02

Спектроскопия высокого разрешения кристалла YAI₃(BO₃)₄-Pr³⁺

© Т.А. Иголкина^{1,2}, Е.П. Чукалина¹, К.Н. Болдырев¹, И.А. Гудим³, М.Н. Попова¹

¹ Институт спектроскопии РАН,

Троицк, Москва, Россия

² Московский физико-технический институт (национальный исследовательский университет),

Долгопрудный, Московская обл., Россия

³ Институт физики им. Л.В. Киренского Сибирского отделения РАН,

Красноярск, Россия

e-mail: igolkinata@isan.troitsk.ru

Поступила в редакцию 02.11.2024 г. В окончательной редакции 08.11.2024 г. Принята к публикации 14.11.2024 г.

Методом фурье-спектроскопии высокого разрешения изучены оптические спектры поглощения кристаллов $YAl_3(BO_3)_4 - Pr^{3+}$ в диапазоне температур 5–300 К в поляризованном свете. Определены значения энергий штарковских подуровней 12 мультиплетов иона Pr^{3+} . Наблюдаемое расщепление ряда спектральных линий, соответствующих синглет-дублетным переходам, связано с влиянием случайных деформаций кристаллической решетки. Сложная структура линии синглет-синглетного перехода на уровень ${}^{3}P_{0}$ объяснена наличием дополнительных центров "ион Pr^{3+} рядом с дефектом решетки". Предположительно такими дефектами являются неконтролируемые примеси, входящие в кристалл в процессе его роста раствор-расплавным методом.

Ключевые слова: YAl₃(BO₃)₄-Pr³⁺, штарковская структура, фурье-спектроскопия высокого разрешения, деформационные расщепления.

DOI: 10.61011/OS.2024.11.59507.7292-24

Введение

Кристаллы, активированные ионом Pr^{3+} , используются в качестве люминофоров [1–4] и лазерных сред [5–9], активно исследуются на применимость в качестве материалов для устройств квантовой информатики [10–16]. Необходимые в этом случае большие времена когерентности уровней сверхтонкой структуры зарегистрированы для Pr^{3+} в оксидных кристаллах Y_2SiO_5 [11,13,14,16] и $La_2(WO_4)_3$ [15].

Алюмоборат иттрия YAl₃(BO₃)₄ (YAB) относится к семейству боратов со структурой природного минерала хантита (пространственная группа симметрии R32 [17]). Это соединение обладает рядом благоприятных физикохимических свойств: механическая, химическая и термическая стабильность [18], прозрачность в широком спектральном диапазоне, уникально высокая теплопроводность [19], высокий нелинейный оптический коэффициент [20]. Алюмоборат иттрия, легированный празеодимом, интенсивно люминесцирует в желтой области спектра и может быть использован в осветительных устройствах [21].

Ионы Pr^{3+} изоморфно замещают ионы Y^{3+} и занимают позицию с точечной группой симметрии D_3 . Имеющаяся в литературе информация о штарковской структуре уровней иона Pr^{3+} в YAB- Pr^{3+} и о параметрах кристаллического поля (КП) неполная и противоречивая [22,23]. Также осталась невыясненной природа сложной формы некоторых спектральных линий, на-

блюдавшейся в работе [23], выполненной с высоким спектральным разрешением.

В настоящей работе методом фурье-спектроскопии высокого разрешения исследованы температурно-зависимые спектры поглощения кристаллов YAB-Pr³⁺, уточнена и существенно дополнена схема штарковских уровней иона празеодима в кристаллическом поле YAB. Эти данные представляют собой основу для последующего корректного расчета по теории кристаллического поля. В настоящей работе также обсуждается наблюдавшаяся тонкая структура некоторых спектральных линий и предложено ее объяснение.

Эксперимент

Монокристаллы $YAl_3(BO_3)_4 - Pr^{3+}$ (1 at.%) были выращены в Институте физики им. Л.В. Киренского Сибирского отделения РАН раствор-расплавным методом с флюсом на основе тримолибдата висмута $Bi_2Mo_3O_{12}$ [24]. Образцы для измерений вырезались вдоль тригональной оси *с* кристалла. Спектры пропускания в области 2000–23000 сm⁻¹ были зарегистрированы на фурье-спектрометре Bruker IFS 125 HR с разрешением 0.1 сm⁻¹. Измерения производились в диапазоне температур 5–300 K с использованием криостата замкнутого цикла Sumitomo SRP-082. Контроль и стабилизация температуры осуществлялись с помощью двухканального термоконтроллера Lake Shore Model 335. Спектры

Таблица 1. Расщепление уровней свободного иона с четным числом электронов в кристаллическом поле симметрии *D*₃

J	Γ
0	Γ_1
1	$\Gamma_2 + \Gamma_3$
2	$\Gamma_1+2\Gamma_3$
3	$\Gamma_1+2\Gamma_2+2\Gamma_3$
4	$2\Gamma_1+\Gamma_2+3\Gamma_3$
5	$\Gamma_1+2\Gamma_2+4\Gamma_3$
6	$3\Gamma_1+2\Gamma_2+4\Gamma_3$

пропускания регистрировались в π ($\mathbf{k} \perp c$, $\mathbf{E} \parallel c$)- и σ ($\mathbf{k} \perp c$, $\mathbf{E} \perp c$)-поляризациях. Для инфракрасной области использовался поляризатор на основе KRS-5, для видимой — пленочный поляризатор.

Экспериментальные результаты и обсуждение

А. Штарковские уровни иона Pr^{3+} в кристалле $\mathsf{YAI}_3(\mathsf{BO}_3)_4 - \mathsf{Pr}^{3+}$

На рис. 1 показан спектр пропускания кристалла $YAI_3(BO_3)_4 - Pr^{3+}$ в областях f - f-переходов со штарковских уровней (1,2 и т.д. в порядке возрастания энергии) основного мультиплета ${}^{3}H_4$ иона Pr^{3+} на штарковские уровни (A, B, C и т.д.) нескольких возбужденных мультиплетов. Обозначение 1А на рис. 1 означает, что линия соответствует переходу с основного уровня на нижний уровень возбужденного мультиплета.

Волновые функции штарковских уровней иона Pr³⁺, занимающего позицию с точечной группой симметрии D_3 в кристалле YAB, преобразуются по двум невырожденным неприводимым представлениям Г₁, Г₂ и одному дважды вырожденному Г3. В табл. 1 показано, как расщепляются уровни свободного иона (с четным числом электронов, как у Pr³⁺), характеризуемые значениями полного момента J, в кристаллическом поле симметрии D₃, а в табл. 2 приведены правила отбора для электрических дипольных (ЭД) и магнитных дипольных (МД) оптических переходов для иона Pr³⁺ в YAB. При достаточно низкой температуре заселен только основной уровень, и спектр поглощения формируется переходами с него на возбужденные уровни. Таким образом были определены энергии штарковских подуровней возбужденных мультиплетов, они приведены в третьем столбце табл. 3. Пользуясь правилами отбора, из экспериментальных спектров можно также найти неприводимые представления, по которым преобразуются волновые функции штарковских уровней (т.е. симметрию уровней).

Пользуясь табл. 1 и 2 и рис. 1, *b* (переход ${}^{3}H_{4} \rightarrow {}^{3}F_{2}$), определим прежде всего симметрию основного состояния. Уровень свободного иона ${}^{3}F_{2}$ расщеплен КП на

три штарковских уровня: $\Gamma_1 + 2\Gamma_3$. Переход ${}^3H_4 \rightarrow {}^3F_2$ запрещен в свободном ионе как МД переход, и поэтому для иона в кристаллическом поле будет доминировать ЭД вклад. Если основное состояние Г₁, можно ожидать увидеть в спектре две σ -поляризованных линии, если Г2 — две σ -поляризованных и одну π поляризованную, если Г₃ — одну σ -поляризованную и две π, σ -поляризованных. При температуре 5 К наблюдаются три линии переходов из основного состояния: одна в л-поляризации и две преимущественно в σ поляризации, что указывает на симметрию Г2 основного состояния. При этом в мультиплете ³F₂ нижний уровень А — Г₃, следующий уровень В — Г₁, а уровень С — Г₃. Энергия первого возбужденного уровня 2 в основном мультиплете составляет $23 \,\mathrm{cm}^{-1}$, переход с него хорошо виден по линии 2А в спектре при 60 К. Уровень 2 имеет симметрию Г₁: линии 2В перехода на уровень В с симметрией Г₁ нет в спектре (переход $\Gamma_1 \rightarrow \Gamma_1$ строго запрещен), в других мультиплетах также нет линий переходов с уровня 2 на уровни Г₁. Определенные экспериментально симметрии уровней также указаны в столбце 4 табл. 3.

Заметим, что энергии уровней симметрии Γ_2 в возбужденных мультиплетах были найдены по линиям переходов на них с уровня 2 (Γ_1) (переходы $\Gamma_2 \rightarrow \Gamma_2$ с основного уровня строго запрещены).

Б. Ионы Pr³⁺ рядом с дефектами структуры

На рис. 2 показана линия поглощения 20603 cm⁻¹ в кристалле YAB-Pr³⁺ (1 at.%). Она соответствует синглетсинглетному переходу $1\Gamma_2$ (³ H_4) $\rightarrow A\Gamma_1({}^3P_0)$, однако имеет сложную структуру: рядом с основной линией наблюдаются спутники. Авторы работы [23] наблюдали аналогичную структуру данной линии в спектре алюмобората иттрия с той же концентрацией ионов Pr³⁺ (1 at.%), однако не смогли ее объяснить. Сравнение наших данных (рис. 2) и данных работы [23] (вставка на рис. 6 работы [23]) показывает, что интенсивность спутников в нашем случае примерно в полтора раза меньше, чем в работе [23]. Исследованные в настоящей работе кристаллы были выращены с флюсом на основе Ві₂Мо₃О₁₂, тогда как в работе [23] использовался флюс на основе K₂Mo₃O₁₀. В работах [25,26] было показано, что в процессе роста кристаллов раствор-расплавным методом компоненты флюса входят в кристалл. При росте кристаллов YAB с использованием Bi₂Mo₃O₁₂ ионы Mo^{3+} замещают ионы Al^{3+} , а ион Bi^{3+} садится на место У³⁺ [25]. Однако этот флюс связывает молибден, он входит в кристалл в меньшем количестве, чем в случае роста с использованием К₂Мо₃О₁₀ [26].

Таким образом, спутники основной линии обусловлены ионами Pr^{3+} , расположенными рядом с дефектами "Mo³⁺ на месте Al³⁺" и "Bi³⁺ на месте Y³⁺". Исходя из структуры YAB и ионных радиусов, можно предположить, что дефекты, обусловленные присутствием молибдена, наиболее важны.

D_3	ЭД			МД			
	Γ_1	Γ_2	Γ_3	Γ_1	Γ_2	Γ_3	
$\Gamma_1 \\ \Gamma_2 \\ \Gamma_3$	$d_z(\pi) \ d_x, d_y(\sigma)$	$d_z(\pi) \ - \ d_x, d_y(\sigma)$	$egin{aligned} & d_x, d_y(\sigma) \ & d_x, d_y(\sigma) \ & d_x, d_y, d_z(\sigma, \pi) \end{aligned}$	$\mu_z(\sigma) \ \mu_x, \mu_y(\pi)$	$\mu_z(\sigma) \ - \ \mu_x, \mu_y(\pi)$	$\mu_x, \mu_y(\pi) \ \mu_x, \mu_y(\pi) \ \mu_x, \mu_y(\pi) \ \mu_x, \mu_y(\pi)$	

Таблица 2. Разрешенные ЭД и МД переходы для ионов с четным числом электронов в случае точечной группы симметрии D₃

Рис. 1. Спектры пропускания кристалла YAl₃(BO₃)₄-Pr³⁺ (1 at.%) толщиной 4.15 mm в σ (красный)- и π (синий)-поляризациях при разных температурах в области переходов в ионе Pr³⁺: $a - {}^{3}H_{4} \rightarrow {}^{3}H_{6}$, $b - {}^{3}H_{4} \rightarrow {}^{3}F_{2}$, $c - {}^{3}H_{4} \rightarrow {}^{3}F_{3}$, $d - {}^{3}H_{4} \rightarrow {}^{3}F_{4}$, $e - {}^{3}H_{4} \rightarrow {}^{3}P_{0}$, $f - {}^{3}H_{4} \rightarrow {}^{3}P_{2}$.

$^{2S+1}L_J$	i	YAB-Pr					
		Данная ра	[22]		[23]		
		Ε	Γ	Ε	Γ	Ε	Γ
1	2	3	4	5	6	7	8
³ <i>H</i> ₄	1 2 3 4 5 6	0 23 226 255 493–635 493–635	$\Gamma_2 \\ \Gamma_1 \\ \Gamma_3$	0 150 231 332 - 560	$ \begin{array}{c} \Gamma_2 \\ \Gamma_1 \\ \Gamma_3 \\ \Gamma_3 \\ \Gamma_1 \\ \Gamma_3 \end{array} $	0 23 139 226 330 560	Γ ₃ Γ ₃ Γ ₃
${}^{3}H_{5}$	A B C D E F	2196 2272 	Γ_3			2196.1 2272 2476 	Γ_3 Γ_3
${}^{3}H_{6}$	G A B C D E F G H I	- 4295.5 4338.7 - - 4707 4707 4727.8 4817.8 4845	Γ_3 Γ_3 Γ_1 Γ_3 Γ_3 Γ_3 Γ_1			- 4295.5 4338.6 - - - 4715 4845 -	Γ_3 Γ_3 Γ_3
${}^{3}F_{2}$	A B C	5103 5187 5206	Γ_1 Γ_3 Γ_1 Γ_3	5080 5178 5200	Γ_3 Γ_1 Γ_3	5103 5187 5206	Γ_3 Γ_3
³ <i>F</i> ₃	A B C D F	6484.3 6498.6 6524 6583.8 6589.8	Γ_2 Γ_3 Γ_1 Γ_2	6463 6487 6528 6555 6590	Γ_3 Γ_3 Γ_2 Γ_1 Γ_2	6465 6485.1 6524 6581 6607	Γ ₃ Γ ₃
³ <i>F</i> ₄	A B C	6855.5 6891.3 6930	Γ_2 Γ_1 Γ_3 Γ_2 Γ_2	6843 6879 6928	Γ_1 Γ_3 Γ_3 Γ_3	6855.5 6891.3 6965	Γ_3 Γ_3
	D E F	- 7150	13	6980 7115 7135	Γ_2 Γ_3 Γ_1	- 7150.4 7160	Γ_3
${}^{1}G_{4}$	A B C D E F	9707.4 - 9909 - 10178 10216	Γ_2	_ _ _ _		9707.4 9749 9909 - 10178 10216	Γ_3 Γ_3 Γ_3
${}^{1}D_{2}$	A B C	16512 16754 17140	Γ_1 Γ_3 Γ_2	16525 16769 17156	Γ_1 Γ_3 Γ_2	16754 	Γ_3
${}^{3}P_{0}$	Ā	20603	Γ_1	20619	Γ_1	20603	Γ_1

Таблица 3. Энергии E (cm⁻¹) штарковских уровней Pr^{3+} в YAl₃(BO₃)₄-Pr³⁺ и неприводимые представления Γ_i точечной группы симметрии D_3 , их характеризующие

Таблица 3. Продолжение

1	2	3	4	5	6	7	8
${}^{3}P_{1}+$	А	21003	Γ_2	21176	Γ_3	20985	
${}^{1}I_{6}$	В	21014	Γ_1	21236	Γ_2	21008	
	С	21163	Γ_3	22274	Γ_1	21013	Γ_3
	D	-		-		21145	Γ_3
	Е	_		_		21153	Γ_3
	F	-		-		21247	
	G	21330	Γ_1	-		21330	
	Н	21353	Γ_3	_		_	
	Ι	-		-		-	
	Κ	21816	Γ_1	-		21816	Γ_3
	L	21858.6	Γ_3	—		21889	
${}^{3}P_{2}$	А	22261	Γ_1	_		22365	
	В	22367	Γ_3	22379	Γ_3	22460	Γ_3
	С	22450	Γ_3	22418	Γ_3	22710	Γ_3

Рис. 2. Линия 1А поглощения π -поляризованного света в области перехода ${}^{3}H_{4} \rightarrow {}^{3}P_{0}$ в кристалле YAB-Pr³⁺ (1 at.%).

В. Дублетная структура линий синглет-дублетных переходов

Празеодим — моноизотопный элемент, имеющий один стабильный изотоп ¹⁴¹ Pr с ядерным спином I = 5/2. В результате сверхтонкого взаимодействия некрамерсовские дублеты Г₃ расщепляются на 6 сверхтонких компонент. Сверхтонкую структуру в зарегистрированных спектрах обнаружить не удалось. Тем не менее, следует отметить наличие явной дублетной структуры некоторых спектральных линий, относящихся к синглетдублетным переходам $\Gamma_1(\Gamma_2) \to \Gamma_3$ (рис. 3). Авторы статьи [23] также сообщили о наблюдении дублетной структуры некоторых линий поглощения. Вычисленные в [23] интервалы сверхтонкой структуры дублетов существенно меньше наблюдаемых расщеплений от 0.4 до 3.1 cm⁻¹ для разных линий. В работе [23] не приводится объяснение наблюдаемой дублетной структуры линий в спектрах поглощения.

Рис. 3. Спектральные линии поглощения в (*a*) π - и (*b*, *c*) σ -поляризациях, относящиеся к переходам $\Gamma_2 \rightarrow \Gamma_3$ в кристалле YAB-Pr³⁺ (1 at.%) при T = 5 K.

Как следует из предыдущих исследований, наблюдаемая характерная дублетная форма линий, соответствующих синглет-дублетным переходам, свидетельствует о наличии низкосимметричных локальных возмущений кристаллического поля, которые могут быть вызваны точечными дефектами кристаллической решетки [27.28]. В кристаллах YAB-Pr³⁺, выращенных растворрасплавным методом, такими дефектами являются как сами ионы Pr^{3+} , так и неконтролируемые примеси, входящие в кристалл из флюса в процессе роста. Чтобы выяснить, какие именно дефекты вносят определяющий вклад в деформационные расщепления, необходимы дополнительные исследования.

Заключение

Проведены измерения спектров пропускания монокристаллов YAl₃(BO₃)₄, активированных ионами Pr³⁺ (1 at.%). Ионы Pr³⁺ замещают ионы Y³⁺ в позициях с точечной группой симметрии D₃. Спектры зарегистрированы в широкой спектральной области (2000–23000 cm⁻¹) методом фурье-спектроскопии высокого разрешения (до 0.1 cm⁻¹), обеспечивающим высокую точность шкалы волновых чисел. Температура кристалла контролируемо менялась от 5 до 300 К. В результате анализа спектров в π - и σ -поляризованном свете построена схема штарковских уровней иона Pr^{3+} в YAB-Pr³⁺ и определены неприводимые представления точечной группы D_3 (Γ_1 , Γ_2 или Γ_3), по которым преобразуются волновые функции штарковских уровней. Эти данные представляют собой основу для последующего корректного расчета по теории кристаллического поля.

В спектрах не удалось наблюдать сверхтонкую структуру, обусловленную взаимодействием электронов с магнитным моментом ядра единственного стабильного изотопа празеодима ¹⁴¹ Pr с ядерным спином I = 5/2, однако для ряда линий синглет-дублетных переходов наблюдалась характерная дублетная структура, вызванная действием случайных деформаций решетки. Спектральные спутники линии синглет-синглетного перехода $\Gamma_2(^3H_4) \rightarrow \Gamma_1(^3P_0)$ отнесены к переходам в ионах Pr^{3+} , находящихся рядом с дефектами. Предположительно такими дефектами являются ионы Mo^{3+} и Bi^{3+} , входящие в кристалл из флюса в процессе роста растворрасплавным методом и замещающие ионы Al^{3+} и Y^{3+} соответственно.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 23-22-00433).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.M. El-Naggar, N.S. Alzayed, A. Majchrowski, L. Jaroszewicz, M.G. Brik, W. Kuznik, I.V. Kityk. J. Cryst. Growth, 334,(1), 122–125 (2011). DOI: 10.1016/j.jcrysgro.2011.08.037
- [2] N. Navya, B.R.R. Krushna, S.C. Sharma, N.R. Nadar, M. Panda, A. George, C. Krithika, S. Rajeswari, R. Vanithamani, K. Madhavi, G. Ramakrishna, K. Manjunatha, S.Y. Wu, H. Nagabhushana. J. Photochem. Photobiol. A: Chem., 456, 115858 (2024). DOI: 10.1016/j.jphotochem.2024.115858
- [3] N. Rebrova, A. Grippa, P. Zdeb, P.J. Deren. Scr. Mater., 255, 116395 (2025). DOI: 10.1016/j.scriptamat.2024.116395
- [4] Y. Hua. Ceram. Int., 50 (18, Part A), 32353-32361 (2024).
 DOI: 10.1016/j.ceramint.2024.06.043
- [5] T. Gün, P. Metz, G. Huber. Appl. Phys. Lett., 99 (18), 181103 (2011). DOI: 10.1063/1.3657150
- [6] P.W. Metz, S. Müller, F. Reichert, D.-T. Marzahl, F. Moglia, C. Kränkel, G. Huber. Opt. Express, 21 (25), 31274–31281 (2013). DOI: 10.1364/OE.21.031274
- [7] S. Fujita, H. Tanaka, F. Kannari. Appl. Opt., 59 (17), 5124–5130 (2020). DOI: 10.1364/AO.394792
- [8] F. Cassouret, M. Badtke, P. Loiseau, G. Aka. Opt. Express, 31, 12497 (2023). DOI: 10.1364/OE.487749
- Z. Zhang, W. Yuan, R. Fang, Z. Li, H. Xu, Z. Cai. Opt. Commun., 566, 130726 (2024).
 DOI: 10.1016/j.optcom.2024.130726

- [10] P. Goldner, O. Guillot-Noël. Mol. Phys., 102 (11-12), 1185-1192 (2004). DOI: 10.1080/00268970410001728744
- [11] E. Fraval, M.J. Sellars, J.J. Longdell. Phys. Rev. Lett., 92, 077601 (2004). DOI: 10.1103/PhysRevLett.92.077601
- [12] G.J. Pryde, M.J. Sellars, N.B. Manson. Phys. Rev. B, 69 (7), 075107 (2004). DOI: 10.1103/PhysRevB.69.075107
- [13] E. Fraval, M.J. Sellars, J.J. Longdell. Phys. Rev. Lett., 95 (3), 030506 (2005). DOI: 10.1103/PhysRevLett.95.030506
- J.J. Longdell, E. Fraval, M.J. Sellars, N.B. Manson. Phys. Rev. Lett., 95 (6), 063601 (2005).
 DOI: 10.1103/PhysRevLett.95.063601
- [15] O. Guillot-Noël, Ph. Goldner, Y. Le Du, P. Loiseau. Phys. Rev. B, **75** (20), 205110 (2007).
 DOI: 10.1103/PhysRevB.75.205110
- [16] G. Heinze, C. Hubrich, T. Halfmann. Phys. Rev. A, 89 (5), 053825 (2014). DOI: 10.1103/PhysRevA.89.053825
- [17] N.I. Leonyuk, L.I. Leonyuk. Prog. Cryst. Growth Charact. Mater., 31 (3-4), 179-278 (1995).
 DOI: 10.1016/0960-8974(96)83730-2
- [18] E.V. Koporulina, N.I. Leonyuk, S.N. Barilo, L.A. Kurnevich, G.L. Bychkov, A.V. Mokhov, G. Bocelli, L. Righi. J. Cryst. Growth., **198**, 460–465 (1999).
 DOI: 10.1016/S0022-0248(98)01228-7
- [19] V.V. Maltsev, E.A. Volkova, D.D. Mitina, N.I. Leonyuk, A.B. Kozlov, A.V. Shestakov. Inorg. Mater., 56, 612–625 (2020). DOI: 10.1134/S0020168520060084
- [20] S. Ilas, P. Loiseau, G. Aka, T. Taira. Opt. Express, 22 (24), 30325 (2014). DOI: 10.1364/OE.22.030325
- B.C. Jamalaiah, N. Madhu, A.S.N. Reddy, P. Gawas,
 V. Nutalapati. Optik (Stuttg.), 268, 169744 (2022).
 DOI: 10.1016/j.ijleo.2022.169744
- M.H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, M. Bettinelli.
 Spectrochim. Acta A, 57, 1981–1990 (2001).
 DOI: 10.1016/S1386-1425(01)00484-X
- [23] M. Mazzera, A. Baraldi, E. Buffagni, R. Capelletti, E. Beregi, I. Földvári, N. Magnani. Appl. Phys. B, **104**, 603–617 (2011).
 DOI: 10.1007/s00340-011-4421-7
- [24] I.A. Gudim, E.V. Eremin, V.L. Temerov. J. Cryst. Growth, 312 (16–17), 2427–2430 (2010).
 DOI: 10.1016/j.jcrysgro.2010.05.013
- [25] M.N. Popova, K.N. Boldyrev, P.O. Petit, B. Viana, L.N. Bezmaternykh. J. Phys.: Condens. Matter., 20 (45), 455210 (2008). DOI: 10.1088/0953-8984/20/45/455210
- [26] K.N. Boldyrev, M.N. Popova, M. Bettinelli, V.L. Temerov,
 I.A. Gudim, L.N. Bezmaternykh, P. Loiseau, G. Aka,
 N.I. Leonyuk. Opt. Mat., 34 (11), 1885–1889 (2012).
 DOI: 10.1016/j.optmat.2012.05.021
- [27] B.Z. Malkin, D.S. Pytalev, M.N. Popova, E.I. Baibekov, M.L. Falin, K.I. Gerasimov, N.M. Khaidukov. Phys. Rev. B: Condens. Matter, 86 (13), 134110 (2012). DOI: 10.1103/PhysRevB.86.134110
- [28] B.Z. Malkin, N.M. Abishev, E.I. Baibekov, D.S. Pytalev,
 K.N. Boldirev, M.N. Popova, M. Bettinelli. Phys. Rev. B,
 96 (1), 014116 (2017). DOI: 10.1103/PhysRevB.96.014116