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Steady states of relativistic electron-positron plasma diode
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Steady states of a diode with relativistic electron and positron flows being supplied by opposite electrodes are

considered. The particles move in the plasma without collisions. For a fixed potential difference between the

electrodes, the solutions are characterized by three dimensionless parameters: the electric field strength at the left

electrode ε0, the interelectrode distance δ, and the relativistic factor of emitted electrons γ0 . Branches of solutions

are plotted in the {ε0, δ}-plane. They qualitatively coincide with those in the nonrelativistic case. As the relativistic

factor increases, the branches shrink along the ε0 axis and stretch along the δ axis.
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Electron-positron plasma with relativistic electron and

positron flows is found in various high-energy astrophysical

objects [1] (specifically, pulsars) emitting radio-frequency

radiation the nature of which has not been clarified yet [2].
In addition, electron-positron plasma is being studied

extensively in laboratory conditions [3].
It was hypothesized in [4] that radio-frequency pulsar

emission is caused by fluctuations of the electric field in

plasma induced by the instability of steady states. A model

of a pulsar diode with electrons and positrons supplied from

opposite boundaries is proposed as a means to probe these

processes. Steady states of a nonrelativistic diode were

investigated in [5]. In the present study, the steady states

of a relativistic diode are examined. All solutions are found,

and their dependence on the relativistic factor is studied. It

is demonstrated that the solutions agree qualitatively with

similar solutions for a nonrelativistic diode.

A planar diode with distance d and potential difference U
between the electrodes is considered. it is assumed that rel-

ativistic monoenergetic electron and positron flows with ve-

locities ve,0 and v p,0 = −ve,0 and densities ne,0 = np,0 = n0

are supplied by opposite electrodes. Owing to the equality

of electron and positron rest masses (me = mp = m0), the
energies of incoming particles are equal. Particles move in

the interelectrode gap without collisions. A particle reaching

any electrode is absorbed at it.

Let us introduce electron Pe and positron P p momenta

Pe =γemeve, P p = γpmpv p, γe,p =
[

1− v2
e,p/c2

]−1/2
.

(1)
Here, c is the speed of light in vacuum and γe,p are

the relativistic factors of electrons and positrons. Just

as in a nonrelativistic diode [5], the steady-state potential

distributions (PDs) have a wave-like shape. If potential

barrier height e|ϕm| is equal to W0 = (γe,0 − 1)mec2, a

certain fraction of electrons is reflected from the potential

barrier (electron virtual emitter, e-VE), while other electrons

pass through it. This electron beam
”
splitting“ is attributable

to the fact that actual electrons have a certain momentum

spread. Following the work of Bursian [6], we may

introduce reflection coefficient re equal to the ratio of the

density of reflected electrons to the density of emitted

electrons. The current density of electrons overcoming

the barrier is je = (1− re) je,0, where je,0 = ene,0ve,0 is

the electron current density at the left boundary (e is the

electron charge). Coefficient of reflection r p of positrons

from a positron virtual emitter (p-VE) is introduced in a

similar fashion.

The electron concentration in the steady case is deter-

mined using the law of conservation of energy and the

continuity equation. The law of conservation of energy

(γe(z ) − 1)mec2 − eϕ(z ) = (γe,0 − 1)mec2 (2)

allows one to express velocity ve(z ) in terms of potential

ϕ(z ). If electron reflection is neglected, we obtain the

following from the continuity equation:

je = ene(z )ve(z ) = ene,0ve,0 = je,0. (3)

Concentrations of electrons and positrons ne and np in the

gap with reflection taken into account are

ne,p(z ; re,p) =
je,p,0

eve,p(z )
αe,p(z ; re,p),

αe(z ; re) = (1 + re)2(z m − z ) + (1− re)2(z − z m),

αp(z ; r p)=(1+r p)2(z − z M) + (1− r p)2(z M − z ). (4)

Here, 2(x) is the Heaviside step function and z m (z M) is the
e-VE (p-VE) position, where the potential is ϕm (ϕM). In

order to determine the PD, we insert electron and positron

concentrations (4) into the Poisson equation. It is convenient

to write this equation in dimensionless form. To do this, we

use the initial energy of electrons and the Debye length at

the left boundary as the units of energy and length [7]:

W0 = (γ0 − 1)m0c2,

λD =
[

(2ε̃0W0)/(e
2n0)

]1/2
=

[

(2ε̃0m0c3)/(e j0)
]1/2

F(V0),
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F(V0) =

(

eV0

m0c2

)3/4 (

eV0

m0c2
+ 2

)1/4 (

eV0

m0c2
+ 1

)

−1/2

.

(5)
Here, ε̃0 ≈ 8.854 · 10−12 C2/(N·m2) is the permittivity of

vacuum, j0 = je,0 = j p,0 is the current density of particle

beams, γ0 = γe,0 = γp,0 is the relativistic factor of particles

at the boundaries, and V0 = W0/e is the accelerating

voltage. The dimensionless coordinate, potential, and

electric field strength are ζ = z/λD , η = eϕ/(2W0), and

ε = eEλD/(2W0). The Poisson equation in dimensionless

variables is written as

η′′ =
(γ2

0 − 1)1/2

γ0

(

αe(ζ ; re)[γ0 + 2(γ0 − 1)η]

{[γ0 + 2(γ0 − 1)η]2 − 1}1/2

− αp(ζ ; r p)[γ0 + 2(γ0 − 1)(V − η)]

{[γ0 + 2(γ0 − 1)(V − η)]2 − 1}1/2
)

. (6)

In the γ0 → 1 limit, this equation transforms into the

corresponding equation for a nonrelativistic diode. The

potential at the boundaries satisfies conditions η(0) = 0,

η(δ) = V , where δ = d/λD, V = eU/2W0 . Thus, the steady-

state solutions in a relativistic diode are specified by

parameters δ, V , and γ0 (in a nonrelativistic diode, only

δ and V remain).
The potential distributions are wave-like functions. Let

us denote the minimum and maximum PD values

as ηm and ηM . Inequalities −1/2 < ηm < min{0,V},
max{0,V} < ηM < V + 1/2 hold true for these values. Just

as in the nonrelativistic case [5], there are four types of

solutions (see the table).
In the present study, only the solutions with V = 0 are

examined. Owing to the symmetry of the problem, the PDs

must be odd-symmetric about the center of the gap, and

only two of the four types of solutions listed in the table are

feasible: solutions 1 and 4.

The solutions for a nonrelativistic diode were obtained

in [5] and are shown in the upper panel of the figure.

Branch n2s corresponds to homogeneous (s = 0) and

inhomogeneous (s > 0) solutions type 1, while branches

d0, d00, and d11 correspond to solutions type 4. All these

solutions are also relevant to a relativistic diode.

To examine the steady-state potential distributions, we

multiply Eq. (6) by 2dη/dζ and integrate once in ζ from ζ1
to ζ :

[η′(ζ )]
2 − [η′(ζ1)]

2
= G(η(ζ )) − G(η(ζ1)), (7)

where

G(x) =
√

γ0 + 1

[

αe(ζ ; re)
√

[γ0 + 2(γ0 − 1)x ]2 − 1

+ αp(ζ ; r p)
√

[γ0 + 2(γ0 − 1)(V − x)]2 − 1

]

×
(

γ0
√

γ0 − 1
)

−1
.

Equation (7) is the basic relation that allows one to find and

investigate the PDs for all branches.
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Steady-state solution branches for γ0 = 1 (a), 3 (b), and 10 (c).
V = 0.

Let us first consider the mode without particle reflection.

Here, αe = αp = 1, and all PD minima (maxima) are equal

to each other. These solutions lie on branches n2s . The

ηm minimum value is bound to field strength ε0 at the

left boundary by relation (7) at η(ζ ) = 0, η(ζ1) = ηm.

At ε0 > 0 (ε0 < 0), the minimum (maximum) is located

at the left electrode. The maximum |ε0| value is attained at

ηm = −1/2:

|ε0,max| =
(γ0 + 1)1/4

γ
1/2
0

×
(

√

γ0 + 1 +
√

γ0 + 1 + 4γ0V + 4(γ0 − 1)V 2

−
√

γ0 + 1 + 4γ0(V + 1/2) + 4(γ0 − 1)(V + 1/2)2
)1/2

.

(8)
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Types of steady-state solutions

Solution type Reflection r e r p ηm ηM

1 No r e = 0 r p = 0 ηm > −1/2 ηM < V + 1/2

2 e 0 < r e < 1 r p = 0 ηm = −1/2 ηM < V + 1/2

3 p r e = 0 0 < r p < 1 ηm > −1/2 ηM = V + 1/2

4 e, p 0 < r e < 1 0 < r p < 1 ηm = −1/2 ηM = V + 1/2

Using (7) with η(ζ ) = ηM , η(ζ1) = ηm and taking into

account that η′(ζ ) vanishes at these points, we obtain

the following relation: ηM = V − ηm. In the case of

γ0 ≫ 1 and V = 0, the domain of existence of solutions

without particle reflection shrinks significantly along ε0,

since |ε0,max| ∼ γ
−3/4
0 , and the PDs take the form of

functions of an oscillatory nature with a small amplitude.

To construct the PDs, one needs to solve Eq. (7) for

the potential derivative and integrate in η. This yields an

implicit η(ζ ) dependence. At |ηm| ≪ 1, the solution may

be obtained analytically. The relation between ε0 and ηm is

written as ε20 = 4/[γ0(γ0 + 1)] η2m in this case. The solution

then takes the following form within the (ζ ≤ ζm) interval:

ζ =

∫ 0

η

dx
√

ε20 + [G(x) − G(0)]

=
[γ0(γ0 + 1)]1/2

2
arcsin

(

η

ηm

)

. (9)

It follows that δ(γ0) = 4 ζm = [γ0(γ0 + 1)]1/2 π at the right

boundary of branch n2. This formula reveals that interelec-

trode distance δ(γ0) is equal to
√
2π in the nonrelativistic

limit (γ0 → 1) and tends to infinity in approximate propor-

tion to γ0 at γ0 ≫ 1. Thus, the solution branches on plane

{ε0, δ} stretch along δ as γ0 increases. The lower two panels

of the figure, where this plane is shown for γ0 = 3 and 10,

illustrate this.

Let us now consider the mode with reflection of

particles of both types. Both electrons and positrons are

reflected at the corresponding virtual emitters. Minimum

ηm and maximum ηM PD values are −1/2 and V + 1/2,

respectively. Two types of solutions are feasible. The

first one (d2s branches) has virtual emitters located near

the corresponding emitters; the solutions of the second

type (di,i branches) have the e-VE located to the right of

the p-VE. In both cases, re = r p .

In the case of PDs belonging to branch d2s , a wave with

maximum ηmax < V + 1/2 cannot exist in the region to the

left of the e-VE. A wave with minimum ηmin > −1/2 also

cannot exist in the region to the right of the p-VE. The
simplest solution type is a wave with a minimum located

near the left electrode and a maximum located near the

right electrode. Solutions with a higher number of waves

are constructed by adding an integer number of half-waves

between the e-VE and the p-VE. These solutions have all

ηmin = ηm = −1/2 and all ηmax = ηM = V + 1/2.

Branches d2s lie in the upper part of the (ε0, δ) plane.

The relation between ε0 and reflection coefficient r for

them is determined using Eq. (7) applied within the [0, ζm]
interval. It can be shown that the minimum of ε0 at γ0 ≫ 1

is attained at r = 0 and decreases with increasing γ0 as

γ
−3/4
0 ; the maximum, in turn, is achieved at r = 1 and

tends to
√
2 irrespective of V (this is

√
2 times lower than

at γ0 = 1). Adding an integer number of wavelengths to the

PDs, we obtain new branches of solutions d2s .

At the same time, solutions type 2 (branches di,i) allow

for the existence of a wave with ηmax = V + 1/2 and

minimum potentials ηmin > −1/2 within the ζ < ζM region.

Equation (7) applied within the [ζm, ζM ] interval provides

an opportunity to establish the relation between ηm and

reflection coefficient r . Condition ηm ≤ 0 yields a constraint

on r :

r lim =
[

√

γ0 + 1 +
√

γ0 + 1 + 4γ0V + 4(γ0 − 1)V 2

−
√

γ0 + 1 + 2γ0(2V + 1) + (γ0 − 1)(2V + 1)2
]

×
[

√

γ0 + 1 + 2γ0(2V + 1) + (γ0 − 1)(2V + 1)2

+
√

γ0 + 1 + 4γ0V + 4(γ0 − 1)V 2 −
√

γ0 + 1
]

−1

.

(10)
At γ0 ≫ 1 and V = 0, we find r lim → 1/(2γ0). This implies

that ηmin → −1/2, and the solutions from branches di,i

transform into the solutions from branch d2s ; i.e., branches

di,i vanish.

Limit r value (10) corresponds to ε0 = 0. The minimum

potential is as the left electrode in this case. At 0 < r < r lim,
the expression for ε0 is derived from relation (7) applied

within the [0, ζM ] interval.
The possibility of existence of a wave with

ηmin = ηm = −1/2 and ηmax < ηM = V + 1/2 in the region

to the right of point ζm is proven in a similar fashion. To

determine the relation between ηmax and r , one needs to

analyze (7) within the [ζm, ζmax] interval. The value of r is

also bounded from above here, and this value corresponds

to zero field strength at the right electrode. The limit r value

is r lim (10). Thus, boundary value r = r lim corresponds to

zero electric field strengths at both electrodes.

Solution branches di,i are constructed as follows. A total

of i minima located to the left of the p-VE and i maxima

located to the right of the e-VE are fixed, and parameter r
is varied from r lim (10) to zero. In this case, |ε0| varies
from zero at r = r lim to the maximum value corresponding

to the boundary of the mode without particle reflection
(

formula (8) with r = 0
)

. Thus, solution branches di,i lie
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either in the (0, ε0,max) band or in the (−|ε0,max|,0) band

and originate at the points where branches ns end.

It is evident from the figure that several solutions emerge

when δ exceeds a certain value, and their number increases

with δ . This is observed at all γ0 values.

Thus, steady states of a diode with counter-propagating

flows of relativistic electrons and positrons and zero poten-

tial difference between the electrodes were examined. It

was demonstrated that, just as in the nonrelativistic case [5],
the PDs are wave-like functions. A complete classification

of all solutions in the modes both with and without particle

reflection was presented.
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