Моделирование вольт-фарадных характеристик сегнетоэлектрика

© Л.С. Берман

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 15 марта 2005 г. Принята к печати 30 марта 2005 г.)

Выполнено моделирование параметров сегнетоэлектрика при отсутствии начальной поляризации. Сегнетоэлектрик легирован мелкой примесью. Один контакт образует барьер Шоттки, другой контакт — омический. Вычислено изменение электрического поля, потенциала, поляризации и диэлектрической проницаемости по толщине области объемного заряда. Показано, что значение диэлектрической проницаемости в слабом поле $\varepsilon_{\rm eff0}$ может быть определено по параметрам экспериментальной петли гистерезиса. В слабых полях ($E < 10^5$ В/см) значение диэлектрической проницаемости мало зависит от поля, поэтому при $E < 10^5$ В/см) значение диэлектрической проницаемости мало зависит от поля, поэтому при $E < 10^5$ В/см) значение зависимости квадрата обратной емкости от высоты потенциального барьера показало, что при малых напряжениях эта зависимость близка к линейной, что позволяет определить по ней концентрацию мелкой примеси. Вычислены зависимости толщины области объемного заряда и поляризации у контакта от высоты потенциального барьера. Результаты моделирования могут быть использованы при обработке результатов измерения.

1. Введение

В настоящее время тонкопленочные сегнетоэлектрики (СЭ) широко применяются в ряде схем электроники (см., например, [1–5]). Поэтому актуальна задача моделирования СЭ, позволяющая прогнозировать их параметры и таким образом избежать постановки сложных и дорогостоящих экспериментов. В работах [6–9] моделируется поведение неидеальных СЭ в различных электронных схемах. В работах [9–12] моделируется влияние блокирующего слоя на параметры СЭ.

В настоящей работе выполнено детальное моделирование параметров СЭ, легированного мелкими примесями, при отсутствии начальной поляризации. Такое моделирование позволяет получить дополнительную информацию о параметрах СЭ.

2. Постановка задачи. Расчеты

Примем, что сегнетоэлектрик легирован мелкими донорами в концентрации N_d . Поликристаллическая структура СЭ, его неоднородность и наличие структурных дефектов учитывались путем использования усредненных значений параметров (например, подвижности). На СЭ нанесен с одной стороны металл, образующий барьер Шоттки, а с другой — омический контакт. Тогда для СЭ можно использовать известные соотношения электростатики

$$D = \varepsilon_0 E + P, \tag{1}$$

$$\frac{d}{dx}D = \rho = qN_d,\tag{2}$$

где D — индукция, ε_0 — диэлектрическая проницаемость вакуума, E — электрическое поле, P — поляризация, x — координата, отсчитываемая от границы раздела между областью электрической нейтральности (ОЭН) и областью объемного заряда (ООЗ), ρ — плотность объемного заряда, q — заряд электрона. Дифференцируя (1) по *x*, получаем после преобразований

$$\frac{d}{dx}E = \frac{\rho}{\varepsilon_{\text{eff}}},\tag{3}$$

где эффективнная диэлектрическая проницаемость СЭ

$$\varepsilon_{\rm eff} = \varepsilon_0 + \frac{d}{dE} P.$$
 (4)

Аппроксимируем зависимость P(E) гиперболическим тангенсом [6]. Примем, что вначале СЭ был полностью деполяризован (P = 0), например, путем постепенного уменьшения амплитуды переменного напряжения. Тогда имеем

$$P = P_s \operatorname{th}\left(\frac{E}{2d}\right). \tag{5}$$

Здесь P_s — поляризация насыщения, параметр d определяется из выражения

$$d = E_c \left[\ln \left(\frac{1 + P_r / P_s}{1 - P_r / P_s} \right) \right]^{-1}, \tag{6}$$

где E_c — коэрцитивное поле, P_r — остаточная поляризация. Дифференцируя (5) по E, получаем

$$\frac{d}{dE}P = \frac{P_s}{2d[\operatorname{ch}(E/2d)]^2}.$$
(7)

На границе раздела между областью электрической нейтральности и областью объемного заряда выполняются условия для электрического поля, потенциала и поляризации соответственно

$$E = 0, \quad \psi = 0 \quad \text{if } P = 0.$$
 (8)

На интервале от границы раздела до металла (барьера Шоттки) численно интегрируем уравнение Пуассона с

шагом $\Delta x = w/n$, где w — толщина ООЗ, $n \gg 1$ — целое число. Первый шаг:

$$E_1 = dE_1 = \frac{qN_d}{\varepsilon_{\rm eff\,0}} \, \frac{w}{n},$$

где $\varepsilon_{\rm eff0} = \varepsilon_0 + P_s/2d$ — значение $\varepsilon_{\rm eff}$ в слабом поле (ср. $\varepsilon_{\rm eff0}$ с (4) и (7)). Значение $\varepsilon_{\rm eff0}$ может быть вычислено по экспериментальным значениям P_s и d. Потенциал, поляризация и диэлектрическая проницаемость, соответствующие E_1 :

$$\psi_1 = -E_1 \cdot \Delta x, \quad P_1 = P_s \operatorname{th}\left(\frac{E_1}{2d}\right),$$

 $\varepsilon_{\operatorname{eff} 1} = \varepsilon_0 + \frac{P_s}{2d[\operatorname{ch}(E_1/2d)]^2}.$

Далее используем рекуррентный метод: последующие значения параметров вычисляются через их предыдущие значения. Вычисляем значения E_n , ψ_n , P_n , D_n и $\varepsilon_{\text{eff}n}$, где индекс *n* соответствует значениям параметров на границе между СЭ и металлом. Далее определяем напряжение на диоде Шоттки V, заряд на металлическом контакте Q_m и емкость диода Шоттки C из соотношений

$$V + V_{bi} = \psi_n, \quad Q_m = -D_n, \quad C = \left| \frac{d}{dV} Q_m \right|, \quad (9)$$

где V_{bi} — контактная разность потенциалов между металлом и СЭ ($V + V_{bi} < 0$).

Результат интегрирования уравнения Пуассона можно также представить в виде [13]

$$V + V_{bi} = -qN_d \int_0^w \left[\varepsilon_{\text{eff}}(x)\right]^{-1} x \, dx. \tag{10}$$

В выражении (10) x отсчитывается от барьера Шоттки (а не от границы между ОЭН и ООЗ). Дифференцируя (10) по w, получаем

$$\frac{d|V|}{dw} = qN_d \int_0^w \frac{d}{dw} \left[(\varepsilon_{\text{eff}})^{-1} \right] x \, dx + qN_d w \left[\varepsilon_{\text{eff}}(w) \right]^{-1}, \quad (11)$$

где $\varepsilon_{\text{eff}}(w)$ — значение ε_{eff} на границе между ОЭН и ООЗ, т. е. в слабом поле, $\varepsilon_{\text{eff}}(w) = \varepsilon_{\text{eff}0}$.

С другой стороны, выполняется соотношение

$$dD_n = -dQ_m = qN_d A dw, \tag{12}$$

где А — площадь СЭ.

Отсюда имеем

$$\frac{1}{C} = \left| \frac{dV}{dQ_m} \right| = \frac{|dV|}{dw} \left| \frac{dw}{dQ_m} \right|.$$

После преобразований получаем

$$\frac{A}{C} = \frac{w}{\varepsilon_{\rm eff0}} + \int_{0}^{w} \frac{d}{dw} \left[(\varepsilon_{\rm eff})^{-1} \right] x \, dx. \tag{13}$$

Интеграл, входящий в выражение (13), определяется численным методом с использованием зависимости $\varepsilon_{\text{eff}}(x)$, вычисленной ранее (см. выше, а также рис. 1).

Физика и техника полупроводников, 2005, том 39, вып. 12

3. Результаты расчетов и их анализ

Примем следующие значения параметров: $P_s = 35 \text{ мкКл/см}^2$, $P_r = 25 \text{ мкКл/см}^2$, $E_c = 2 \cdot 10^5 \text{ B/см}$, $N_d = 10^{18} \text{ и } 10^{19} \text{ см}^{-3}$, $A = 1 \text{ м}^2$.

На рис. 1 показано изменение поля, потенциала, поляризации и диэлектрической проницаемости по толщине ООЗ при $V + V_{bi} = -2.8$ В. Поле возрастает по толщине ООЗ и на контакте достигает значения $4 \cdot 10^5$ В/см, близкого к пробойному [1].

Поляризация *P* возрастает от 0 до 33 мкКл/см², т.е. близка к насыщению. При возрастании поля от 0 до $4 \cdot 10^5$ В/см значение $\varepsilon_{\rm eff}$ уменьшается в ~ 10 раз, резкое уменьшение $\varepsilon_{\rm eff}$ вблизи контакта коррелирует с резким увеличением поля; однако в слабых полях $\varepsilon_{\rm eff}$ изменяется незначительно; так, при $E = 8 \cdot 10^4$ В/см значение $\varepsilon_{\rm eff}$ уменьшается лишь на 15%. Поэтому при слабых полях можно использовать значение $\varepsilon_{\rm eff0}$ (см. выше) для обработки результатов измерений.

На рис. 2 приведены зависимости $(A/C)^2$ от $V + V_{bi}$ для $N_d = 10^{19}$ и 10^{18} см⁻³ (остальные параметры прежние). Зададим минимальное значение $|V + V_{bi}| = 0.5$ В. Зависимости $(A/C)^2$ от $V + V_{bi}$ близки к линейным в интервале $-1.0 \le (V + V_{bi}) \le -0.5$ В при $N_d = 10^{19}$ см⁻³ и в интервале $-5 \le (V + V_{bi}) \le -0.5$ В

Рис. 1. Изменение параметров сегнетоэлектрика по толщине области объемного заряда при $V + V_{bi} = -2.8$ В. *а*: *1* — поле *E*, *2* — потенциал ψ . *b*: *1* — поляризация *P*, *2* — эффективная диэлектрическая проницаемость ε_{eff} .

при $N_d = 10^{18} \text{ см}^{-3}$. На этом основании используем в указанных интервалах известное соотношение для диода Шоттки с линейным диэлектриком [14]:

$$N = \left[\frac{(A/C_1)^2 - (A/C_2)^2}{|V_2 - V_1|} \, 0.5 \, q \varepsilon_{\text{eff}0}\right]^{-1}, \qquad (14)$$

где N — концентрация мелкой примеси, V_1 , V_2 , C_1 , C_2 — соответственно значения напряжения и емкости на границах интервала. Сравним значение N, полученное из выражения (14), с исходным значением N_d . Так, для $N_d = 10^{19}$ см⁻³ имеем расчетные значения $V_1 + V_{bi} = -0.51$ В, $V_2 + V_{bi} = -1.0$ В, $C_1 = 0.15 \, \Phi/\text{M}^2$ и $C_2 = 0.10 \, \Phi/\text{M}^2$. Из выражения (14) определяем $N = 7.1 \cdot 10^{18}$ см⁻³.

Аналогично для $N_d = 10^{18} \text{ см}^{-3}$ имеем расчетные значения $V_1 + V_{bi} = -0.52 \text{ B}$, $V_2 + V_{bi} = -1.05 \text{ B}$, $C_1 = 0.05 \Phi/\text{M}^2$ и $C_2 = 0.035 \Phi/\text{M}^2$. Из выражения (14) определяем $N = 9.8 \cdot 10^{17} \text{ см}^{-3}$.

Таким образом, выражение (14) может быть использовано при обработке результатов эксперимента для определения концентрации мелкой донорной примеси.

Рис. 2. Зависимости $(A/C)^2$ (1) и $(w/\varepsilon_{\text{eff}0})$ (2) от $V + V_{bi}$. N_d , см⁻³: $a = 10^{19}$, $b = 10^{18}$.

Рис. 3. Зависимости поляризации у контакта P_n от высоты потенциального барьера $V + V_{bi}$ (1) и от потенциала ψ_{n1} (2).

На рис. 2 приведены также зависимости w/ε_{eff0} (первое слагаемое в выражении (13)) от $V + V_{bi}$. Зная ε_{eff0} , можно определить зависимость толщины ООЗ от высоты потенциального барьера.

На рис. З приведена расчетная зависимость P_n на границе с металлом от $V + V_{bi}$ для $N_d = 10^{19}$ см⁻³. Там же для сравнения приведена зависимость P_n от ψ_{n1} , где $\psi_{n1} = 0.5E_nw$ — средний потенциал в ООЗ сегнетоэлектрика.

4. Заключение

Выполнено моделирование параметров сегнетоэлектрика при отсутствии начальной поляризации. Сегнетоэлектрик легирован мелкой примесью. Вычислено изменение электрического поля, потенциала, поляризации и диэлектрической проницаемости по толщине области объемного заряда. Показано, что значение диэлектрической проницаемости в слабом поле $\varepsilon_{\rm eff0}$ может быть определено по параметрам экспериментальной петли гистерезиса. В слабом поле значение диэлектрической проницаемости мало зависит от поля. Поэтому при $E < 10^5$ В/см значение $\varepsilon_{\rm eff0}$ может быть использовано как среднее значение $\varepsilon_{\rm eff}$ при обработке результатов измерений. Вычислена зависимость C^{-2} от высоты потенциального барьера $V + V_{hi}$, при малых напряжениях она близка к линейной. Это позволяет приближенно определить концентрацию мелкой примеси в ООЗ.

Вычислена зависимость толщины области объемного заряда и поляризации у контакта от высоты потенциального барьера.

Результаты моделирования могут быть использованы при обработке экспериментальных даннных.

Работа выполнена при поддержке Российского фонда фундаментальных исследований и гранта ОФН РАН.

Список литературы

- [1] J.F. Scott. Ferroelectric Rev., 1, 2 (1998).
- [2] I. Grekhov, L. Delimova, I. Liniichuk, D. Mashovets, I. Veselovsky. Integr. Ferroelectr., 43, 175 (2002).
- [3] H. Ishiwara. J. Semicond. Technol. Sci., 1, 1 (2001).
- [4] J.F. Scott. Jap. J. Appl. Phys., **38**, 2272 (1999).
- [5] P.W. Bloom, R.M. Wolf, J.F.M. Cillessen, M.P.K.M. Krijn. Phys. Rev., 38, 2107 (1994).
- [6] S.L. Miller, R.D. Nasby, J.R. Schwank, M.S. Rodgers, P.V. Dressendorfer. J. Appl. Phys., 68, 6463 (1990).
- [7] S.L. Miller, J.R. Schwank, R.D. Nasby, M.S. Rodgers. J. Appl. Phys., 76, 2489 (1991).
- [8] S.L. Miller, P.J. McWhorter. J. Appl. Phys., 72, 5999 (1992).
- [9] Л.С. Берман. ФТП, 35, 200 (2001).
- [10] A.K. Tagantsev, M. Landivar, E. Colla, N. Setter. J. Appl. Phys., 78, 2623 (1995).
- [11] P.K. Larsen, G.T.M. Dormans, D.J. Taylor, P.T. van Veldhoven. J. Appl. Phys., 76, 2405 (1994).
- [12] Л.С. Берман. ФТП, **39**, 332 (2005).
- [13] Л.С. Берман. Введение в физику варикапов (Л., Наука, 1968).
- [14] С. Зн. Физика полупроводниковых приборов (М., Мир, 1981) т. 1.

Редактор Л.В. Шаронова

Modelling the voltage–capacitance dependence of a ferroelectric

L.S. Berman

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Modelling ferroelectric parameters in the absence of initial polarisation is fulfilled. Ferroelectric is doped with a shallow-level impurity. Calculated is the change of the electric field, potential, polarisation and permittivity over the space the charge layer.

It is shown that the value of the permittivity in a weak field $\varepsilon_{\rm eff0}$ may be determined by using experimental parameters (of the hysteresis loop). In low fields ($E < 10^5$ V/cm) the value of the permittivity weakly depends on the field. Therefore at $E < 10^5$ V/cm the value of $\varepsilon_{\rm eff0}$ may be used as a mean value of $\varepsilon_{\rm eff}$ under treatment of the measurements results.