении времени ультразвуковой обработки (кривая 2 на рис. 4) дополнительное плечо на рентгенограмме со стороны больших углов 20 становится более

выраженным (показано стрелкой), что свидетельствует об изменении структуры аморфной фазы в процессе ультразвукового воздействия.

На рис. 5 представлены рентгенограммы образцов с разложением экспериментальной кривой на составляющие. Анализ показал, что изменение радиусов первой координационной сферы аморфных фаз в образцах, подвергавшихся обработке в ультразвуковом диспергаторе, находится в пределах точности эксперимента. Явно выраженное плечо со стороны больших углов на рентгенограмме образца, подвергавшегося более длительной обработке в ультразвуковом диспергаторе, является признаком появления неоднородностей в аморфной фазе.

Из расчета интегральной интенсивности отражения было установлено, что после ультразвуковой обработки в диспергаторе в течение 120 min доля образующихся нанокристаллов также невелика. Средний размер нанокристаллов составляет около 35 nm. С увеличением продолжительности обработки до 270 min размер нанокристаллов заметно растет (средний размер кристаллов составляет около 100 nm).

Полученные результаты свидетельствуют, что при ультразвуковой обработке в аморфной фазе начинаются процессы кристаллизации. Количество нанокристаллов невелико и с изменением условий ультразвуковой обработки практически не меняется. Средний размер нанокристаллов, напротив, существенно зависит от условий ультразвукового воздействия.







В ходе исследования были получены следующие результаты:

 обработка в ультразвуковой ванне способствует образованию нанокристаллов; при обработке в течение 120 min размер нанокристаллов составляет 8 nm; при увеличении времени обработки размер нанокристаллов практически не меняется;

• увеличение мощности ультразвукового воздействия (обработка в ультразвуковом диспергаторе) приводит к образованию нанокристаллов большего размера, который составляет 35 nm при обработке в течение 120 min; с увеличением времени обработки размер нанокристаллов заметно растет.

Таким образом, и ультразвуковая обработка (с использованными параметрами), и пластическая деформация приводят к образованию кристаллов в аморфных сплавах. Как отмечалось ранее, при пластической деформации образование кристаллов происходит преимущественно в областях с повышенным содержанием свободного объема (полосах сдвига). Полосы сдвига, характеризующиеся повышенным содержанием свободного объема, характеризуются также и более высоким значением коэффициента диффузии. В полосах сдвига коэффициент диффузии может быть на 5-6 порядков выше, по сравнению с недеформированной частью аморфной фазы [42]. Поэтому возможной причиной появления кристаллов в аморфной фазе при ультразвуковой обработке может быть именно увеличение содержания свободного объема. Наличие свободного объема способствует ускорению процесса кристаллизации; в образцах с большим содержанием свободного объема могут существенно изменяться условия зарождения и роста кристаллов. Поскольку доля образующихся кристаллов невелика, а влияние ультразвукового воздействия в большей степени проявлялось в размере образующихся кристаллов, можно предположить, что при ультразвуковом воздействии существенно изменились условия роста кристаллов.

## 4. Заключение

Исследование влияния ультразвуковой обработки на эволюцию структуры аморфного сплава  $Al_{87}Ni_8Y_5$  показало, что ультразвуковая обработка способствует образованию в аморфной фазе небольшого количества нанокристаллов алюминия. Причины появления нанокристаллов обсуждаются в контексте свободного объема. Изменение условий ультразвукового воздействия (продолжительности и мощности) приводит к изменению параметров образующейся структуры; варьируя содержание свободного объема в аморфной фазе, можно в результате определять физические свойства сплавов. Полученные результаты хорошо согласуются с литературными данными [36].

## Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- A. Inoue. Prog. Mater. Sci. 43, 5, 365 (1998). https://doi.org/10.1016/S0079-6425(98)00005-X
- [2] B. Rusanov, V. Sidorov, P. Svec, P. Svec Sr, D. Janickovic, A. Moroz, L. Son, O. Ushakova. J. Alloys Compd. 787, 448 (2019). https://doi.org/10.1016/j.jallcom.2019.02.058
- [3] A. Sahu, R. Maurya, T. Laha. Adv. Eng. Mater. 26, 1, 2301150 (2024). https://doi.org/10.1002/adem.202301150
- [4] A. Inoue, K. Ohtera, A.-P. Tsai, T. Masumoto. Jpn. J. Appl. Phys. 27, 4A, L479 (1988). https://doi.org/10.1143/JJAP.27.L479
- [5] A. Inoue, T. Ochiai, Y. Horio, T. Masumoto. Mater. Sci. Eng. A 179–180, Part 1, 649 (1994). https://doi.org/10.1016/0921-5093(94)90286-0
- [6] A.L. Greer. Mater. Sci. Eng. A 304–306, 68 (2001). https://doi.org/10.1016/S0921-5093(00)01449-0
- [7] A.-P. Tsai, T. Kamiyama, Y. Kawamura, A. Inoue, T. Masumoto. Acta Mater. 45, 4, 1477 (1997). https://doi.org/10.1016/S1359-6454(96)00268-6
- [8] Y.H. Kim, A. Inoue, T. Masumoto. Mater. Trans. JIM 32, 4, 331 (1991). https://doi.org/10.2320/matertrans1989.32.331
- M.C. Gao, F. Guo, S.J. Poon, G.J. Shiflet. Mater. Sci. Eng. A 485, 1-2, 532 (2008). https://doi.org/10.1016/j.msea.2007.08.009
- [10] A. Anghelus, M.-N. Avettand-Fénoël, C. Cordier, R. Taillard. J. Alloys Compd. 651, 454 (2015).

https://doi.org/10.1016/j.jallcom.2015.08.102

- [11] P. Rizzi, A. Habib, A. Castellero, L. Battezzati. Intermetallics 33, 38 (2013). https://doi.org/10.1016/j.intermet.2012.09.026
- [12] R.J. Hebert, J.H. Perepezko, H. Rösner, G. Wilde. Beilstein J. Nanotechnol. 7, 1428 (2016). https://doi.org/10.3762/bjnano.7.134
- [13] F.G. Cuevas, S. Lozano-Perez, R.M. Aranda, R. Astacio. Metals 10, 4, 443 (2020). https://doi.org/10.3390/met10040443
- [14] L. Battezzati, P. Rizzi, V. Rontó. Mater. Sci. Eng. A 375–377, 927 (2004). https://doi.org/10.1016/j.msea.2003.10.042
- [15] Z.H. Huang, J.F. Li, Q.L. Rao, Y.H. Zhou. Mat. Sci. Eng. A 489, 1-2, 380 (2008).
- https://doi.org/10.1016/j.msea.2007.12.027
  [16] J. Bokeloh, N. Boucharat, H. Rösner, G. Wilde. Acta Mater. 58, 11, 3919 (2010).
- https://doi.org/10.1016/j.actamat.2010.03.035 [17] N. Boucharat, R. Hebert, H. Rösner, R. Valiev, G. Wilde.
- Scripta Materialia 53, 7, 823 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.004
- [18] N. Boucharat, R. Hebert, H. Rósner, R.Z. Valiev, G. Wilde. J. Alloys Compd. 434–435, 252 (2007). https://doi.org/10.1016/j.jallcom.2006.08.128
- [19] H. Rösner, C. Kübel, S. Ostendorp, G. Wilde. Metals 12, *I*, 111 (2022). https://doi.org/10.3390/met12010111
- [20] S.V. Vasiliev, A.I. Limanovskii, V.M. Tkachenko, T.V. Tsvetkov, K.A. Svyrydova, V.V. Burkhovetskii, V.N. Sayapin, O.A. Naumchuk, A.S. Aronin, V.I. Tkatch. Mater. Sci. Eng. A 850, 143420 (2022). https://doi.org/10.1016/j.msea.2022.143420
- [21] A.L. Greer, Y.Q. Cheng, E. Ma. Mater. Sci. Eng. R Rep. 74, 4, 71 (2013). https://doi.org/10.1016/j.mser.2013.04.001
- [22] C. Liu, V. Roddatis, P. Kenesei, R. Maaß. Acta Materialia 140, 206 (2017). https://doi.org/10.1016/j.actamat.2017.08.032
- [23] V. Astanin, D. Gunderov, V. Titov, R. Asfandiyarov. Metals
   12, 8, 1278 (2022). https://doi.org/10.3390/met12081278

- [24] P. Ramachandrarao, B. Cantor, R.W. Cahn. J. Mater. Sci. 12, 12, 2488 (1977). https://doi.org/10.1007/BF00553936
- [25] A.R. Yavari, K. Georgarakis, J. Antonowicz, M. Stoica, N. Nishiyama, G. Vaughan, M. Chen, M. Pons. Phys. Rev. Lett. **109**, 085501 (2012). https://doi.org/10.1103/PhysRevLett.109.085501
- [26] R.J. Hebert, J.H. Perepezko. Metall. Mater. Trans. A 39A, 8, 1804 (2008). https://doi.org/10.1007/s11661-007-9347-7
- [27] G. Wilde, H. Rösner. Appl. Phys. Lett. 98, 25, 251904 (2011). https://doi.org/10.1063/1.3602315
- [28] S. Scudino, K.B. Surreddi. J. Alloys Compd. 708, 722 (2017). https://doi.org/10.1016/j.jallcom.2017.03.015
- [29] Y. Lou, X. Liu, X. Yang, Y. Ge, D. Zhao, H. Wang, L.-C. Zhang, Z. Liu. Intermetallics 118, 106687 (2020). https://doi.org/10.1016/j.intermet.2019.106687
- [30] L. Yang, S. Xu, Y. Lou. Front. Mater. 8, 801991 (2021). https://doi.org/10.3389/fmats.2021.801991
- [31] Y. Lou, L. Yang, S. Xv, J. Ma. Intermetallics 142, 107467 (2022). https://doi.org/10.1016/j.intermet.2022.107467
- [32] М.А. Маргулис. Основы звукохимии. Высшая школа, М. (1984). 272 с.
- [33] В.А. Акуличев, В.Н. Алексеев, В.А. Буланов. Периодические фазовые превращения в жидкостях. Наука, М. (1980). 280 с.
- [34] H.N. Kim, K.S. Suslick. Crystals 8, 7, 280 (2018). https://doi.org/10.3390/cryst8070280
- [35] W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang,
   Z. Lu. Sci. Bull. 63, 13, 840 (2018). https://doi.org/10.1016/j.scib.2018.04.021
- [36] G. Abrosimova, V. Chirkova, D. Matveev, E. Pershina, N. Volkov, A. Aronin. Metals 13, 6, 1090 (2023). https://doi.org/10.3390/met13061090
- [37] А.Ф. Скрышевский. Структурный анализ жидкостей и аморфных тел. Высшая школа, М. (1980). 328 с.
- [38] А.А. Русаков. Рентгенография металлов. Атомиздат, М. (1977). 480 с.
- [39] Г.Е. Абросимова, А.С. Аронин, Н.Н. Холстинина. ФТТ 52, 3, 417 (2010). https://journals.ioffe.ru/articles/viewPDF/1744
   [G.E. Abrosimova, A.S. Aronin, N.N. Kholstinina. Phys. Solid State 52, 3, 445 (2010).]
- [40] G. Abrosimova, A. Aronin, A. Budchenko. Mater. Lett. 139, 194 (2015). https://doi.org/10.1016/j.matlet.2014.10.076
- [41] Г.Е. Абросимова, А.С. Аронин. Поверхность. Рентген. синхротр. и нейтрон. исслед. 2, 28 (2015). https://doi.org/10.7868/S0207352815020031 [G.E. Abrosimova, A.S. Aronin. J. Surface Investigation: X-Ray, Synchrotron. Neutron Techniques 9, 1, 134 (2015).]
- [42] A.S. Aronin, D.V. Louzguine-Luzgin. Mech. Mater. 113, 19 (2017). https://doi.org/10.1016/j.mechmat.2017.07.007

Редактор Е.В. Толстякова