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Multiple changes in the electron-phonon interaction in quantum wells

with dielectrically different barriers
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The specific features of the interaction of charged particles with polar optical phonons have been studied

theoretically for quantum wells with the barriers that are asymmetric in their dielectric properties. It is shown

that the interaction with interface phonon modes makes the greatest contribution in narrow quantum wells. The

parameters of the electron-phonon interaction were found for the cases of different values of the phonon frequencies

in the barrier materials. It turned out that a significant (by almost an order of magnitude) change in the parameters

of the electron-phonon interaction can occur in such structures. This makes it possible, in principle, to trace the

transition from weak to strong interactions in quantum wells of the same type but with different compositions

of barrier materials. The conditions are found under which an enhancement of the electron-phonon interaction is

possible in an asymmetric structure in comparison with a symmetric one with the barriers of the same composition.
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1. Introduction

Heterostructures fabricated of layers of materials of

various ionicity have come into common use in recent

years. In such structures, a number of new effects arise

due to the transfer of phonon polarization between layers.

In our previous papers [1,2] it was shown that in a quantum

well with barriers of ionic materials, a strong interaction of

charged particles with polar optical phonons may occur. At

that, the presence of intrinsic polar phonons localized in the

quantum well does not play any significant role.

On the other hand, heterostructures of the opposite type

are also of considerable interest to researchers — when the

quantum well is made of ionic material, and the barriers

are made of nonionic or weakly ionic material. Such

structures occur, primarily, when studying the extremely

narrow layers of dichalcogenides of transition metals [3].
In particular, significant discrepancy between the carriers

effective mass obtained from theoretical analysis and that

measured experimentally was noted [4,5]. In our opinion,

this discrepancy may be due to the fact that
”
polar“ mass of

electron was measured, which may significantly differ from

the
”
bare“ mass [6]. Earlier, other mechanisms of effective

mass change related to the symmetry of the structure

electronic states [7], the interline scattering of carriers

on phonons [8] and specifics of the carriers interlayer

interaction [9] were discussed. The mechanism outlined in

this paper for changing the carriers effective mass is typical

for any quantum wells based on ionic materials and, under

certain conditions, can lead to significantly greater changes

in its magnitude.

In this paper, the possibilities of changing the polaron

mass of carriers in quantum well nanostructures based

on ionic material are investigated. It is shown that for

different nonionic barriers, with the same composition of

ionic quantum well, significant changes in the magnitude

of the polaron mass of the carriers can be obtained. This

provides additional capabilities in studying the intrinsic

physical properties of thin layers of ionic materials. The

applicability of the proposed model to describe extremely

thin layers of transition metal dichalcogenides is discussed.

2. Interaction attenuation factor

Let’s consider a three-layer structure consisting of a nar-

row quantum well based on an ionic material surrounded by

two barriers for charge carriers. The width of the quantum

well a is suggested to be microscopic and exceeding the

lattice constant. Also, the non-ionic barriers are assumed

as microscopic. Such structure, of course, is not Van der

Waals structure [10]. However, in our opinion its properties

shall be taken into account also when studying the Van der

Waals structures.

In such a structure, carriers can interact with a very

large (formally infinite) number of polar phonon modes.

Therefore, the approach proposed by Pekar for bulk ma-

terials turns out to be a convenient method for describing

the electron-phonon interaction [11]. Further studies [12]
demonstrated that Pekar’s method provides a correct depen-

dence of polaron effects on the material parameters in cases

when interaction of charged particles with the phononic

branches has one and the same order of magnitude. It is this

case, that is implemented in this structure. The use of more

complex methods provides only a slight refinement of the

numerical coefficients in the formulas obtained. Following
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the data of [11], we will describe the phonon field by

the macroscopic potential of a polarized medium. Then,

Schrödinger equation for a charged particle in a quantum

well, taking into account the polarization of the medium,

may be written as

[
Ĥ0 + U(r) +

ε
(w)
opt

8π

∫

|z |<a/2

d3r
∣∣∇U(r)

∣∣2

+
ε

(b)
opt

8π

∫

|z |>a/2

d3r
∣∣∇U(r)

∣∣2
]
9(r) = E9(r), (1)

where Ĥ0 — Hamiltonian of an electron in the quantum

well neglecting the polarization, ε
(i)
opt =

[
1

ε
(i)
∞

− 1

ε
(i)
0

]−1
—

optical dielectric permittivity. Symbol i turns into value

”
w“ in the quantum well and

”
b“ in barriers, a — width

of the quantum well, axis z oriented perpendicular to the

well plane. Equation (1) obviously may be summarized for

the case of two different barriers. In this paper, we will

adhere to the case when the effect of barrier polarization

on the overall polarization of the structure can be ignored,

and assume ε
(b)
opt = 0. Let’s average out the expression (1)

on the unknown wave function of electron 9(r) and find

the extremum of the phonon field potential. This potential

satisfies the equation that is standard for the large-radius

polaron problem:

1U(r) =
4πe

ε
(w)
opt

∣∣9(r)
∣∣2; |z | < a

2
. (2)

This approach is applicable only if the radius of the polaron

exceeds the lattice constant. We will assume that a more

stringent condition is fulfilled when the radius of the polaron

turns out to be greater than the width of the quantum

well a , i. e.
r p > a . (3)

Then, in equation (1) the motion of the charged particles

along z axis is defined by the intrinsic potential of the

quantum well, and the full wave function may be presented

as a production of the two functions, one of which depends

only on z , and the other one depends on the 2D vector ρ

in the plane of the well:

|9(r)| = |ψ(z )|χ(ρ). (4)

By averaging the equation (1) in the wave function (4)
taking into account (3), we’ll obtain the polaron energy shift

1Epol as follows:

1Epol = − e2 f

2ε
(w)
opt

∫
d2
ρ
′ |χ(ρ′)|2
|ρ − ρ′| , (5)

where the dimensionless multiplier f is implied as a portion

of the transverse motion electron density limited by the

width of the quantum well:

f =

a/2∫

−a/2

dz
∣∣∣ψ(z )

∣∣∣
2

. (6)

From the 2D polaron theory [13] it is known that equa-

tion (5) may be solved through a universal dimensionless

function that was numerically calculated many times. At

that, additional multiplier f which appears in equation (5)
results in occurrence of the efficient interaction parameter

αeff = α0 f , where α0 —
”
bare“ dimensionless interaction

parameter. This value plays a decisive role in our review.

For a quantum well with infinite barriers, the transverse

motion wave function is localized inside the well, and the

parameter f = 1. At that, the equation (5) delineates the

standard energy of polaron shift in the two-dimensional

system [12]. But for any quantum well of finite depth this

parameter turns out to be less than a unit. This means that

the effective parameter of the electron-phonon interaction

decreases proportionally to the multiplier f and, depending

on the height of potential barriers, can take any values from

one to almost zero. It should be noted that in the review

the enhancement of the electron-phonon interaction [1,2],
taking into account the finite depth of the well, leads to

minor corrections, which, as a rule, may be ignored. Major

contribution to the enhanced interaction is provided by the

interface phonons and their properties. In this case, the

interaction of charged particles with interface phonons turns

out to be parametrically large.

In the reviewed case the situation turns out to be

quite opposite. Interaction with interface phonons is not

distinguished by anything [14] and practically does not affect

weakening of the total electron-phonon interaction. But the

”
leakage“ of the part of the electron density outside the

quantum well turns out to be important. It is this factor,

that leads to potential weakening of the interaction. We

don’t know any other mechanisms that could lead to a

weakening of the interaction of charged particles with polar

optical phonons in a quantum well made of ionic material.

As the simplest example, we can consider a rectangular

potential well with barriers of height u0. This problem was

studied in details in many books on quantum mechanics,

e.g., in book [15]. By using the well-known equations for

the wave function ψ(z ), we may obtain for the multiplier f
the following expression:

f =
q

q + 1

[
1 +

q
q2 + k2

]
, (7)

where

k =
a
√
2mEn

~
; q =

a
√
2m(u0 − En)

~
, (8)

En — value of n-th level of the electron energy in the well.
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For the states ψ(z ) symmetrical in terms of the wave

function the energy is found by solving the transcendental

equation

tg k =
q
k
, (9)

and for the antisymmetric states it is found from the

equation

tg k = − k
q
. (10)

It is interesting to mention, that dependence of the weak-

ening multiplier f on parameters q and k is defined by

equation (7) and remains the same for both types of states

from equations (9) and (10).

The multiplier f weakening the electron-photon interac-

tion from equation (7) depends on the carriers’ mass m∗,

quantum well width a and its depth u0. The position of

the electron energy level En turns out to be an auxiliary

parameter in this case, which is not included explicitly in

equation (7).

Figure 1 shows the dependencies of multiplier f on the

well depth u0 for several characteristic values of the well

width a .
As expected, a significant weakening of the electron-

phonon interaction occurs in sufficiently narrow and not too

deep potential wells when the height of the barrier is less

than the width of the band gap. For certainty, we used in

our calculations the value of
”
bare“ effective mass (in units

of the mass of the free electron m0) m∗ = 0.4m0. ”
The bare“

mass cannot be determined experimentally and is in a sense

a fitting parameter of the problem. This value was selected

because such mass corresponds to MoS2compound [16].

An effective mass close to this value is typical for a num-

ber of other transition metal dichalcogenide compounds.

Figure 2 illustrates the dependencies of the multiplier f
for the first excited state of the electron (if it can exist due

to the well parameters) on the well depth u0.

At that, the obtained values f with the same well

parameters turn out to be sufficiently less than for the

ground state of the electron. This means that within the

framework of our proposed model, the magnitude of the

electron-phonon interaction for excited states should be less

than for the ground state. In all the above calculations, the

condition of applicability of the proposed model (3) turned

out to be fulfilled.

3. Carriers polaron mass

The predictions of the proposed model can be experi-

mentally verified from measurements of the
”
polaron“ mass

of charge carriers in the considered structures. If there’s a

significantly strong electron-phonon interaction, the effective

mass of the carriers greatly depends on the dimensionless

interaction parameter α0. Analytical expressions for such a

dependence in two-dimensional systems are given in [17].
We believe that in the considered structures the expressions
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Figure 1. The dependencies of the weakening multiplier f on the

well depth u0 for the ground state of the electron in the quantum

wells of various width a .
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Figure 2. The dependencies of the weakening multiplier f on

the well depth u0 for the first excited state of the electron in the

quantum wells of various width a .

for the polaron mass of the charge carriers should include

an effective interaction parameter αeff equal to

αeff = f α0, (11)

which is less than the intrinsic parameter of the quantum

well material α0 because of the weakening multiplier f
from the equation (7). Then, the equations for the carriers

polaron mass outlined in paper [16] will look as follows:

mpol = m∗
(
1 +

π

8
αeff

)
by αeff < 1, (12)

mpol = 0.733m∗α4
eff by αeff > 1. (13)
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Figure 3. The dependencies of the carriers polaron mass mpol/m0

on the quantum well width a for the values of interaction intrinsic

parameter α0 ≤ 1.
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Figure 4. The dependencies of the carriers polaron mass mpol/m0

on the quantum well width a for the values of interaction intrinsic

parameter α0 > 1.

Figure 3 and 4 illustrate the dependencies of the polar mass

of carriersmpol on the quantum well width a for several

values of the interaction intrinsic parameter α0. ”
Cross-

linking“ of equations (12) and (13) occurs at αeff = 1.18,

which was taken into account. Certainly, the use of

formula (12) at αeff & 1 is not fully correct. But, since

corrections for the effective mass in the domain of weak

electron-phonon interaction are not high, it is unlikely it

may cause any significant errors in the given results.

From Figure 3 we may see that even at relatively low

interaction (α0 ≤ 1) there’s a visible dependence of the

polaron mass mpol on the quantum well width a . This

dependence turns out to be significant for compounds

with their intrinsic interaction parameter α0 exceeding one

(Figure 4). We believe that experimental confirmation of the

dependence of the carriers effective mass on the quantum

well width is the most realistic way to verify the proposed

model.

4. Results and discussion

In this paper, it is shown that in structures consisting of

an ion material quantum well surrounded by not very high

barriers of nonionic material, the effect of suppression of

the electron-phonon interaction inside the well occurs. The

magnitude of this suppression effect is calculated depending

on the height of the barriers and the width of the quantum

well. It is shown that this effect leads to a dependence of the

effective mass of the carriers on the structure parameters. A

particularly strong dependence is expected for compounds

for which the intrinsic parameter of the electron-phonon

interaction exceeds one.

It follows from our consideration that the effective mass of

carriers in the excited state should be less than in the ground

state due to decline in the magnitude of the weakening

multiplier f from equation (7). This effect is determined by

the general properties of wave functions in a finite depth

well and does not depend on the specific shape of the

quantum well. Because this effect was found experimentally

it may serve as an additional way of verifying the proposed

model.

5. Conclusion

Our problem was solved within the framework of a

continuum model, where the width of the quantum well

was considered as a continuous parameter. However, all

the approximations made in this paper make it possible

to apply the results also to an extremely narrow quantum

wells consisting of one or more monolayers of an ionic

compound. At that, the dielectric barriers should be

considered macroscopic. In particular, it should be expected

that, when using in the considered structures the layers

of transition metal dichalcogenides as a quantum well, the

dependence of the effective mass of carriers on the number

of layers may be observed. To quantify this effect, a more

accurate description of the shape and parameters of the

quantum well, as well as possible changes in the band

structure of multilayer materials [18], may be required.

However, in our opinion, the qualitative patterns obtained

in this study should be preserved. It should also be

emphasized that the results obtained cannot be used to

describe the properties of Van der Waals structures. That

being said, the predictions about the dependence of the

carriers’ effective mass on some parameters of the barriers

surrounding the well can also be useful for understanding

the properties of structures consisting of monoatomic layers

of various materials.

4 Semiconductors, 2024, Vol. 58, No. 7



354 A.Yu. Maslov, O.V. Proshina

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] A.Yu. Maslov, O.V. Proshina. FTP, 56 (1), 101 (2022). (in
Russian).

[2] A.Yu. Maslov, O.V. Proshina. Izv. RAN. Ser. fiz., 87 (6), 896
(2023). (in Russian).

[3] X. Hu, L. Yan, L. Ding, N. Zheng, D. Li, T. Ji, N. Chen, J. Hu.

Coord. Chem. Rev., 499, 215504 (2024).
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