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Quasilinear modification of the ion distribution function in the presence

of ion Bernstein waves in tokamak plasma
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In this paper, a quasilinear equation is derived that describes the evolution of the ion distribution function due to

the ion Bernstein waves of intermediate frequency range. It is shown that the quasilinear equation can be reduced

approximately to a one-dimensional equation in the space of transverse ion velocities, and the diffusion coefficient

is proportional to the wave’s power absorbed.
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A number of anomalous phenomena accompanying the

propagation of high-power microwave beams were discov-

ered in experiments on electron cyclotron resonance heating

in toroidal magnetic plasma confinement setups. Notable

among them is the emergence of groups of accelerated

ions [1,2] with no linear mechanisms of interaction with

microwaves. However, this phenomenon may be treated

as a consequence of low-threshold decay of a microwave

into two upper hybrid waves [3]. The primary instability

is saturated via a cascade of decays of primary daughter

waves (with a high-frequency upper hybrid wave and a

low-frequency ion Bernstein (IB) wave excited at each

step). The excitation of exactly this type of daughter

waves was verified by modeling the two-plasmon parametric

decay of a microwave with extraordinary polarization by

the particle-in-cell (PIC) method [4]. The interaction of

daughter IB waves with ions may explain the effect of

generation of groups of accelerated ions during electron

cyclotron resonance heating. The quasilinear evolution

of the ion distribution function needs to be analyzed in

order to obtain a quantitative estimate of the result of the

wave−particle interaction. In the present study, we derive a

quasilinear equation characterizing the evolution of the ion

distribution function. The effect of toroidal drift of ions in

a non-uniform magnetic field with a finite curvature of the

lines of force is taken into account. The magnetic shear

effect, which induces a longitudinal component of the wave

vector of a wave as a result of reprojection, is neglected.

However, this effect is weaker than the one considered in

the present study if condition 1xd/(ρi q) < 1 is satisfied,

where q is the safety factor, ρi = v ti/ωci is the ion Larmor

radius, v ti is the ion thermal velocity, ωci is the ion cyclotron

frequency, and 1xd is the spatial size of the region where

an IB wave is excited as a result of a cascade of decays.

Let us consider the local kinetic equation for collisionless

plasma in non-uniform magnetic field B = B(x)ez that

characterizes distribution function
(

∂

∂t
+ v j

∂

∂x j
+ vdi, j

∂

∂x j
+

Ze
mi

(

E j + e jklvkB l

) ∂

∂v j

+ ωci e jkzvk
∂

∂v j

)

f i = 0, (1)

where summation over repeating indices is implied, e jkz is

a fully antisymmetric unit tensor, Ze is the ion charge,

vdi = ey(v
2
⊥ + 2v2z )/(Rωci) is the ion drift velocity, and

R is the radius of curvature of a magnetic field line (the
major radius of the setup). Equation (1) is written in an

arbitrary coordinate system. While the Cartesian coordinate

system (x , y , z ) is more convenient for descriptions of

waves, the cylindrical coordinate system (v⊥, θ, vz ), where

θ is the azimuthal angle, is better suited for characterizing

the motion of a particle in a magnetic field. The relation

between the transverse components of velocity in both

coordinate systems is set by equations vx = v⊥ cos θ and

vy = v⊥ sin θ. The solution to Eq. (1) is sought here

in the form of a Taylor series expansion in wave ampli-

tude f i = n̄ f 0 + f (1), where n̄ is the background density,

f 0(v⊥, vz ) is the equlibrium ion distribution function

independent of gyro angle θ, and f (1) is the linear correction

to the distribution function with its frequency ω ≫ ωci

and transverse wave number q⊥ ≫ 1/ρi ”
imposed“ by the

electric field of an IB wave with amplitude A0 propagating

strictly transverse to the magnetic field

E =
A

2
exp(iq · r− iωt) + c.c. (2)

The wave vector, which has components q = (qx , qy , 0), is
the solution of the dispersion equation for longitudinal (IB)
waves. The amplitude of the electric field of an IB wave has

components A = −i(qx , qy , 0)A0. Inserting this expansion

for the distribution function of non-equilibrium plasma into
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Eq. (1) and isolating the terms of the first and second orders

in electric field amplitude, we obtain the equations for linear

corrections to the distribution function
(

−iα + iλ cos(θ − ψ) − ∂

∂θ

)

f (1) = − n̄Ze
2miωci

A
∂ f 0

∂v
, (3)

where α = (ω − ωdi)/ωci , ωdi = qyvdi , λ = q⊥v⊥/ωci ,

ψ = arctan(qy/qx). Integrating Eq. (3), we find

f (1) = i
n̄Ze

2miωci
A0 exp

(

iλ sin(θ − ψ) − iαθ
)

×
θ

∫

∞

dθ′ exp
(

iαθ′ − iλ sin(θ′ − ψ)
)

×
[

qx cos θ
′ ∂

∂v⊥
+ qy sin θ

′ ∂

∂v⊥

]

f 0(v⊥, vz ). (4)

Let us use representation

exp
(

−iλ sin(θ′ − ψ)
)

=

∞
∑

p=−∞

J p(λ) exp
(

−i p(θ′ − ψ)
)

,

where J p — Bessel function. Since qx = q⊥ cosψ,

qy = q⊥ sinψ, and cosψ cos θ′ + sinψ sin θ′ = cos(θ′ − ψ)
, integration over the azimuthal angle in expression (4)
yields the following result:

f (1) =c
q⊥A0

2B

∞
∑

p=−∞

exp
(

iλ sin(θ − ψ) − i p(θ − ψ)
)

α − p

× pJ p(λ)

λ

∂

∂v⊥
f 0. (5)

Using (1), (2), and (5), we obtain the following for the

stationary part of the distribution function of the equation

of the second order in wave amplitude:

∂

∂t
f 0 = − Ze

2mi

[

Ax

(

cos θ
∂

∂v⊥
− sin θ

∂

v⊥∂θ

)

+ Ay

(

sin θ
∂

∂v⊥
+ cos θ

∂

v⊥∂θ

)]

f (1)∗ + . . . . (6)

Integrating the terms containing the θ-derivative over the

azimuthal angle (inclusive of integrating by parts), we obtain

∂

∂t
f 0 −

1

v⊥

∂

∂v⊥
v⊥D(v⊥, vz )

∂

∂v⊥
f 0 = 0, (7)

where D(v⊥, vz )=−c2 q2
⊥
|A0|

2

2B2

∞
∑

p=−∞
Im

(

1
α(v⊥,vz )−p

) p2J p(λ)
2

λ2

is the quasilinear diffusion coefficient. The approach

proposed in [5] makes it easy to demonstrate that an infinite

sum of products of Bessel functions is equal to

Im

( ∞
∑

m=−∞

m2J2
m(λ)

α − m

)

= πα2Jα(λ)
2Im

(

cot(πα)
)

= −α2Jα(λ)
2

∞
∑

l=−∞

δ(α − l). (8)

Note that the parameters of an IB wave in the inter-

mediate frequency range satisfy limit relations λ ≫ 1 and

ω/ωci ≫ 1. Using the asymptotic expression for the Bessel

function

Jα(λ) ≈
√

2

π

1
4
√
λ2 − α2

cos9,

where 9 =
√
λ2 − α2 − α arccos

(

α
λ

)

− π
4
≫ 1 [6], and tak-

ing the rapidly oscillating nature of these functions into

account, we retain the non-oscillating part in expression (8):

Jα(λ)
2 ≈ 1

π
√
λ2 − α2

H(λ − α),

H(λ − α) is the Heaviside step function. In view of the

above, the quasilinear diffusion coefficient takes the form

D(v⊥, vz ) = c2 |A0|2
2B2

ω2

v2⊥

ω2
ci

q⊥

H(v⊥ − ω/q⊥)
√

v2⊥ − ω2/q2
⊥

×
∞
∑

l=−∞

δ

(

ω − lωci − qy
v2⊥ + 2v2z

Rωci

)

, (9)

where δ(. . . ) is the delta function, which is the real

part of the inverse ion propagator of Eq. (3). Following

the constant-energy resonance model [7], we obtain an

approximate relation

D(v⊥) ≈ c2 |A0|2
4B2

ω2

v2⊥

ωci

q⊥

×
∞
∑

l=−∞

H(v⊥ − ω/q⊥)
√

v2⊥ − ω2/q2
⊥

Rω2
ci/qy√

ω/ωci − l

∣

∣

∣

∣

v⊥=

√

ω−lωci
qy /(Rωci )

. (10)

Let us find the fraction of wave energy lost as a result of

attenuation by ions:

Q =
iA∗

0

8π
q · j = i

ω2
pi

ωci

q2
⊥|A0|2
(8π)2

∫

v⊥ cos(θ − ψ)

×
∞
∑

p=−∞

exp
(

iλ sin(θ − ψ) − i p(θ − ψ)
)

α − p
pJ p(λ)

λ

∂ f 0

∂v⊥
dv.

Integration over the azimuthal angle yields the following

expression:

Q =
ω2

pi |A0|2
(8π)2

∞
∑

l=−∞

ω

q⊥

H(v⊥ − ω/q⊥)
√

v2⊥ − ω2/q2
⊥

× Rω2
ci/qy√

ω/ωci − l

∂

∂v⊥
f 0

∣

∣

∣

∣

v⊥=

√

ω−lωci
qy /(Rωci )

. (11)

Expression (11), which is proportional to the imaginary part

of the linear susceptibility of plasma [8], specifies the energy
density of a longitudinal wave in a non-uniform magnetic

field. Comparing expressions (10) and (11), we find that
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the diffusion coefficient in the velocity space in Eq. (7) is

proportional to the magnitude of specific losses of an wave:

D = Q

/

n̄mi
ωci

ω

v2⊥
4π

∂ f 0

∂v⊥

∣

∣

∣

∣

v⊥=

√

ω−lωci
qy /(Rωci )

. (12)

Thus, the diffusion coefficient in the velocity space may

be determined by analyzing the energy release of an

IB wave, which does not require the calculation of the

spatial distribution of electric fields and allows one to limit

oneself to the examination of behavior of ray trajectories

corresponding to a beam of waves for calculating their ion

cyclotron absorption.

Note that it follows from (10) that the range of transverse

velocities of ions capable of interacting with an IB wave

corresponds to inequality

v tail
⊥ ≈

√

Rω2
ci

qy
>

ω

q⊥
> v ti . (13)

Inequality (13) is in reasonable agreement with the range of

transverse velocities at which
”
tails“ emerge in the function

of ion distribution over these velocities [1,2].
Quasilinear equation (7) with diffusion coefficient (10),

which characterizes the evolution of the ion distribution

function as a result of absorption of power of ion Bernstein

waves of the intermediate frequency range, may be used

to analyze the efficiency of ion cyclotron heating and

interpret the data from various toroidal plasma confinement

experiments and applied in problems related to the char-

acterization of ion acceleration in ionospheric and space

plasma.
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