08

Особенности магнитного поведения наноматериалов на основе ферритов висмута

© Н.А. Ломанова, С.Г. Ястребов

Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

E-mail: natus@mail.ioffe.ru

Поступила в Редакцию 30 апреля 2024 г. В окончательной редакции 28 октября 2024 г.

Принята к публикации 30 октября 2024 г.

В работе изучены магнитные свойства нанокристаллических материалов на основе перовскитоподобного $(BiFeO_3)$ и муллитоподобного $(Bi_2Fe_4O_9)$ ферритов висмута. Образцы $BiFeO_3$ и $Bi_2Fe_4O_9$ синтезированы методом растворного горения и имеют средние размеры кристаллитов 48 ± 2 и 60 ± 3 nm, соответственно. При комнатной температуре они находятся в магнитоупорядоченном состоянии и имеют более высокую суммарную намагниченность по сравнению с литературными данными о наноматериалах аналогичного состава, которая, при этом, выше у материала на основе Bi₂Fe₄O₉. Оба материала имеют похожий характер экспериментальных зависимостей намагниченности от температуры и их анализ может быть выполнен с использованием модели Хилла. Показано, что представленная модель полезна для прогнозирования температурного поведения намагниченности ферритов висмута различной структуры и представляет интерес в сфере разработки перспективных магнитных сред.

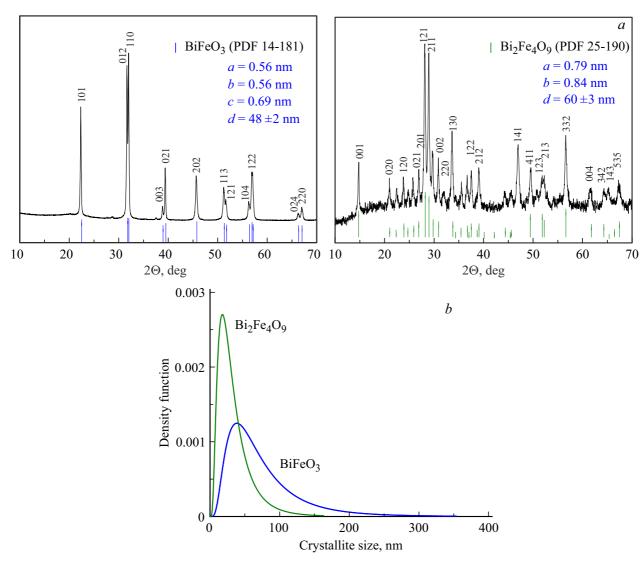
Ключевые слова: нанокристаллы, глицин-нитратное горение, магнитные свойства, модель Хилла.

DOI: 10.61011/FTT.2024.12.59580.6517PA

Введение

Ферриты висмута, $BiFeO_3$ и $Bi_2Fe_4O_9$, представляют интерес для различных областей наноэлектроники, поскольку являются полупроводниками, перспективными магнитными материалами, в частности, мультиферроиками. Важно, что перовскитоподобный ортоферрит висмута (BiFeO₃) — высокотемпературный мультиферроик, имеющий температуру перехода в магнитоупорядоченное состояние выше комнатной (температура Нееля $T_N = 640 \,\mathrm{K}$ [1]), что позволяет использовать этот материал при нормальных условиях.

Объемный BiFeO₃ является антиферромагнетиком и обладает пространственной модуляцией намагниченности (спиновая циклоида с периодом $\lambda_C = 62\,\mathrm{nm}$), подавление которой является одной из важных технологических задач и происходит, в частности, при уменьшении размеров частиц [2,3]. Феррит висмута Ві₂Fе₄O₉ имеет муллитоподобную структуру и в объемном виде ниже комнатной температуры является антиферромагнетиком с $T_N = 237 - 265 \,\mathrm{K}$ [4]. Слабый ферромагнетизм в этих материалах возникает из-за скоса антиферромагнитных подрешеток железа и реализации обменного взаимодействия Дзялошинского-Мория [5,6].


О перспективах использования наноматериалов на основе ферритов висмута существует много работ (см. обзор [2] и ссылки в нем). В наноразмерной форме эти материалы обладают повышенным магнитным откликом [3,7,8]. Это вызвано размерными и поверхностными эффектами в нанокристаллах, проявляющимися в увеличении общей намагниченности за счет скоса спинов на поверхности частиц.

При переходе в наноразмерную область повышается роль размерных и поверхностных эффектов наночастиц, которые сильно влияют на свойства и зависят от технологии получения этих материалов [2,3,8]. Такие возможности, как управление функциональным откликом, в частности, магнитным поведением ферритов висмута [8], посредством изменения состава, морфологии и химической предыстории исходной композиции, позволяет этой области материаловедения активно развиваться на протяжении десятилетий.

Изучение температурного поведения намагниченности важно для понимания процессов, происходящих в этих материалах, поскольку оно открывает возможность для управления магнитными характеристиками до температур, превышающих комнатную. Целью работы было исследование магнитных характеристик нанокристаллических ферритов висмута, BiFeO₃ и Bi₂Fe₄O₉, и анализ полученных данных с помощью теоретической модели, позволяющей прогнозировать температурное поведение намагниченности ферритов висмута различной структуры.

Синтез и характеризация образцов

Образцы BiFeO₃ и Bi₂Fe₄O₉ синтезированы методом глицин-нитратного горения. Подробно методика синтеза описана в работах [7-9]. Фазовый состав образцов определен на дифрактометре Rigaku SmartLab 3 (CuKαизлучение). Рентгеновские дифрактограммы образцов приведены на рис. 1, а. Согласно данным РФА, основные продукты в образцах изоструктурны ромбоэдрической

Рис. 1. Рентгеновские дифрактограммы (a) и распределение кристаллитов по размерам (b).

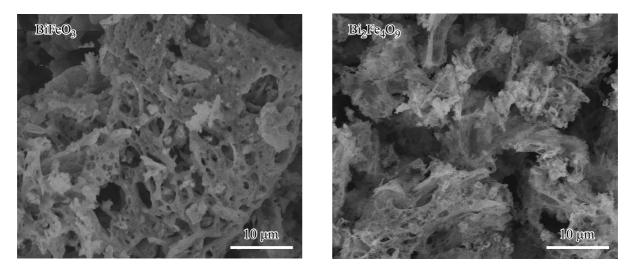
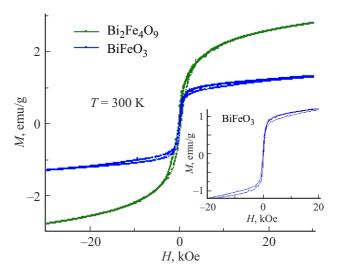


Рис. 2. SEM-изображения полученных материалов.

фазе BiFeO₃ (PDF 14-181) и орторомбической фазе Bi₂Fe₄O₉ (PDF 25-90), примесных фаз не зафиксировано. Средний размер кристаллитов, определенный по основным рефлексам BiFeO₃ (012/110) и Bi₂Fe₄O₉ (121/211), приведен на рис. 1, а. Распределение кристаллитов по размерам определялось в приближении логнормального закона распределения в программном комплексе SmartLab по модели Halder-Wagner и приведено на рис. 1, b. Микроструктура полученных материалов приведена на рис. 2 и определялась на сканирующем электронном микроскопе FEI Quanta 200. Определено, что полученные порошки представляют собой пористые агрегаты частиц, сформировавшиеся в результате интенсивного газообразования при горении исходных композиций.

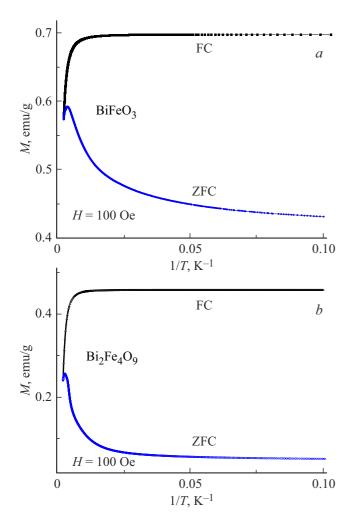

Полевые и температурные зависимости намагниченности M измерялись на вибрационном магнитометре системы PPMS (Quantum Design). Зависимости M(H) определялись при 300 К. Зависимости M(T) измерены при внешнем магнитном поле 100 Ое.

3. Результаты магнитных исследований

Кривые намагничивания M(H) обоих материалов, представленные на рис. 3, имеют гистерезис при комнатной температуре, что свидетельствует об их магнитоупорядоченном состоянии. Форма петли гистерезиса $BiFeO_3$ имеет тип "осиной талии". Такой тип характерен для смеси многодоменных и однодоменных частиц с преобладающей многодоменной фазой [10], что согласуется с распределением частиц по размерам (рис. 1, b).

Кривые M(H) не выходят на насыщение, хотя кривая $\operatorname{BiFeO_3}$ близка к этому, что указывает на наличие суперпарамагнитного вклада в общий магнитный отклик образцов. Как свидетельствует распределение кристаллитов по размерам (рис. 1,b), порошки представляют собой ансамбль наночастиц различной дисперсности. Мелкодисперсная фракция в образцах может быть образована либо веществом рентгеноаморфной части продуктов синтеза, либо областями поверхности частиц. Ненасыщающее поведение петли предполагает наличие конкурирующих антиферромагнитных взаимодействий в наночастицах ферритов висмута, имеющих упорядоченное $\mathrm{A\Phi M}$ -ядро и некомпенсированные спины на поверхности [11].

Можно видеть, что образец $BiFeO_3$ имеет меньшую суммарную намагниченность по сравнению со вторым образцом. Помимо влияния состава (меньшее количество магнитных катионов), более слабый магнитный отклик образца $BiFeO_3$ связывается с наличием спиновой циклоиды, подавляющей намагниченность. Хотя, как показано в предыдущей работе [12], эта магнитная структура сохраняется и в наночастицах ортоферрита висмута со средним размером кристаллитов $d > \lambda c$, поскольку существует распределение частиц по размерам. Следует


Рис. 3. Зависимости намагниченности M образцов от внешнего магнитного поля H. На вкладке кривая M(H) BiFeO₃, измеренная при 300 K в малых полях.

отметить, что величина M обоих образцов больше по сравнению с материалами аналогичного состава с близкими значениями d, указанными в работах [3,13,14] при той же величине H. Большие значения M в таких образцах фиксируются обычно при размере частиц менее 15-20 nm [3,15]. В нашем эксперименте при $300 \, \mathrm{K}$ и $20 \, \mathrm{kOe}$ зафиксированы значения M=1.2 и $2.5 \, \mathrm{emu/g}$ для $\mathrm{BiFeO_3}$ и $\mathrm{Bi_2Fe_4O_9}$, соответственно.

На рис. 4 приведены температурные зависимости намагниченности образцов, построенные для более детального обсуждения, в координатах Аррениуса. Можно видеть, что для материалов различной структуры ход экспериментальных зависимостей намагниченности аналогичен и может быть описан в рамках одной теоретической модели. Вблизи низких значений аргумента (около комнатной температуры) кривые FC/ZFC имеют типичное для нанопорошком расхождение. Обнаружено, что кривые FC можно эффективно аппроксимировать с помощью функции Хилла (1). Такое совпадение представляется очевидным, поскольку процесс изменения намагниченности определяется температурой и взаимодействием соседних наночастиц материала, напоминающем образование или разрушение связи между ближайшими соседними гранулами, что типично также и для некоторых биологических объектов. Подгоночные параметры в этом случае можно использовать для количественной характеризации магнитных свойств материалов различного состава

$$M(x) = M_m \frac{x^n}{k^n + x^n},\tag{1}$$

где M — намагниченность, M_m — максимальное значение, достигаемое M с ростом температуры, x=1/T — обратная температура, n — коэффициент Хилла, k — константа, определяющая значение функции на половине ее высоты.

Рис. 4. Зависимости намагниченности образцов BiFeO₃ (a) и Bi₂Fe₄O₉ (b) от обратной температуры.

Кривая FC образца $BiFeO_3$ (рис. 4, a) аппроксимирована моделью Хилла со следующим набором параметров: $M_m = 0.7$, k = 0.001, n = 2.32. Для образца ${\rm Bi_2Fe_4O_9}$ (рис. 4, b) использованы следующие параметры: $M_m = 0.46$, k = 0.002, n = 3.29. Можно видеть, что большая величина M_m при повышении температуры достигается в материале на основе BiFeO₃, имеющем меньшее среднее значение d. При этом, для этого образца характерно также меньшее значение n, которое характеризует формирование суммарного магнитного отклика и резкость падения FC/ZFC намагниченности с ростом температуры вследствие того, что в материале больше несвязанных магнитных моментов. Это согласуется с его более широким распределением кристаллитов по размерам (рис. 1, b), свидетельствующем, что в образце ВіГеО₃ большее содержание ультрадисперсной фракции.

Ход кривых FC указывает, что магнитное поле упорядочивает магнитные моменты частиц и они выстраиваются по полю. Температура оказывает разупорядочивающее действие на суммарный магнитный момент в локальном окружении более крупных частиц. При дальнейшем уменьшении обратной температуры возникает эффект разупорядочения ориентации магнитных моментов, приводящий к уменьшению намагниченности.

Поведение кривых ZFC показывает, что в низкотемпературной области соседние взаимодействующие частицы находятся в состоянии с минимумом энергии, т.е. их суммарные магнитные моменты скомпенсированы (антипараллельная ориентация). С увеличением температуры происходит разупорядочивание магнитных моментов частиц меньшего размера, и суммарная намагниченность ансамбля наночастиц возрастает.

ZFC-зависимости, отстроенные в координатах Appeниуса, далеки от линейности, что свидетельствует о нелинейном характере взаимодействия соседних наночастиц. Для обоих образцов эти зависимости достигают максимума в области низких значений аргумента, т.е. высоких температур. При дальнейшем увеличении температуры, зависимости претерпевают падение. Так, для ВіГеО₃ температура, после достижения которой начинается нисходящий тренд в поведении экспериментальной зависимости, равна $250\,\mathrm{K}$. Для образца $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ эта температура достигает 300 К. Эта особая точка на зависимостях, по-видимому, характеризует начало трансформации магнитных свойств в парамагнитное состояние. В эксперименте зафиксировано разное распределение по размерам кристаллитов в этих образцах (рис. 1, b). Более широкое распределение для образца ВіFeO₃ объясняет нахождение части его вещества в магнитоупорядоченном состоянии при комнатной температуре.

Таким образом, построение Аррениуса функции намагниченности образцов ${\rm BiFeO_3}$ и ${\rm Bi_2Fe_4O_9}$ позволяет выявить наличие максимума, характеризующего начало перехода этих материалов в парамагнитное состояние. Зависимость FC от обратной температуры удается количественно описать моделью Хилла, параметры которой позволяют сравнивать магнетики различного состава и структуры.

4. Заключение

Методом глицин-нитратного горения синтезированы нанокристаллические материалы на основе $BiFeO_3$ и $Bi_2Fe_4O_9$ с размерами кристаллитов 48 и 60 nm. Образцы обладают магнитным порядком при комнатной температуре и более высокой намагниченностью по сравнению с материалами аналогичного состава. При $300~\rm K$ и $20~\rm kOe$ значения намагниченности для $BiFeO_3$ и $Bi_2Fe_4O_9$ составляют 1.2 и 2.5 emu/g, соответственно. Показано, что температурное поведение намагниченности количественно описывается моделью Хилла, параметры которой выявляют отличия в величинах достигаемой максимальной величины намагничивания и характере связывания магнитных моментов. Полученный результат позволяет прогнозировать магнитное поведение материалов на основе ферритов висмута различной

структуры при повышении температуры, что полезно для создания новых магнитных сред.

Благодарности

Авторы благодарят Волкова Михаила Павловича (ФТИ им. А.Ф. Иоффе РАН) за магнитометрию образцов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.Р. Акбашев, А.Р. Кауль. Успехи химии **80**, *12*, 1211 (2011).
- [2] J. Wu, Zh. Fan, D. Xiao, J. Zhu, J. Wang. Progr. Mat. Sci. 84, 335 (2016).
- [3] T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong. Nano Lett. 7, 766 (2007).
- [4] M. Pooladi, I. Sharifi, M. Behzadipour. Ceram. Int. 46, 18453 (2020).
- [5] И.Е. Дзялошинский. ЖЭТФ 32, 1547 (1957).
- [6] T. Moriya. Phys. Rev. B 120, 91 (1960).
- [7] N.A. Lomanova, I.V. Pleshakov, M.P. Volkov, S.G. Yastrebov, K. Kenges, V.L. Ugolkov, A.V. Osipov, Siyuan Tao, I.V. Buryanenko, V.G. Semenov. Inorg. Chem. Commun. 161, 112109 (2024).
- [8] N.A. Lomanova, V.V. Panchuk, V.G. Semenov, I.V. Pleshakov, M.P. Volkov, V.V. Gusarov. Ferroelectrics 569, 1, 240 (2020).
- [9] A.A. Ostroushko, I.D. Gagarin, E.V. Kudyukov, T.Yu. Zhulanova, A.E. Permyakova, O.V. Russkikh. Nanosyst.: Phys. Chem. Math. 14, 571 (2023).
- [10] T. Magno de Lima Alves, B.F. Amorim, M.A. Morales Torres, C.G. Bezerra, S.N. de Medeiros, P.L. Gastelois, L.E. Fernandez Outon, W.A. de Almeida Macedo. RSC Adv. 7, 22187 (2017).
- [11] N.S. Parvathy, R. Govindaraj. Sci. Rep. 12, 4758 (2022).
- [12] N.E. Gervits, A.V. Tkachev, S.V. Zhurenko, A.V. Gunbin, A.V. Bogach, N.A. Lomanova, D.P. Danilovich, I.S. Pavlov, A.L. Vasiliev, A.A. Gippius. Phys. Chem. Chem. Phys. 25, 37, 25526 (2023).
- [13] S.A.N.H. Lavasani, O. Mirzaee, H. Shokrollahi, A.K. Moghadam, M. Salami Ceram. Int. 43, 12120 (2017).
- [14] Q. Zhang, W. Gong, J. Wang, X. Ning, Zh. Wang, X. Zhao, W. Ren, Zh. Zhang. J. Phys. Chem. C 115, 25241 (2011).
- [15] O.V. Proskurina, K.I. Babich, S.M. Tikhanova, K.D. Martinson, V.N. Nevedomskiy, V.G. Semenov, R.Sh. Abiev, V.V. Gusarov. Nanosystems: Phys. Chem. Math. 15, 3, 369 (2024).

Редактор К.В. Емцев