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1. Introduction

During last decade extensive attention is drawn to

magnetic materials, which main state is helical structure

In crystals without the inversion center the helical ordering

is frequently associated with Dzyaloshinski−Morii interac-

tion, which is theoretically described by Lifshitz invariants

in free energy decomposition [1–4]. Dzyaloshinski−Morii

interaction compete with exchange interaction turning spins

relatively to each other by small angle. Many papers (see for
example [5–11]) relate to study of the physical properties

of materials with helicoidal structure. Detail summary of

theory of uniaxial ferromagnetics with helicoidal main state

is provided in paper [12].
When switching on eternal magnetic field perpendicular

to axis of the helicoidal structure the magnetic spiral with

constant pitch is converted into one-dimensional lattice of

extended domains. Inside each of them the magnetization

distribution is close to homogeneous. The neighboring do-

mains are separated by narrow domain walls — topological

solitons, where helical turn of magnetization is localized.

The solitons comprising the lattice due to their mobility

and magnetoresistive properties are promising for use in

spintronics devices. Study of movement and stability of

some domain walls and lattice in general under the action

of electric field is of great interest [13–16].
The helical ordering is implemented in rare-earth

metals, in large class of conductive cubic magne-

tics without inversion center and in some other com-

pounds. Among the known uniaxial helimagnetics

(CrNb3S6, CrTaS6, CuB2O4, CuCsCl3, Yb(Ni1−xCux)3Al9,
Ba2CuGe2O7) [17–22] CrNb3S6 is more extensively studied.

The lattice of chiral solitons was observed in experi-

ments [23].

The chiral multisolitons build in helicoid structure of the

ferromagnetics have useful technological properties [12,24].
But their analytical description is associated with many

problems due to nonlinearity of the basic equations of the

theory, and due to heterogeneity of helical ordering of the

environment. Here we study the collective particle-like

excitations of helicoidal structure, which in the magnetic

field orthogonal to the axis of magnetic spiral is itself

significantly nonlinear lattice of solitons. Hence, we have

a little number of studies relating this theme. The problem

can be solved with use of simplified models, which correctly

consider the basic interactions, and at the same time allow

accurate solutions. One of the models is a popular quasi-

one-dimensional sine-Gordon equation. In infinite medium

with homogeneous ground state it is completely integrated

by the most effective method of nonlinear physics — by

method of inverse scattering problem. Presence of the non-

trivial ground state complicates the making of particle like

excitations even in case of unlimited medium. The simple

chiral solitons in the lattice of solitons were obtained by

Backlund conversion in paper [25]. The complete study of

the multisolitons and spin waves in the helicoidal structure

based on the method of inverse scattering problem under
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the sine–Gordon model can be found in monograph [26]
(see also [27,28]).
Another effective model of chiral ferromagnetic is as-

sociated with quasi-one-dimensional Landau–Lifshitz equa-

tions if the magnetic field is absent. Recall that during

analysis of low amplitude wave spectrum in Heisenberg

ferromagnetic with Dzyaloshinski interaction and magnetic

ordering with constant pitch the Landau−Lifshitz equation

is frequently written in local benchmark, that shifts along

the spiral axis (see, for example, [12] and papers cited

in it). Then in new reference system the homogeneous

ordering corresponds to homogeneous distribution of mag-

netization, and the spin wave dynamics is described by

linearized Landau−Lifshitz equation for the ferromagnetic

with exchange interaction without Dzyaloshinski interaction,

but with additional anisotropy of
”
easy-plane“ type. Pa-

pers [5,26,29] determined a deep relationship between ac-

curate solutions of significantly nonlinear Landau−Lifshitz

model for the ferromagnetic with the helicoidal structure

considering the exchange energy, Dzyaloshinski interaction

and energy of quadratic in magnetization uniaxial anisotropy

(the anisotropy axis is parallel to Dzyaloshinski vector), and
the solutions of equivalent model of uniaxial ferromagnetics

without Dzyaloshinski interaction. The found relationship

permits the use of soliton solutions of completely integrated

equations of unlimited uniaxial ferromagnetic with homo-

geneous ground state to make and to analyze the spin

waves and non-trivial multisolitons (moving or in rest) in

the ferromagnetic with helicoidal structure. In general, the

presence of magnetization easy axis coinciding with the

direction of Dzyaloshinski vector suppresses the helicoidal

ordering and keeps the metastable turn of magnetization in

localized regions inside the sample only. For non-integrable

one-dimensional Landau−Lifshitz equations this statement

is justified by approximate methods in papers [15,16].
For integrated models of easy axis ferromagnetics the

formation of nuclei of chiral phase on the background of

homogeneous distribution of magnetization is analytically

described in [5,29]. On the contrary, the quadratic in

magnetization easy-plane anisotropy (base plane is parallel

to plane of spin turn) keeps the helicoidal structure along

full length of the sample. The particle-like solitons on the

background of unlimited magnetic spiral are identified and

analyzed in [5,29].
Actual samples have boundaries. Consideration of boun-

dary conditions results in change of configuration of the

helicoidal structure [12,30], and occurrence of important for

applications features of dynamics of magnetic solitons and

spin waves, which are absent in infinite medium. Besides,

extension of the method of inverse spectral conversion to

samples with finite size faces to serious problems due

to absence of simple representation of initial boundary

conditions for Landau−Lifshitz models in these scatterings.

Such representation is possible under special (integrable)
boundary conditions only [31,32].
For finite ferromagnetics without Dzyaloshinski interac-

tion the physically meaningful integrable conditions were

established quite a while [33]. But nonlinear dynamics of

finite samples, also without helicoidal structure till now is

not studied because there is no effective scheme of inverse

spectral conversion for the finite systems. In papers [34,35]
this problem was solved for the nonlinear Schrödinger

equation by combination of the method of inverse scattering

problem with
”
method of images“, which is used in

electrostatics when solving linear boundary problems with

definite spatial symmetry. In papers [36–39] we used a

scheme [34,35] to study solitons in the semi-infinite samples

of Heisenberg ferromagnetic and uniaxial ferromagnetics

with homogeneous ground state. Here we use these results

for analytical description of the spin waves and solitons in

the helicoidal structure of semi-infinite ferromagnetic.

We succeeded to summarize the conversion of pa-

pers [5,29] and to determine relationship between solutions

of Landau−Lifshitz model for the semi-infinite uniaxial

ferromagnetic without Dzyaloshinski interaction and the

solutions of Landau−Lifshitz equations for the semi-infinite

chiral ferromagnetic at boundary conditions considering

the partial securing of spins at the boundary of sample.

Using method of integration of Landau−Lifshitz equations

of semi-infinite ferromagnetics with homogeneous ground

state [37–39] the determined conversion provides full

analytical description of the multisolitons and dispersive

waves in semi-infinite chiral ferromagnetic with uniaxial

magnetic anisotropy. Here we limit to discussion of the

ferromagnetic with anisotropy of
”
easy-plane“ type. Such

type of the uniaxial anisotropy does not suppress the quasi-

one-dimensional helicoidal structure in the sample bulk

and results in non-trivial particle-like excitations on the

background of magnetic spiral.

2. Semi-infinite ferromagnetic
with homogeneous ground state

Let’s provide basic formulas for the semi-infinite ferro-

magnetic with homogeneous ground state and homoge-

neous distribution of magnetization in sample depth [38,39],
which are further used for the analytical description of

solitons and waves in the helicoidal structure on half-axis

0 ≤ z < ∞. Energy of such ferromagnetic with anisotropy

of
”
easy-plane“ type (plane Oxy) looks as follows [1]

E =
1

2

∞
∫

0

dz
[

α(∂zM)2 + K(M · e3)2
]

+ H(M · e1)|z=0,

where M(z , t) — magnetization per unit of length along

axis Oz (M2 = M2
0 = const), z and t — spatial coordinate

and time, α > 0 and K > 0 — constants of exchange

interaction and anisotropy. Parameter H characterizes the ef-

fective field of unidirectional surface anisotropy H = E0/M0

determined by deposition of ferromagnetic layer on surface

of ferromagnetic sample [40–42]. Here E0 — exchange en-

ergy of unit of surface of sample. Its values for wide class of

double-layer structures antiferromagnetic−ferromagnetic are
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given in [43]. Single vectors e1 = (1, 0, 0) and e3 = (0, 0, 1)
specify directions of the surface layer and

”
hard axis“ of

magnetization, respectively.

In the dimensionless variables:

m = −M/M0, z ′ = z
√

K/α,

t′ = γM0Kt, h′ = HM−1
0 /

√
αK, (1)

where γ — magnetomechanic ratio, system energy is

E ′ =
E

M2
0

√
αK

=
1

2

∞
∫

0

dz ′[(∂z ′m)2 + m2
3] − h′m1|z=0.

Possible nonlinear excitations in semi-infinite sample cor-

respond to solutions of Landau–Lifshitz equation [26,44,45]:

∂t′m = [m× ∂2z ′m] − (e3 ·m)[m× e3],

m2 = 1, 0 ≤ z < ∞, (2)

with integrated boundary conditions

[m× (∂z ′m + e1h′)]|z=0 = 0, (3)

m → (1, 0, 0), ∂z ′m → 0 at z ′ → +∞ (4)

and initial distribution of magnetization

m(z ′, t′ = 0) = m0(z
′). (5)

Selection of asymptotic boundary condition (4) cor-

responds to minimum of density of medium energy at

z ′ ≫ 1. Initial perturbation (5) is in agreement with

conditions (3), (4).
”
Dashes“ above dimensionless variables

are further omitted.

The mixed boundary condition (3) at h → 0 transits into

the condition of problem with free surface spins [45]:

[m× ∂zm]|z=0 = 0.

In limit |h| → ∞ it comes down to the condition of full

securing of spins at the sample boundary:

m1|z=0 = ±1. (6)

Sign selection in the right part (6) depends on type of

solitons [38,39]. It will be clarified during further analysis.

The soliton evolution near the sample boundary can be

formally explained as a result of interaction between the

actual soliton inside the sample and the dummy soliton

of image outside the sample. During interaction with

the sample surface in the soliton localization region the

magnetization shifts and turns occur by the value of about

saturation magnetization. Scenarios of solitons reflection

depend on the nature of securing of boundary spins. After

reflection from the sample surface and by movement into

the medium all solitons restore stationary shape, typical for

solitons of the infinite medium.

Papers [38,39] showed that solitons of the semi-infinite

easy-plane ferromagnetic are divided into two classes.

The first class includes the solitons which cores upon

movement away from the sample boundary undertake

the shape of waves of stationary profile without internal

oscillations of magnetization. Such solitons are not fixed.

The magnetization distribution in the simplest of them looks

like

m1 = −1 + 2 th 2ρ(1− n1n2)
2d−1,

m2 = −2 th 2ρ(n1 + n2)(1− n1n2)d
−1,

m3 = 2 sh ρ(n2 − n1)(1− n1n2)/(d ch2 ρ),

d = (n1 − n2)
2 + (1 + n1n2)

2 th 2ρ,

n1 = c0 exp

(

− z
chρ

+
sh ρ

ch2 ρ
t

)

,

n2 =
f

c0

exp

(

− z
chρ

− sh ρ

ch2 ρ
t

)

, f =
h chρ + 1

h chρ − 1
, (7)

where c0 — real constant of integration, −∞ < ρ < ∞ —
solution parameter. Next, for certainty, we consider

ρ > 0. As befits, the solution (7) meets the boundary

conditions (3), (4).
In weak surface fields |h| < ch−1

ρ the parameter is

f < 0, and, vice versa, f > 0 at |h| > ch−1 ρ. This is

observed in various scenarios of deformation of soliton

core (7) during interaction with the sample boundary, and

results in differences in its steady profile in sample depth

before and after reflection from surface. In both cases all

spins inside the soliton are inclined to the sample boundary

at c0 > 0 or into medium at c0 < 0.

Let’s explain the statement on the example of weak fields

|h| < ch−1 ρ. Them detail record of solution (7)

m1 = −1 +
2

τ
th 2ρ ch2 y, y =

z
chρ

− 1

2
ln | f |,

m2 = −2 sign c0

τ
th 2ρ sh s ch y,

s =
sh ρ

ch2 ρ
(t − t0), t0 =

ch2 ρ

2 sh ρ
ln

| f |
c2
0

,

m3 = −2 sign c0

τ ch2 ρ
sh ρ ch s ch y, τ = ch2 s + th 2ρ sh2 y

(8)
exactly shows that at the moment t0 of soliton (8) collission
with boundary of sample all spins in the soliton localization

region lay in plane Oxz . The magnetization distribution

in plane Oxz depends on the sign of h. In nega-

tive fields − ch−1
ρ < h < 0 the magnetization component

m1(z , t = t0) steadily increases with movement away from

the edge z = 0 into the sample. In point z = 0 at rather

high values ρ > Arcsh 1 the projection m1(z = 0, t = t0) is

positive. In this case the component m3(z , t = t0) along full

length of the sample also behaves also behaves steadily, and

magnetization in the soliton at the moment of collision with

the boundary turns in plane Oxz by angle lower than 90◦

Physics of the Solid State, 2024, Vol. 66, No. 10



Nonlinear dynamics of a semi-infinite ferromagnet with the helicoidal structure 1669

z = 0

z

x
m z t1,3 0( , )

m t1 0(0, )

m t3 0(0, )

1

0

–1

z

a

z = 0

z

x
m z t1,3 0( , )

m t1 0(0, )
m t3 0(0, )

1

0

–1

z

b

z = 0

z

x
m z t1,3 0( , )

1

0

–1

z

c

z = 0

z

x
m z t1,3 0( , )

1

0

–1

z

d

z = 0

z

x
m z t1,3 0( , )

m
1
(0)

1

0

–1

z

e

z2 z0z2 z0

z1

z1

z0 z1

z1

z0

m
1
(0)

z0
z0

m
1
(0)

Figure 1. Magnetization components m1(z , t0) (solid line), m3(z , t0) (dashed line) of soliton (8) and spins distribution at time

moment t = t0 at values a) − ch−1 ρ < h < 0, ρ > Arcsh1; b) − ch−1 ρ < h < 0, ρ < Arcsh1; c) 0 < h < ch−1 ρ, ρ > Arcsh1;

d) 0 < h < ch−1 ρ
√

1− sh2 ρ, ρ < Arcsh1; e) ch−1 ρ
√

1− sh2 ρ < h < ch−1 ρ, ρ < Arcsh1. In all cases c0 > 0 was selected.

(see Figure 1, a). At relatively low values of ρ < Arcsh1

the projection m1(z , t = t0) changes sign from minus to

plus when crossing the point determined by the condition

ch y shρ = 1, and component m3(z , t = t0) at this point has
absolute minimum: m3 = −1 (Figure 1, b).

In positive fields 0 < h < ch−1 ρ near the sample bound-

ary in point z 0 = ch ρ ln | f |/2 > 0 partial remagnetization

of medium occurs: m(0)
1 = −1 + 2 th 2ρ. The component

m1(z , t = t0) has a single minimum at point z 0. As for the

component m3(z , t = t0), depending on ratio of values of

parameter ρ and value of surface field it can have only

one (z = z 0), two (z = z 0 and z = z 1), or even three

points of extremum (z = z 0 andz = z 1,2). Appropriate

cases are shown in Figure 1, c−e. Additional points z 1,2 —

zero of function m1(z , t = t0), determined by equality

ch[y(z 1,2)] sh ρ = 1.

At large distances from sample surface at z ≫ 1 in limit

t → ±∞ the solution (8) undertakes shape of wave of

stationary profile:

m1 = th ξ±, m2 = ∓sign c0

th ρ

ch ξ±
, m3 = − sign c0

chρ ch ξ±
,

ξ± = (z ∓Vt − z±)/l0; z + = ch ρ ln(|c0|/ th ρ),

z− = − chρ ln(|c0| thρ/| f |), (9)

which is localized in region with width l0 = ch ρ > 1 and

moves with speed V = th ρ > 0 inside the sample or

towards its surface, parameters z± determine the coordinate

Physics of the Solid State, 2024, Vol. 66, No. 10
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Figure 2. Magnetization component m1(z , t0) of soliton (7) and distribution of spins at time moment t = t0 at field values

a) h < −

√

2 ch−1 ρ and b) h >
√

2 ch−1 ρ; in both cases c0 > 0 was selected.

of the wave center in appropriate reference system, where

z ∓Vt = 0. This is typical soliton of infinite easy-plane

ferromagnetic which is called as tuning wave of magneti-

zation [46,26]. The name is associated with that in wave

localization region the magnetization turns by 180◦ from

the position m = (−1, 0, 0) in soliton tail where ξ± ≪ −1,

to position m = (1, 0, 0) in its head, where ξ± ≫ 1. At that

in the soliton localization region the projection of vector m

on plane Oyz forms the permanent angle with axis Oz . The
magnetization orientation in center of the turning wave after

and before reflection is determined by formulas

m = (0, sin δ±, cos δ±), sin δ± = ∓sign c0 thρ,

cos δ± = −sign c0/ ch ρ.

As a result of the turning wave reflection from sample

edge its center position shifts by value 1z :

1z = z + − z− = ch ρ ln(c2
0/| f |). (10)

From here we find the time of interaction of soliton (8) and

sample surface: |t − t0| ≤ 1z/V . Besides, the magnetization

in center of soliton (8) after its collision with the boundary

turns by angle

δ+ − δ− = 2 arg[1 + i shρ] = 2 arctg sh ρ. (11)

In strong fields at |h| > ch−1 ρ the soliton (7) is described
by the expression obtained from (8) using formal replace-

ments:

| f | → f > 0, ch y ↔ sh y, sh s ↔ ch s .

Determinations of y , s stay same. Considering this

remark, it is easy to determine that in strong fields

the soliton (7) reflection from the sample edge occurs

in another plane Oxy . At negative fields h < − ch−1 ρ

at moment t = t0 of collision with sample boundary

the component m1 of magnetization while moving into

the sample steadily increases. At sample boundary

z = 0 the projection m1(z = 0, t = t0) is positive at val-

ues of field −
√
2 ch−1 ρ < h < − ch−1 ρ and negative at

h < −
√
2 ch−1 ρ. The last case is shown in Figure 2, a.

At positive values of h > ch−1
ρ in point

z 0 = ch ρ(ln f )/2, opposite to case of small fields (8),
complete remagnetization of medium is observed: m1 = −1.

The projection m1 (z = 0, t = t0) at the sample boundary

is negative at h >
√
2 ch−1 ρ (Figure 2, b) and positive at

ch−1 ρ < h <
√
2 ch−1 ρ. In Figure 2 in both cases c0 > 0

is selected. At c0 < 0 direction of magnetization turning in

plane Oxy will be inverse.

At h > ch−1
ρ far away the sample boundary atz ≫ 1,

t → ±∞ the soliton (7) converts in the turning wave similar

to (9):

m1 = th ξ±, m2 = −sign c0

th ρ

ch ξ±
, m3 = ∓ sign c0

chρ ch ξ±
,

ξ± = [z ∓Vt − z±]/l0, z + = chρ ln(|c0|/ th ρ),

z− = − chρ ln(|c0| th ρ/ f ). (12)

Comparison of formulas (9) and (12) makes the conclu-

sion that in strong fields h the magnetization in center of

soliton (7) after its collision with the ample boundary tuns

in plane Oyz by another angle:

δ+ − δ− = π + 2 arctg sh ρ, (13)

which differs from previous angle (11) by π. Shift in soliton

position is determined by the previous formula (10).
So, phase change of complex field m3 + im2 in center

of the turning wave after its reflection from the sample

Physics of the Solid State, 2024, Vol. 66, No. 10
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edge in case of weak |h| < ch−1
ρ and strong |h| > ch−1

ρ

surface fields is similar to the phase change of light wave

during its reflection from the boundary with less and more

optically dense medium. In next Section we show that

threshold by amplitude of field h nature of change of soliton

cores (7) after their reflection from the sample boundary

is succeeded by the chiral turning waves in the helicoidal

structure. Features of medium remagnetization during chiral

waves collision with the sample edge differ from those

discussed here in only additional helical rotation of spins

in region of soliton cores.

The second class of possible nonlinear excitations in the

system if represented by pulsed solitons — breathers [38,39].
In sample thickness the elastically collide with each other

and with turning waves of magnetization. The breathers

reflection from the sample boundary is also elastic and

accompanied by strong deformation of the soliton cores.

At far distance from sample surface (at z ≫ 1, t → ±∞) of
breather oscillations become regular, it is converted in the

precessing breather of the infinite medium [26]:

m1 = 1− 2

τ±

[

cos2 s± +
cos2 ϕ

| sh µ|2
]

;

m2 = ± ctgϕ

τ±| shµ|2

×
[

cos s± ch y± sh 2ρ − sin s± sh y± sin(2ϕ)
]

,

m3 =
2 ctgϕ

τ±| sh µ|2

×
[

sh ρ cosϕ ch y± sin s± + ch ρ sinϕ sh y± cos s±
]

,

(14)
where

y± = [z ∓Vt − z (0)
± ]/l0, s± = kz ∓ ωt + s (0)

± ,

τ± = cos2 s± + ctg2 ϕ ch2 y±.

The soliton (14) is parametrized by complex number

µ = ρ + iϕ; −∞ < ρ < ∞, 0 < ϕ < π. Values

l0 =

(

ch ρ sinϕ

| sh µ|2
)−1

> 0, V =
thρ(ch2 ρ + cos2 ϕ)

| shµ|2 ,

ω =
ch ρ cosϕ

| sh µ|4 (sh2 ρ − sin2 ϕ), k =
shρ cosϕ

| sh µ|2
respectively determine the thickness of walls limiting the

breather core, movement speed of soliton center, frequency

and wave number of oscillations in its core. Within soliton

core (14) the magnetization performs inhomogeneous ellip-

tical processing with frequency ω around the axis Ox . The
precession ellipse is elongated along the easy-plane Oxy .
The precession cone pulses with frequency 2ω. This results

in longitudinal oscillations of soliton size. The single result

of the breather (14) reflection from the sample boundary is

shift of its center

z (0)
+ = l0 ln

∣

∣

∣

∣

κ

thρ cth µ

∣

∣

∣

∣

, z (0)
− = l0 ln

∣

∣

∣

∣

f
κ th ρ cth µ

∣

∣

∣

∣

,

f =
ih shµ + 1

ih shµ − 1

and change of initial phase of its precession:

s (0)
+ = arg

[

thρ cth µ κ−1
]

, s (0)
− = arg

[

κ th ρ cth µ f −1
]

.

Unlike the case of infinite medium, the breather on half-

axis, like the turning wave, can not be fixed (ρ 6= 0, V 6= 0).

We showed that in limit |h| → ∞ the solution of initial

boundary value problem (2), (3) for the semi-infinite

sample, comprising N turning waves of magnetization and

arbitrary number of breathers and dispersive spin wave

packets, transits into the solution of the same model at

boundary conditions

m(z = 0, t) → (−1)Ne1; m(z , t) → e1;

∂zm(z , t) → 0 at z → +∞.

At positive (negative) finite values of the surface field the

formation of the half-axis of even (odd) number of turning

waves is more energy beneficial. It follows from this that

formation of odd or even number of waves in the system

can be regulated changing nature of spins securing at the

boundary. The determined regularity is kept also for the

chiral turning waves.

At weak external effects in sample only dispersive waves

without solitons are formed. In case of low amplitude spin

waves the magnetization in semi-infinite sample is described

by the expressions [38,39]:

m3 = − 2

π
Im

[ +∞
∫

0

dξ
b0(ξ)

sh ξ
exp

(

it ch ξ

sh2 ξ

)

× Re

(

exp(iz sh−1 ξ)

sh−1 ξ + ih

)

]

, m1 ≈ 1;

m2 =
2

π
Re

[ +∞
∫

0

dξb0(ξ) cth ξ exp

(

it ch ξ

sh2 ξ

)

× Re

(

exp(iz sh−1 ξ)

sh−1 ξ + ih

)

]

. (15)

where b0 — inverse scattering problem coefficient corre-

sponding to presence of dispersive waves [26].

By direct check we easily make sure that (15) is solution

of the linearized Landau−Lifshitz equation (2):

∂tm2 + ∂2z m3 − m3 = 0, ∂tm3 − ∂2z m2 = 0,

|m2,3| ≪ 1, 0 < z < +∞

With linearized boundary conditions (3), (4):

(∂z m2,3 − h m2,3)|z=0 = 0, m2,3 → 0 at z → +∞.
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3. Solitons of semi-infinite ferromagnetic
with helicoidal structure

Let’s consider quasi-one-dimensional ferromagnetic crys-

tal without inversion center with energy density:

w =
α

2
(∂zM)2 +

KM2
3

2
− κ(M1∂z M2 − M2∂z M1).

Here we use previous marks for medium magnetization

M(z , t) (M2 = M2
0 = const), spatial coordinate 0 < z < ∞,

time t, constants of exchange interaction α > 0 and

easy-plane anisotropy K > 0. Besides, we consider the

Dzyaloshinski interaction, to which Lifshitz invariant cor-

responds

−κ(M1∂z M2 − M2∂z M1),

compatible with the uniaxial symmetry of the magnetic

crystal without the inversion center. The constant κ can

have any sign.

Now, the conditions α > 0, K > 0 do not ensure stability

of the homogeneous state of medium in sample depth (at
z ≫ 1). This turns out to be Inhomogeneous distribution of

magnetization of the helicoidal structure type:

M = −M0(cos(pz ), sin(pz ), 0), (16)

where p = κ/α. Period of magnetic spiral 2π/|p| is much

more the crystallographic periods a : 2πα/|κ| ≫ a and

usually does not and usually incommensurate with them.

Let, as previously, along the boundary z = 0 of sam-

ple we apply the effective field of unidirectional surface

anisotropy H = He1, where e1 = (1, 0, 0). In sample thick-

ness the helical ordering corresponds to energy density

−M2
0κ

2/(2α). We will take the system energy from the

helicoidal ground state of the medium at z ≫ 1. Then total

energy of sample will be written as follows

E =
1

2

∞
∫

0

dz
[

α(∂zM)2 + KM2
3 +

M0κ
2

α

− 2κ(M1∂z M2 − M2∂z M1)
]

+ HM1|z=0. (17)

Let’s go to dimensionless variables:

m = −M/M0, z̃ = z

[

1

α

(

K +
κ2

α

)

]1/2

,

t̃ = γM0t

(

K +
κ2

α

)

, h̃ =
H

M0

[

α

(

K +
κ2

α

)

]−1/2

,

which coincide with previous (1) at κ = 0. In new variables

the system energy looks like

Ẽ =
E

M2
0

[

α

(

K +
κ2

α

)

]−1/2

=
1

2

∞
∫

0

dz̃ [(∂z̃m)2+(1− q2)m2
3

− 2q(m1∂z̃ m2 − m2∂z̃ m1) + q2] − h̃ m1|z̃=0.

Helical structure (16) corresponds field distribution m:

m = (cos(qz̃ ), sin(qz̃ ), 0), (18)

where q = κ/[α(K + κ2/α)].
Possible nonlinear excitations of the helicoidal structure of

semi-infinite ferromagnetic sample correspond to solutions

of Landau–Lifshitz equation:

∂t̃m = [m× ∂2z̃ m] − (1− q2)(e3 ·m)[m× e3]

+ 2q(e3 ·m)∂z̃m, (19)

where m2 = 1, 0 < z̃ < ∞, with boundary conditions:

[m× (∂z̃m + q[m× e3] + h̃ e1)]|z̃=0 = 0,

m → (cos(qz̃ ), sin(qz̃ ), 0) at z̃ → +∞ (20)

and specified initial perturbation of the helical structure:

m(z̃ , t̃ = 0) = m0(z̃ ), (21)

Which is compatible with conditions (20). Vector

e3 = (0, 0, 1), like previously, specifies direction of the

”
hard-axis“ of magnetization.

To determine relationship between the problems (2)−(5)
and (19)−(21) we will use parameterization of the normal-

ized magnetization by angles 2 and 8:

m = (cos2 cos8, cos2 sin8, sin2).

Landau−Lifshitz equation (19) together with the bound-

ary conditions (20) follows from Hamilton variation princi-

ple for action functional:

S =

∞
∫

0

dz̃
(

sin2∂ t̃ 8− 1

2
[(∂z̃2)2 + cos2 2(∂z̃8− q)2

+ sin22]
)

+ h̃ cos2 cos8|z=0. (22)

The initial boundary value problem (2)−(5) for the

easy-plane ferromagnetic with homogeneous ground state

is described by action that follows from (22) at q = 0.

From here the important statement follows, it is summary

of determined in [26,29] for infinite medium. If we

know solution 2(l)(z , t, h), 8(l)(z , t, h) of Landau−Lifshitz

equation (2) with boundary conditions (3) and (4), then the

solution 2(g)(z̃ , t̃, h̃, q), 8(g)(z̃ , t̃, h̃, q) of model (19), (20)
of chiral ferromagnetic is determined by formulas

8(g)(z̃ , t̃, h̃, q) = 8(l)(z = z̃ , t = t̃, h = h̃) + qz̃ ,

2(g)(z̃ , t̃, h̃, q) = 2(l)(z = z̃ , t = t̃, h = h̃).

After shown transformation the action functional of one

problem transits into the functional of another problem. This

justifies equivalence of not only equations, but also of initial

boundary value conditions for two problems. Distribution
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of magnetization m(l)(z , t, h) and m(g)(z̃ , t̃, h̃, q) of these

problems are related to each other:

m(g)
+ (z̃ , t̃, h̃, q) = m(l)

+ (z = z̃ , t = t̃, h = h̃) eiqz̃ ,

m(g)
3 (z̃ , t̃, h̃, q) = m(l)

3 (z = z̃ , t = t̃, h = h̃), (23)

where m+ = m1 + im2. When comparing solutions (23) the

interaction constants also change.

In particular, low-amplitude spin wave field in semi-

infinite sample of the chiral ferromagnetic looks like

m(g) = n +
(

m(l)
2 [e3 × n] + m(l)

3 e3

)

|z=z̃ ,t=t̃,h=h̃,

n = (cos(qz̃ ), sin(qz̃ ), 0), (24)

where functions m(l)
2,3 are determined by formulas (23). By

direct check we can easily make sure that expression (24)
satisfies the linearized Landau−Lifshitz equation (19) with

linearized boundary condition (20).
The turning wave (7) of the ferromagnetic with homo-

geneous ground state after conversion (23) converts into

the chiral turning wave in semi-infinite ferromagnetic with

helicoidal structure:

m(g)
1 = m(l)

1 cos(qz̃ ) − m(l)
2 sin(qz̃ ),

m(g)
2 = m(l)

1 sin(qz̃ ) + m(l)
2 cos(qz̃ ), m(g)

3 = m(l)
3 , (25)

where expressions m(l)
j are determined by formulas (7)

considering replacement z → z̃ , t → t̃, h → h̃. At large

distances from the sample edge the solution (25) describes

the simplest soliton of infinite medium [26,29]. The magne-

tization in such soliton can be turned either against diretion

of turning of magnetic spiral (18), which, respectively,

results in decrease or increase of the spiral pitch. Both

are accompanied by exit of the magnetic moments from

plane Oxy .
Near the sample surface the core of the chiral soliton (25)

strongly deforms, after this it elastically reflects from the

sample boundary and restores its stationary shape. As result

of reflection the center of chiral wave shifts by value

1z (10).
The chiral solitons succeed basic dynamic properties of

solitons of Section 2.

Let’s specify the made general remarks. Let’s consider

that the parameter ρ > 0. To simplify the analysis we

assume that presence of soliton does not change direction

of turning of spiral (18), and results only in decrease

or increase of its pitch. Then in case of weak surface

anisotropy |h| < ch−1 ρ at value of integration constant

c0 > 0 (c0 < 0) before collision with the sample boundary

in the localization region of soliton (25) the spiral pitch

decreases (increases), and after collision — increases

(decreases). At that along full length of sample at c0 > 0 the

spins are inclined towards the boundary, and at c0 < 0 —
from boundary. During soliton reflection in from the sample

edge in its center the projection of magnetization m(g)
3 on

z

x

z = 0

y

z

x

z = 0

y

z

x

z = 0

y

z

x

z = 0

y

z

x

z = 0

y

z1

z0

z0

z1z2

z0

a

b

c

d

e

Figure 3. Spins location in soliton (25) at moment t = t0 of

collision with sample boundary at values a) − ch−1 ρ < h < 0,

ρ > Arcsh1; b) − ch−1 ρ < h < 0, ρ < Arcsh1;

c) 0 < h < ch−1 ρ, ρ > Arcsh1; d) 0 < h < ch−1 ρ
√

1− sh2 ρ,

ρ < Arcsh1; e) ch−1 ρ
√

1− sh2 ρ < h < ch−1 ρ, ρ < Arcsh1.

In all cases c0 > 0 was selected.

the spiral axis does not change (see formulas (9) and (25)).
At moment t = t0 (see (8)) of soliton (25) collision with the

sample boundary the spiral pitch and phase of spins turning

within soliton exactly coincide with same on the helical

structure (18), and soliton presence in the structure can be

observed only by spins exit from the turning plane Oxy .
In weak negative fields − ch−1 ρ < h < 0 at rather high

large values of ρ > Arcsh1 the magnetization component

m3(z , t0) is monotonous while moving into the sample.

This means that in this case the envelope of the soliton

at t = t0 is most narrow in point z = 0 at its boundary (Fi-
gure 3, a). At relatively small ρ < Arcsh1 the projection
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z

x

z = 0

y

a

b

z0

z

x

z = 0

y

z0

Figure 4. Spins location in soliton (25) in case of large

positive fields h > ch−1 ρ directly a) before and b) after collision

with sample boundary; c0 > 0 was selected. At the moment of

collision the spins along the entire sample lay in plane Oxy .

m(g)
3 reaches absolute minimum −1 in point determined

by the condition ch y shρ = 1 (Figure 3, b). In positive

fields 0 < h < ch−1 ρ at rather large values ρ > Arcsh1

the magnetization component m(g)
3 (z , t0) has only one point

of extremum z 0 = ch ρ ln | f |/2 > 0 near the boundary (Fi-
gure 3, c). The soliton envelope is compressed in point

z = z 0, and extends at both sides of the point z 0, gradually

reaching the limit value corresponding to the helicoidal

structure (18). At relatively small ρ < Arcsh1 depending

on values of field h the component m(g)
3 (z , t0) obtains one

more or two additional points of absolute minimum z 1,2, de-

termined by the condition ch[y(z 1,2)] shρ = 1 (Figure 3, d

and e). In these points the magnetization is parallel to the

”
hard-axis“ of bulk anisotropy: m(g) = (0, 0,−1).

Cases in Figure 3, a−e are similar to those in Figu-

re 1, a−e. Ranges of values of the surface field, given

in text to Figure 3, a−e, exactly coincide with the same

in Figure 1, a−e.

At strong surface anisotropy |h| > ch−1 ρ the component

m(g)
3 in center of soliton after reflection changes the sign

(see (12), (25)). This means that as results of interaction

of soliton (25) with the sample boundary in inclination of

a

b

zz0

z0 z

Figure 5. Spins location in pulsed soliton — breather — on background of helical structure (18) far from sample boundary at time

moments a) t = 0 and b) t = T/2, whereT — period of pulsations.

spins towards the boundary or from the boundary changes

to opposite (Figure 4, a and b). Just at the moment t = t0 of
soliton collision with the sample surface the magnetization

component m(g)
3 = 0, and, hence, spins in the entire sample

lie in plane Oxy . In soliton, built in the helical structure,

the spins inclination (towards the sample boundary or

from it) depends on sign of parameters h and c0 like in

”
seed“ soliton in ferromagnetic with homogeneous ground

state.

Note that unlike the case of small fields |h| < ch−1 ρ,

in strong filds |h| > ch−1 ρ the direction of turning of

soliton (25) during reflection from the sample boundary

does not change. In localization region of soliton the

spiral pitch (18) at c0 > 0 (c0 < 0) both before, and after

soliton collision with the sample boundary is increased

(decreased) as compared to pitch of the helical structure

(compare formulas (12), (18)).
As a conclusion let’s discuss the chiral breather. The

breather solution of the easy-plane ferromagnetic [38,39]
under action of conversion (25) transits into pulsed soliton

on the background of helical structure (18). Figure 5, a

and b schematically shows such soliton far from sample

edge (at z ≫ 1) at time moments t = 0 and t = T/2, where

T = 2π/ω — period of pulsations. In center of soliton —

point z 0 — the magnetization component m(g)
3 reaches

the extreme value, and the vector m(g)(z , t) periodically

changes inclination from the direction towards the sample

boundary to the direction into the sample. In the soliton

the stretching regions of the helical structure alternate with

compression regions. In Figure 5, a at t = 0 to the right

of the center of soliton (in region z > z 0) the helical

structure is stretched, and to the left of the center (in
region z < z 0) — it is compressed. After half-period of

oscillations, at t = T/2 (Figure 5, b) the spiral stretching at

right of the center of soliton changes by its compression,

and compression of spiral to the left of the center of soliton

changes by stretching. At that the projection m(g)
3 both to

the right, and to the left of the center periodically changes

the sign to opposite.

Besides, heterogeneity of the precession of magnetization

and pulsations in the breather core result in small longitudi-

nal oscillations of soliton along the axis of magnetic spiral.

They are not shown in Figure 5.
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4. Conclusion

Method of inverse scattering problem in combination

with the special conversion of solutions of model of semi-

infinite ferromagnetic with the ground state used to prepare

and to analyze the new class of explicit solutions of

Landau−Lifshitz equation describing distribution spreading

of dispersive waves and solitons along the helicoidal struc-

ture of the semi-infinite inverse scattering ferromagnetic

with anisotropy of
”
easy-plane“ type. At sample boundary

the boundary condition was considered, it corresponds to

partial securing of the helicoidal structure. Its boundary

cases correspond to free edge spins and complete securing

of magnetization at the sample boundary. Soliton-like nuclei

of the helicoidal phase on the background of homogeneous

distribution of magnetization in the semi-infinite ferroma-

gentic with anisotropy of
”
easy axis“ type can also be

studied using the suggested approach. For this it is sufficient

to use formulas in paper [37] for solitons in semi-infinite

easy-axis ferromagnetic with homogeneous ground state.

If Dzyaloshinski interaction is absent the easy-plane ferro-

magnetic has two classes of solitons. One of them comprises

turning waves of magnetization, which remind the moving

180- domain walls. Second type of solitons — pulsed

solitons with magnetization precession near the
”
easy-plain“.

Dzyaloshinski interaction determines the formation of the

helicoidal structure and built-in solitons. It is important

that chiral solitons are inseparable from the helical structure.

They succeed some features of solitons of the ferromagnetic

with homogeneous ground state and obtain new features. If

the turning waves with different turning of magnetization

on the background of homogeneous state of medium have

same energy, then corresponding to them chiral turning

waves significantly differ in core structure, and hence, in

energy. The energy of the magnetic soliton in the helicoidal

structure shall mean the difference between the energy of

system with soliton in it and energy of helicoidal ground

state of medium without soliton. The correct calculation of

such energy — is theme of separate study. Dependence of

energy of chiral solitons on the parameters of the helicoidal

structure and surface anisotropy shall be considered, for

example, when describing the thermodynamic properties of

solitons system in semi-infinite sample.

It is determined that structure of chiral turning

waves (7), (25) after reflection from the sample surface

depends in threshold manner on the amplitude of the

surface field h. Besides,
”
deformation“ of soliton core at the

time of the collision with the sample surface significantly

depends on sign of h. The chiral breathers, unlike the

chiral turning waves, have characteristic frequencies of

internal pulsations. So, the breathers can be detected by

the resonance absorption of energy at frequencies of their

oscillations.

All types of solitons in the helicoidal structure are mov-

able particle-like objects. The experimental confirmation of

regularities of their elastic reflection from sample boundaries

determined during study is actual.

Collision of chiral solitons with sample surface is ac-

companied by significant change in their internal struc-

ture and dynamic properties, and also by processes of

medium remagnetization by value equal to about saturation

magnetization. So, the chiral solitons in semi-infinite

sample can not be described by the traditional method

of perturbation theory for infinite medium. This supposes

sufficient
”
hardness“ of soliton cores and small changes of

their properties under effect of perturbations.

The study results shall be considered during modeling of

soliton processes near surface of actual ferromagnetics with

helicoidal structure. The obtained analytical solutions are

useful for numerical calculations verification.
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