02

Влияние степени атомного упорядочения на сегнетоэлектрические свойства твердых растворов GaInP₂

© А.С. Власов¹, В. Аксенов¹, А.В. Анкудинов¹, Н.А. Берт¹, Н.А. Калюжный¹, Д.В. Лебедев¹, Р.А. Салий¹, Е.В. Пирогов², А.М. Минтаиров¹

¹ ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Академический университет им. Ж.И. Алферова, Санкт-Петербург, Россия e-mail: vlasov@scell.ioffe.ru

Поступила в редакцию 03.05.2024 г. В окончательной редакции 28.06.2024 г. Принята к публикации 30.10.2024 г.

Исследованы слои GaInP₂, выращенные методом эпитаксии из металл-органических соединений на подложках GaAs (100) при температуре 720°C, соотношении потоков V/III групп 15–150 и разориентации подложки 0 и 6°. Измерены структурные (рентгеновская дифракция, просвечивающая электронная микроскопия и рамановская спектроскопия) и оптические (фотолюминесценция) свойства вместе с измерениями поверхностного потенциала (кельвин-зондовая микроскопия) слоев толщиной 500 nm. Показано наличие атомного упорядочения со структурой CuPt_B, соответствующей монослойной сверхрешетке GaP₁/InP₁ вдоль направления [111]_в, и вариации степени упорядочения $\eta = 0.05 - 0.56$ в зависимости от условий роста. Измерения поверхностного потенциала выявили уменьшение встроенного электрического поля, подавление релаксации кристаллической решетки, обусловленной разной симметрией подлжки и слоя (мартенситного перехода), и фиксацией (пинингом) уровня Ферми с уменьшением η , что демонстрирует возможности контроля сегнетоэлектрических свойств атомно-упорядоченных слоев GaInP₂.

Ключевые слова: GaInP₂, кельвин-зондовая микроскопия, атомное упорядочение, пьезоэлектрические эффекты.

DOI: 10.61011/OS.2024.11.59496.6501-24

Введение

В полупроводниковых твердых растворах Ga_{0.52}In_{0.48}P/GaAs (сокращенно GaInP₂), выращенных методом эпитаксии из металл-органических соединений при определенных условиях эпитаксиального роста (температура, ориентация подложки, соотношение потоков групп V/III и т. д.), может происходить упорядочение атомов Ga и In с образованием структуры монослойной сверхрешетки (чередование слоев) GaP_1 -In P_1 в направлении [111]_в (структура CuPt_в) [1,2]. атомно-упорядоченных (AY)В эпитаксиальных слоях GaInP₂ степень упорядочения η, равная доле конфигураций CuPt_B в монослоях (111)_B, достигает 0.6, а наблюдаемая микроструктура состоит из АУ доменов размером 5-500 nm [3-6]. Упорядочение CuPt_B соответствует ромбоэдрической кристаллической структуре и формирование АУ доменов приводит к изменению электронных свойств слоев GaInP2, а именно уменьшению ширины запрещенной зоны и расщеплению валентной зоны, что важно учитывать при использовании материалов в приборах [3-6]. Формирование ромбоэдрической структуры приводит к генерации встроенного электрического поля $(E_{\rm PE})$ [6,7], т.е. GaInP^{CuPtB} можно отнести к сегнетоэлектрикам, что открывает перспективы для использования этих

материалов в структурах квантовых вентилей [8,9]. Нами были проведены детальные исследования встроенных электрических полей слоев GaInP₂^{CuPtB} с высокой степенью упорядочения ($\eta \sim 0.5$) и показано, что в этих слоях значения $E_{\rm PE}$ варьируют в пределах ± 100 kV/cm и сильно уменышаются с увеличением толщины слоя, что обусловлено эффектами релаксации АУ доменов (мартенситным переходом), пинингом уровня Ферми и пьезоэлектрическим легированием [6]. В настоящей работе измерены $E_{\rm PE}$ в более широком диапазоне $\eta \sim 0.05 - 0.56$, включая слабо упорядоченные слои ($\eta < 0.3$), которые показывают подавление встроенного электрического поля и сопутствующих эффектов в GaInP₂^{CuPtB} при уменьшении η .

Эксперимент

Детальное описание условий выращивания слоев GaInP^{CuPtB}₂ и методик измерения приведены в предварительных исследованиях сильно упорядоченных слоев [6]. В данном исследовании для варьирования степени упорядочения η использовались метод уменьшения соотношения потоков V/III (до 15) и подложки (001) GaAs, разориентированные на 6° в сторону направления [111]. Толщина слоев составляла 500 nm. Состав твердого раствора x_{In} определялся из измерений рентгеновской дифракции. Наличие упорядочения определялось с помощью просвечивающей электронной микроскопии (ПЭМ) по наличию сверхструкутрных рефлексов в положениях $1/2\{111\}$, соответствующих типу CuPt_B, и спектроскопии рамановского рассеяния света по интенсивности анизотропии ($I_{x'x'} - I_{y'y'}$), где $x' \parallel [1-10], y' \parallel [110]$, в области частот оптических фононов InP-типа (TO₂, LO₂), GaP-типа (LO₁) и колебаний антифазных границ (Y).

Степень упорядочения η определялась по сужению ширины запрещенной зоны ΔE_g в спектрах фотолюминесценции (ФЛ). Изменение, как соотношения потоков, так и разориентации подложки, приводит к изменениям состава твердого раствора. Для оценки степени упорядочения традиционно использовался метод, предложенный в [10], по которому ширина запрещенной зоны корректируется в соответствии с формулой

$$E_g^{\rm PL}(x \to x_0) = E_g^{\rm PL} - (x - x_0) \frac{dE_g}{dx},$$

где *x* — состав исследуемого слоя GaInP₂, *x*₀ — состав согласованного GaInP₂. Расчет степени упорядочения осуществлялся по формуле $\eta = \sqrt{\Delta_{E_g} - \Delta_1}$, где $\Delta_1 = -0.32 \,\text{eV}$ [4].

Поверхностный потенциал измерялся с помощью метода кельвин-зондовой микроскопии (КЗМ). Карты потенциала поверхности плоскости роста $U^{001}(x, y)$ были измерены для нескольких различных образцов, выколотых из пластины каждой струкутры. Наличие мартенситного перехода и релаксация решетки определялось по вариациям $U^{001}(x, y)$ от образца к образцу. Напряженность электрического поля рассчитывалась по формуле

$$E_{\rm PE} = (U_0^{001} - U_{\rm GaAs})/d,$$

где d = 500 nm — толщина слоя GaInP₂, U_0^{001} — поверхностный потенциал слоя GaInP₂ и U_{GaAs} — поверхностный потенциал подложки *n*-GaAs. Величина U_{GaAs} измерялась в K3M-картах скола образца $U^{-110}(z, y)$ и равнялась 1.1 V при разориентации 0° и 0.6 V при разориентации 6°.

Результаты

Измеренные параметры исследованных образцов x_{In} , соотношение потоков источников V и III групп $\alpha_{\text{V/III}}$, угол разориентации подложки θ , ΔE_g и η представлены в таблице. Из таблицы видно, что для $\theta = 0^\circ$ снижение соотношения потоков $\alpha_{\text{V/III}}$ от 150 до 15 приводит к уменьшению η от $\eta = 0.56$ до 0.31, а для $\alpha_{\text{V/III}} = 50$ изменение θ от 0 до 6° приводит к уменьшению η от 0.31 до 0.11. Сочетание минимального $\alpha_{\text{V/III}} = 15$ и подложек $\theta = 6^\circ$ дает минимальную степень упорядочения $\eta = 0.05$.

На рис. 1 представлено сравнение разностных рамановских спектров $(I_{x'x'} - I_{y'y'})$, образцов #GIP_{0.5} и

Параметры слоев GaInP₂ $(d = 500 \,\mathrm{nm})$

А.С. Власов, В. Аксенов, А.В. Анкудинов, Н.А. Берт, Н.А. Калюжный...

Образец	#GIP _{0.05}	#GIP _{0.1}	#GIP _{0.3}	#GIP _{0.5}
$x_{\text{In}}, \%$	48.0	47.3	48.8	45.5
$lpha_{ m V/III}$	15	50	15	150
$ heta,^{\circ}$	6	6	0	0
ΔE_g , meV	2	4	31	100
η	0.05	0.11	0.31	0.56

#GIP_{0.05}, которое демонстрирует подавление интенсивности колебательной моды антифазной границы Y (~ 350 cm⁻¹) в спектрах рамановского рассеяния в слабо упорядоченном образце. На вставке рис. 1 показаны светлопольные ПЭМ-изображения зоны [002] и изображения электронной дифракции вдоль оси зоны [110]. Светлопольные изображения ПЭМ показывают однородный контраст с небольшой вертикальной модуляцией, обусловленной, по видимому, 6°-разориентацией подложки. В изображениях электронной дифракции видно подавление сверхструкутрных рефлексов 1/2{111} для образца #GIP_{0.05}, что согласуется с подавлением Y-моды в этом образце.

На рис. 2 представлены значения поверхностного потенциала U_0^{001} и встроенного поля $E_{\rm PE}$ слоев, измеренные для нескольких образцов одного и того же слоя. На верхних вставках рис. 2, а показаны КЗМкарты потенциала $U^{001}(x, y)$ образцов #GIP_{0.05} и #GIP_{0.5}. Как видно из карт, поверхностный потенциал слабо упорядоченного образца #GIP0.05 имеет пространственные вариации $\Delta U^{001} \sim 0.01$ V, которые обусловлены приборными шумами, и постоянный "фон" $U_0^{001} = 0.77 \text{ V}.$ В сильно упорядоченном образце #GIP_{0.5} потенциальный рельеф имеет ямки размером около 200 nm и глубиной $\Delta U^{001} \sim 0.03$ V, обусловленные АУ доменами, что продемонстрировано в [6]. В этом образце $U_0^{001} = 1.8 \, \text{V}$, что более чем в два раза больше, чем для #GIP_{0.05}, и обусловлено большей величиной U_{GaAs} и ЕРЕ. На рис. 2, а видно, что для разных образцов с одним η наблюдается разброс значений U_0^{001} , обусловленный разной релаксацией АУ доменов при выкалывании образца, т.е. мартенситным переходом [6]. Этот разброс, $\Delta U_0^{
m mart}$, составляет $\sim 0.2\,{
m V}$ для $\eta \le 0.3$ и $\sim 1 \,\mathrm{V}$ для $\eta = 0.56$. Уменьшение $\Delta U_0^{\mathrm{mart}}$ в пять раз в слабо упорядоченных образцах демонстрирует подавление релаксации решетки и мартенситного перехода. Величина ΔU_0^{mart} определяет разброс E_{PE} , и для $\eta = 0.56$ наблюдаются значения полей $E_{\rm PE}$ от -4 до $+14\,{\rm kV/cm}$. Как показано в [6], эти значения соответствуют релаксированному и напряженному состояниям, в которых атомы упорядоченных доменов находятся в ромбоэдрической и кубической конфигурациях соответственно. Эти значения в пять-десять раз меньше наблюдаемого для тонкого слоя (d = 70 nm), что обусловлено пи-

Рис. 1. Разностные спектры $(I_{x'x'} - I_{y'y'})$ рамановского рассеяния образцов #GIP_{0.5} и #GIP_{0.05}; на вставках — светлопольные ПЭМ-изображения в зоне [002] и [$\overline{1}$ 10], дифракционная картина (в правом нижнем углу), #GIP_{0.5} — слева, #GIP_{0.05} — справа.

Рис. 2. Зависимость поверхностного потенциала U_0^{001} (a — кружки) и напряженности встроенного электрического поля E_{PE} (b — квадраты) слоев GaInP₂ от степени упорядочения η . Для каждого слоя приведены данные для нескольких образцов. Горизонтальные штриховые кривые на (a) — потенциалы подолжек GaAs. На верхних вставках на (a) показаны K3M-карты $U^{001}(x, y)$ образцов #GIP_{0.05} (слева) и #GIP_{0.5} (справа). Кривая на (b) — аппроксимация $E_{PE}(\eta^2)$ с учетом (сплошная) и без учета (штриховая) пининга уровня Ферми [8].

нингом уровня Ферми и подавлением релаксации [6]. Для $\eta = 0.3$ наблюдается ожидаемое уменьшение $E_{\rm PE}$ до 4 kV/cm (пропорциональное η^2 [3,4], рис. 2, b) для напряженного состояния и подавление релаксированного состояния ($E_{\rm PE}=0$). Для $\eta=0.1$ и 0.05 также наблюдается значение $E_{\rm PE}=4\,{\rm kV/cm}$, что в несколько раз больше ожидаемого с учетом пининга уровня Ферми. Это указывает на подавление пининга уровня Ферми

(рис. 2, *b*), обусловленное подавлением сегнетоэлектрических свойств.

Следует также отметить, что зависимость встроенного поля от релаксации АУ доменов и толщины слоя может служить косвенным подтверждением наличия гистерезиса, что является одним из ключевых свойств сегнетоэлектиков.

Заключение

Методом КЗМ исследована зависимость встроенного электрического поля $E_{\rm PE}$ и мартенситного перехода CuPt_B AУ слоев твердых растворов GaInP₂ от степени упорядочения $\eta = 0.05 - 0.56$. Продемонстрировано подавление $E_{\rm PE}$, мартенситного перехода и пининга уровня Ферми в слабо упорядоченном ($\eta < 0.3$) GaInP₂. Полученные результаты показывают возможность контроля сегнетоэлектрических свойств и сопутствующих эффектов в АУ слоях GaInP₂.

Благодарности

Работа выполнена при поддержке Российского научного фонда (грант № 24-29-00375).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- [1] P. Bellon, J.P. Chevalier, G.P. Martin, E. Dupont Nivet, C. Thiebaut, J.P. Andre. Appl. Phys. Lett., **52**, 567 (1988).
- [2] A. Gomyo, T. Suzuki, S. Iijima. Phys. Rev. Lett., 60, 2645 (1988).
- [3] Spontaneous ordering in semiconductor alloys (Springer Science+Business Media, N.Y., 2002).
- [4] A. Zunger, S. Mahajan. Handbook on Semiconductors (Elsevier, Amsterdam, 1994). V. 3A.
- [5] C.S. Jiang, H.R. Moutinho, D.J. Friedman, J.F. Geisz, M.M. Al-Jassim. J. Appl. Phys., 93, 10035 (2003).
- [6] A.V. Ankudinov, N.A. Bert, M.S. Dunaevskiy, A.I. Galimov, N.A. Kalyuzhnyy, S.A. Mintairov, A.V. Myasoedov, N.V. Pavlov, M.V. Rakhlin, R.A. Salii, A.A. Toropov, A.S. Vlasov, E.V. Pirogov, M.A. Zhukovskyi, A.M. Mintairov. Appl. Phys. Lett., **124**, 052101 (2024).
- [7] S. Froyen, A. Zunger, A. Mascarenhas. Phys. Rev. B, 53, 4570 (1996).
- [8] A.M. Mintairov, A.V. Ankudinov, N.A. Kalyuzhnyy, D.V. Lebedev, S.A. Mintairov, N.V. Pavlov, A.I. Galimov, M.V. Rakhlin, R.A. Salii, A.A. Toropov, A.S. Vlasov, D. Barettin, M. Auf der Maur, S.A. Blundell. Appl. Phys. Lett., 118, 121101 (2021).
- [9] P.A. Balunov, A.V. Ankudinov, I.D. Breev, M.S. Dunaevskiy, A.S. Goltaev, A.I. Galimov, V.N. Jmerik, K.V. Likhachev, M.V. Rakhlin, A.A. Toropov, A.S. Vlasov, A.M. Mintairov. Appl. Phys. Lett., **122**, 222102 (2023).
- [10] T. Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. Hino, T. Yuasa. Jpn. J. Appl. Phys., 27, 2098 (1988).