Интеграл Лайона: турбулентная теплопроводность и толщина теплового подслоя

© И.А. Давлетшин

03

Институт энергетики и перспективных технологий, ФИЦ "Казанский научный центр РАН", Казань, Россия E-mail: davlet60@mail.ru

Поступило в Редакцию 4 июня 2024 г. В окончательной редакции 10 сентября 2024 г. Принято к публикации 10 сентября 2024 г.

Проведен расчет коэффициента теплоотдачи на основе интеграла Лайона по двухслойной модели (тепловой подслой и турбулентное ядро потока). Для определения турбулентной теплопроводности использована модель пути смешения Прандтля. В рамках сделанных допущений интеграл Лайона имеет довольно простой вид. Путем его численного интегрирования получено распределение коэффициента теплоотдачи в зависимости от параметра Re \sqrt{Pr} , которое хорошо согласуется с соотношением для турбулентной теплоотдачи Диттуса–Боэлтера.

Ключевые слова: интеграл Лайона, турбулентная теплопроводность, тепловой подслой, длина пути смешения.

DOI: 10.61011/PJTF.2025.02.59554.20010

Интеграл Лайона как один из частных случаев уравнения энергии при определенных условиях находит применение в оценке коэффициента теплоотдачи в различных течениях [1,2]. В основном этот интеграл рассматривается в виде

$$\frac{1}{\mathrm{Nu}} = 2 \int_{0}^{1} \left(\int_{0}^{R} UR dR \right)^{2} / \left[\left(1 + \frac{\mathrm{Pr}}{\mathrm{Pr}_{t}} \frac{v_{t}}{v} \right) R \right] dR,$$

где Nu = $2\alpha r_0/\lambda$ — число Нуссельта (α — коэффициент теплоотдачи), $R = r/r_0$ — безразмерный радиус (r_0 радиус канала), $U = u/U_m$ — безразмерная продольная скорость (U_m — среднерасходная скорость), Pr и Pr_t число Прандтля (молекулярное и турбулентное), ν и ν_t — кинематическая вязкость (молекулярная и турбулентная).

Считается, что использование турбулентного числа Прандтля обеспечивает связь между процессами переноса импульса и теплоты в этом соотношении. Однако определение этого параметра является весьма сложной задачей, и попытки его моделирования и даже экспериментального измерения приводят к громоздким выражениям и неоднозначным результатам [3]. При этом само интегрирование предлагается проводить по трем слоям (вязкий подслой, переходная область и ядро потока). В некоторых случаях считается возможным ограничиться двухслойной моделью (вязкий подслой и ядро потока).

Настоящая работа посвящена определению коэффициента теплоотдачи для турбулентного потока в круглой трубе на основе "более простой" (исходной) формы интеграла Лайона:

$$\frac{1}{\mathrm{Nu}} = 2 \int_{0}^{1} \left(\int_{0}^{R} UR dR \right)^{2} / \left[\left(1 + \frac{\lambda_{t}}{\lambda} \right) R \right] dR,$$

где λ — молекулярная теплопроводность рабочей среды, $\lambda_t = c_p \rho \langle v't' \rangle / (dt/dy)$ — турбулентная теплопроводность потока (угловыми скобками обозначено осреднение), у — поперечная координата (от стенки), v' — поперечные пульсации скорости, t и t' — температура потока и ее пульсации.

Дополнительно к тем условиям, при которых был получен интеграл Лайона, данная задача будет решаться при следующих допущениях.

1. Рассматривается двухслойная модель потока: тепловой подслой (подслой молекулярной теплопроводности) и ядро потока.

2. В ядре потока используется турбулентный профиль скоростей по закону "1/7".

3. Справедлива модель пути смешения Прандтля как для гидродинамических возмущений потока, так и для тепловых. При этом соотношение между ними $l_m/l_{mT} \approx \sqrt{\Pr}$ (по аналогии с толщинами развивающихся пограничных слоев $\delta/\delta_T \approx \sqrt{\Pr}$).

4. Пульсации скорости v' и температуры t' жестко коррелированы между собой (коэффициент корреляции между ними $r_{vt} \approx 1$). Турбулентность изотропна. Следует отметить, что жидкие металлы ($\Pr \ll 1$) здесь не рассматриваются.

5. Толщина теплового подслоя у 1 $\approx \delta 1/\Pr^{1/3}$ ($\delta 1$ — толщина вязкого подслоя) [4].

6. Трение на стенке определяется формулой Блазиуса.

Таким образом, интеграл Лайона будет иметь вид

$$\frac{1}{\mathrm{Nu}} = 2 \int_{0}^{R_{1}} \left(\int_{0}^{R} URdR \right)^{2} / \left[\left(1 + \frac{\lambda_{t}}{\lambda} \right) R \right] dR$$
$$+ 2 \int_{R_{1}}^{1} \left(\int_{0}^{R} URdR \right)^{2} / R \cdot dR.$$

Здесь имеется в виду, что в тепловом подслое $(R1 \leqslant R \leqslant 1)$ турбулентная теплопроводность $\lambda_t = 0$. Коэффициент теплоотдачи Nu будет тем выше, чем больше величина λ_t . Согласно допущению 2, $u/U_0 = (y/r_0)^{1/7}$, где максимальная скорость на оси канала $U_0 = 1.22 U_m$. В принятой системе координат $Y = y/r_0 = 1 - R$. Тогда интеграл в числителе (обозначим как I) будет иметь вид

$$I = \int_{0}^{R} URdR = \int_{0}^{R} 1.22(1-R)^{1/7} RdR$$
$$= 1.22 \left[\frac{7(1-R)^{15/7}}{15} - \frac{7(1-R)^{8/7}}{8} - \frac{7}{15} + \frac{7}{8} \right].$$

С отклонениями в пристеночной области ±5% найденный интеграл во всем диапазоне $0 \leq R \leq 1$ может быть аппроксимирован соотношением $I = 0.52R^2$. Тогда

$$\frac{1}{\mathrm{Nu}} = 2 \int_{0}^{1} 0.52^{2} R^{4} / \left[\left(1 + \frac{\lambda_{t}}{\lambda} \right) R \right] dR$$
$$= 0.54 \int_{0}^{R_{1}} R^{3} / \left(1 + \frac{\lambda_{t}}{\lambda} \right) dR + 0.54 \int_{R_{1}}^{1} R^{3} dR.$$

Рассмотрим знаменатель (обозначим Z) в подынтегральном выражении

$$Z = 1 + \frac{\lambda_t}{\lambda} = 1 + c_p \rho \frac{\langle v't' \rangle}{\lambda \partial t / \partial y}$$

Здесь все параметры представлены в размерном виде, их можно перевести в безразмерный вид с помощью характерных величин $V' = v'/U_0$, $T' = t'/(T_f - T_w) = t'/\Delta T$, $Y = y/r_0$. Тогда

$$\langle v'/t' \rangle = U_0 \Delta T \langle V'T' \rangle, \quad dt/dy = \Delta T/r_0 dT/dY.$$

Отсюда

$$Z = 1 + c_p \rho \frac{U_0 r_0 \langle V'T' \rangle}{\lambda \partial T / \partial Y}$$

При

$$\operatorname{Re} = \rho U_m d / \mu = 2\rho U_0 r_0 / (1.22\mu)$$

получим

$$Z = 1 + 0.61 \text{RePr} \frac{\langle V'T' \rangle}{\partial T / \partial Y}$$

Письма в ЖТФ, 2025, том 51, вып. 2

Согласно допущению 3, для изотропной турбулентности $v' \sim u' = l_m du/dy$ ($l_m = 0.4y$ — длина пути смешения). По аналогии с пульсациями потока представим пульсации температуры: $t' = l_{mT} dt/dy$ (l_{mT} — длина пути смешения для температурных возмущений), где $l_{mT} \approx l_m / \sqrt{\Pr}$. Тогда комплекс параметров, входящий в определение турбулентной теплопроводности, с учетом допущения 4 будет иметь вид

$$\frac{\langle V'T'\rangle}{\partial T/\partial Y} = \frac{0.4Y(dU/dY)0.4Y(dT/dY)}{\sqrt{\Pr}(dT/dY)} = \frac{0.16Y^2(dU/dY)}{\sqrt{\Pr}}.$$

Отметим, что допущение 4 представляется возможным, если отсутствуют не зависящие от возмущений потока пульсации температуры стенки или теплового потока q_w . Тогда

$$Z = 1 + \frac{\lambda_t}{\lambda} = 1 + 0.61 \text{Re}\sqrt{\text{Pr}} \cdot 0.16Y^2 \frac{\partial U}{\partial Y}$$

скоростей Лля профиля закону **,,**1/7": по $dU/dY = d/dY(Y^{1/7}) = Y^{-6/7}/7$. Отсюда с учетом Y = 1 - R имеем $Z = 1 + 0.014 \text{Re}\sqrt{\text{Pr}(1 - R)^{8/7}}$. Таким образом, интеграл Лайона

$$\frac{1}{\text{Nu}} = 0.54 \int_{0}^{R_{1}} \frac{R^{3}}{1 + 0.014 \text{Re}\sqrt{\text{Pr}(1-R)^{8/7}}} dR$$
$$+ 0.54 \int_{R_{1}}^{1} R^{3} dR.$$
(1)

В имеющихся работах обычно используется разделение пограничного слоя по динамическим параметрам. Однако при рассмотрении процесса передачи тепла логичным выглядит использование их тепловых аналогов. В связи с этим в настоящей работе вместо "вязкого подслоя" используется "тепловой подслой". В рамках двухслойной модели вязкий подслой будем считать ограниченным толщиной уU_т/v < 10. Для определения границы вязкого подслоя воспользуемся формулой Блазиуса $\xi = 0.3164/{\rm Re}^{0.25}$. Тогда динамическая скорость $U_{\tau} = (\tau/\rho)^{0.5} = (c_f/2)^{0.5} U_m = 0.2 U_m/\text{Re}^{1/8}$, где коэффициент трения $c_f = \xi/4$. Отсюда для вязкого подслоя $Y < 10 \nu {
m Re}^{1/8}/(r_0 \cdot 0.2 U_m)$ или $Y < 100/{
m Re}^{7/8}$. Исходя допущения 5 будем считать, что в подслое толщиной $Y < 100/({\rm Re}^{7/8}{\rm Pr}^{1/3})$ передача тепла осуществляется только молекулярной теплопроводностью, а в ядре потока — и молекулярной, и турбулентной. Таким образом, граница теплового подслоя $R1 = 1 - 100/(\text{Re}^{7/8}\text{Pr}^{1/3})$ или $Y1 = 100/(\text{Re}^{7/8}\text{Pr}^{1/3})$. Эта граница может быть представлена как $Y1 = 100/((\text{Re}\sqrt{\text{Pr}})^{7/8}\text{Pr}^{-0.1})$. Такая запись указывает на зависимость толщины подслоя как от величины $\operatorname{Re}\sqrt{\operatorname{Pr}}$, так и отдельно от значения Pr. Подынтегральные выражения здесь по сути являются распределением термического сопротивления (в условных единицах) по радиусу трубы, а сам интеграл — общим

Результаты расчета

$Re\sqrt{Pr}$	Y1	Nu
$5\cdot 10^3$	$5.8\cdot10^{-2}$	24
10^{4}	$3.2\cdot10^{-2}$	39
10 ⁵	$4.2 \cdot 10^{-3}$	218
10^{6}	$5.6 \cdot 10^{-4}$	1325
10 ⁷	$7.5 \cdot 10^{-5}$	8894

термическим сопротивлением потока. При этом итоговое выражение интеграла Лайона оказалось довольно простым (без громоздких эмпирических соотношений). Результаты численного интегрирования соотношения (1) для сред с умеренными значениями числа Прандтля ($Pr^{-0.1} \sim 1$) представлены в таблице и на рис. 1, 2. Как видно из рис. 1, максимальные значения термического сопротивления достигаются в пристеночной области канала $Y \rightarrow 0$ ($R \rightarrow 1$). С ростом $\text{Re}\sqrt{\text{Pr}}$ соотношение между термическими сопротивленияями теплового подслоя и ядра потока заметно меняется: от 77 и 23% при $\text{Re}\sqrt{\text{Pr}} = 5 \cdot 10^3$ до 40 и 60% при $\text{Re}\sqrt{\text{Pr}} = 10^7$.

Полученные данные по коэффициенту теплоотдачи (рис. 2) показывают явную связь с эмпирическим соотношением Диттуса–Боэлтера (Nu = $0.023(\text{Re}\sqrt{\text{Pr}})^{0.8}$). Отметим, что с формальной точки зрения в обоих соотношениях теплоотдача определяется одним и тем же параметром — $\text{Re}\sqrt{\text{Pr}}$. Имеющиеся отклонения порядка 8%, по-видимому, связаны с влиянием факторов, которые здесь не были учтены. В целом же полученное согласование может считаться вполне хорошим, а сделанные допущения физически оправданными, по крайне мере при $\text{Pr}^{-0.1} \sim 1$. В данном случае интеграл Лайона определяет коэффициент теплоотдачи как функцию турбулентной теплопроводности и толщины (термического сопротивления) теплового подслоя: Nu = $f(\lambda_t, y1)$, где в свою очередь $\lambda_t = f_1(\text{Re}, \text{Pr})$ и $y1 = f_2(\text{Re}, \text{Pr})$.

Рис. 1. Термическое сопротивление при $\text{Re}\sqrt{\text{Pr}} = 5 \cdot 10^3 (1)$ и $10^7 (2)$.

Рис. 2. Коэффициент теплоотдачи. 1 — интеграл (1), 2 — Nu = 0.023Re^{0.8}Pr^{0.4}.

Возможно, предложенный подход будет продуктивен и при оценке теплоотдачи в более сложных потоках, например, в каналах с различными интенсификаторами.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (№ 22-19-00507).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- И.Е. Лобанов, Вестн. Ангар. гос. техн. ун-та, 1 (14), 52 (2020). DOI: 10.36629/2686-777Х-2020-1-14-52-59
- [2] D. Taler, Procedia Eng., 157, 148 (2016).
 DOI: 10.1016/j.proeng.2016.08.350
- [3] П.Л. Кириллов, М.И. Терентьева, Турбулентное число Прандтля (история и современность) (ФЭИ, Обнинск, 2017). https://www.ippe.ru/images/publications/preprints/2018 /3271_kirillov.pdf
- [4] Р.И. Созиев, ТВТ, 33 (2), 252 (1995). https://www.mathnet.ru/ links/b0b0a3a9477ee3bd32d440bac62b4ad7/tvt2909.pdf
 [R.I. Soziev, High Temp., 33 (2), 250 (1995).].