Синтез пленок полутораокиси ванадия для защиты лент высокотемпературных сверхпроводников

© О.Я. Березина¹, В.С. Игнахин¹, В.В. Путролайнен¹, И.В. Секирин¹, О.В. Спирин¹, Е.П. Красноперов²

1 Петрозаводский государственный университет, Петрозаводск, Россия

² Национальный исследовательский центр "Курчатовский институт", Москва, Россия E-mail: art101@petrsu.ru

Поступило в Редакцию 3 мая 2024 г. В окончательной редакции 27 июня 2024 г. Принято к публикации 30 октября 2024 г.

Получены тонкие $(1-15\mu m)$ покрытия V₂O₃ на проводящих подложках V и Cu для включения их в состав сверхпроводящей ленты в качестве защитного слоя. Покрытия синтезировались способами термического окисления лент металлического ванадия (чистота 99.5%) и электрохимического осаждения из раствора ванадата натрия на подложки из меди. Исследованы структура и фазовый состав пленок, полученных при различных условиях синтеза. Для пленок, полученных способом термического окисления, определены температурные изменения электрического сопротивления в диапазоне от 77 до 300 К.

Ключевые слова: высокотемпературный сверхпроводник, моттовский изолятор, переход металл-изолятор, полутораокись ванадия.

DOI: 10.61011/PJTF.2024.24.59430.6548k

Традиционно обмотки магнитных систем, особенно сверхпроводящих, имеют надежную изоляцию, которая предотвращает межвитковое короткое замыкание. В последние десятилетия разработаны тонкослойные (1-4µm) материалы, так называемые высокотемпературные сверхпроводники (ВТСП) с температурой сверхпроводящего перехода 90-92 К. Существующие провода обмоток электромагнитов на основе ВТСП имеют существенный недостаток — малую скорость распространения нормальной зоны вдоль проводника [1]. Ее значение на один-два порядка ниже, чем у низкотемпературных, и не превышает 10 cm/s при токах, близких к критическому [2]. Это вызывает локальный омический нагрев и разрушение материала. Несколько лет назад было предложено использовать неизолированные сверхпроводящие обмотки в виде ленточных двойных галет (обычно это ленты с Си-покрытием) [3]. В неизолированной обмотке нормальная зона распространяется не только вдоль сверхпроводника, но и в поперечном (радиальном) направлении, что повышает термомагнитную устойчивость обмотки.

Негативной стороной неизолированных обмоток является запаздывание во времени между поступающим в обмотку током и магнитным полем. Характерное время запаздывания $\tau = L/R_r$, где L — индуктивность сверхпроводящей обмотки с изоляцией, а R_r — радиальное сопротивление неизолированной обмотки.

Отсутствие изоляции затрудняет работу обмотки при изменяющемся во времени токе частотой $\omega > 1/\tau$. Ввиду этого формирование на лентах ВТСП дополнительного слоя-покрытия, имеющего высокое сопротивление при рабочей температуре обмотки и претерпевающего при нагреве переход в состояние с более высокой электропроводностью, является значимой и актуальной научной проблемой, решение которой необходимо для создания новых более защищенных структур ВТСП в составе обмоток магнитных систем. В качестве такого покрытия может рассматриваться полутораокись ванадия V_2O_3 . Данный оксид демонстрирует так называемый моттовский фазовый переход металл—диэлектрик при 140 K [4,5] с изменением удельного сопротивления на величину свыше семи порядков [6]. Наиболее отработанным в последнее время способом получения пленок V_2O_3 является метод магнетронного напыления [7], однако он является дорогим и мало подходит для нанесения на длинные ленты в промышленных масштабах.

В настоящей работе были получены образцы тонких пленок (покрытий) V_2O_3 , синтезированных на проводящих подложках, для включения их в состав сверхпроводящей ленточной обмотки. В качестве подложек для пленок использовались ванадий (толщина 0.1 mm, удельная проводимость $\sim 40 \cdot 10^5$ S/m) и медь (толщина 0.06 mm, удельная проводимость $\sim 60 \cdot 10^6$ S/m), используемая в традиционных лентах ВТСП. Покрытие формировалось двумя способами: первый представляет собой термическое окисление лент нелегированного ванадия, второй — электрохимическое осаждение аморфной гидратированной полутораокиси ванадия из раствора ванадата натрия на подложки из ванадия или меди.

Термическое окисление проводилось в вакуумной печи SVF-1200X80, рабочий объем которой откачивался форвакуумным ротационным насосом до значения не хуже 0.01 Тогг. Образцы металлического листового ванадия нагревались со скоростью ~ 20° C/min от комнатной температуры до $800-900^{\circ}$ C и прокаливались в вакууме в течение 60 min. Остаточное давление находилось в пределах от 10^{-2} до 10^{-1} Torr, его значение измерялось барометрическим датчиком. Скорость охлаждения составляла от 7 до 15° C/min для различных образцов. Структура и фазовый состав полученных пленок изучались методами рентгеноструктурного анализа на рентгеновском дифрактометре Siemens Kristalloflex D5000 в монохроматическом излучении Cu K_{α} в геометрии "на отражение" (углы рассеяния $2\theta = 20-110^{\circ}$). Исследование морфологии и элементного состава выполнялось с помощью сканирующего электронного микроскопа Hitachi SU1510 со встроенным спектрометром, предназначенным для энергодисперсионного анализа.

Методом вакуумного термического окисления наиболее высококачественное покрытие с прочной адгезией к подложке было получено на металлическом ванадии. Оцененные толщины пленок во всех случаях располагались в диапазоне $1-10\,\mu$ m. Термически окисленные при температуре 900°С и давлении воздуха порядка 10^{-1} Тогг образцы покрытий V_2O_3 на металлическом ванадии склонны к охрупчиванию (предположительно из-за диффузии части кислорода в глубь ванадия).

Извлеченные после охлаждения до комнатной температуры со скоростью ~ 7°С/тіп образцы были черными и матовыми. На снимках, полученных с помощью электронного микроскопа (рис. 1, *a*), видно, что налет имеет вид пластинок, вертикально ориентированных относительно поверхности. Средние значения поперечного размера пластинок и их толщины составляют 1 и 0.01 μ m соответственно. Легкая шлифовка мягким материалом приводит к тому, что пластинки удаляются и остается сплошное покрытие с редко встречающимися трещиноватыми участками (~ 1% по площади).

Снимки поперечного среза образца (рис. 1, *b*) показали, что покрытие представляет собой монолитную основу на поверхности металла, переходящую в слой упомянутых выше вертикально ориентированных пластинок. Толщина монолитной основы составляет при указанных условиях ~ 0.5 μ m, а толщина верхнего слоя нанопластинок ~ 1 μ m. Подобная структура полутораокиси ванадия, состоящая из вертикально ориентированных нанопластинок высотой 330 nm, была получена в [8] методом реактивного магнетронного распыления.

В то же время при большей скорости охлаждения образцов ($\sim 15^{\circ}$ C/min) нами было получено покрытие иного вида. На изображениях, полученных на электронном микроскопе, отмечаются светлые и темные участки. Светлые участки при рассмотрении с бо́льшим увеличением представляют собой области покрытия, состоящие из вертикально ориентированных нанопластинок, а темные — плотную пленку с относительно редкими порами (доля пор по площади составляла от 5 до 10%).

На рентгеновских дифрактограммах покрытий доминируют линии металлического ванадия и линии V_2O_3 , но при этом относительные интенсивности линий V_2O_3 отличаются от эталонных, приводимых для порошков. В частности, отношение интенсивности линий, соответствующих 33.16 и 24.37°, для эталона составляет 1.3, а для полученных образцов — 0.7. Дифрактометрический анализ не обнаружил присутствия других окиснованадиевых фаз в синтезированных пленках. На рис. 2, *а* представлена дифрактограмма образца со структурой покрытия в виде нанопластинок.

Температурные зависимости сопротивления R(T) образцов пленок V₂O₃ на ванадии в диапазоне температур от комнатной до 77 К измерялись при пропускании тока 1-10 mA поперек плоскости образца. Для устранения влияния падения напряжения в подводящих проводах использовалась четырехпроводная схема. Зависимости демонстрируют изменение сопротивления в ~ 20 раз при охлаждении от 300 до 77 К, при этом наибольший наклон зависимости R(T) наблюдается при $T \sim 160$ K. Для монокристаллических пленок V2O3 [9,10] относительное изменение сопротивления составляет $\sim 10^7$, что почти на шесть порядков больше указанного отношения для полученных нами покрытий. В то же время относительное изменение сопротивления слоев, полученных из порошков V2O3 в полимерных связующих, составляет $\sim 10^3$ [11], а в нанокристаллических пленках на стеклянных подложках — лишь ~ 20-30 [12]. Таким образом, предлагаемый нами метод получения пленок V2O3 на ванадии требует дальнейшей доработки для увеличения величины изменения сопротивления при фазовом переходе.

Известно [13], что покрытия, состоящие из низших окислов ванадия, могут быть легко получены методом электрохимического осаждения из водных растворов ванадатов. Достоинством данного способа является то, что покрытия могут быть в принципе осаждены на любой проводящей поверхности. Таким образом, не требуется буферный слой металлического ванадия. Поэтому мы испытали также этот способ. Электрохимический синтез пленок осуществлялся следующим образом. Для приготовления электролита использовали 1/400 mol порошка V_2O_5 и 3/200 mol гидроксида натрия (NaOH) в виде 1 М раствора, затем добавляли дистиллированную воду до 50 ml так, что концентрация ванадия составляла 0.1 g-atom/l. В результате получали раствор ортованадата натрия Na_3VO_4 в воде:

$$V_2O_5 + 3NaOH \rightarrow Na_3VO_4 + \frac{3}{2}H_2O.$$

Пластинки меди размером 4×30 mm служили катодом. Использовался графитовый анод, катодное и анодное пространства разделялись пористым полипропиленовым фильтром с размером пор около $20\,\mu$ m. Расстояние между электродами составляло 2-4 cm. Ток в разных опытах задавался в диапазоне от 0.01 до 0.07 А; для этого требовалось напряжение порядка 5-7 V. В результате на медной подложке осаждался слой V(OH)₃:

$$VO_4^{3-} + 4H_2O + 2e^- \rightarrow V(OH)_3 + 5OH^-$$

На гладкой поверхности меди осаждение пленки $V(OH)_3$ не происходит по причине плохого механического сцепления покрытия с подложкой, поэтому перед проведением электролиза медные ленты протравливали на протяжении $1-2 \min 65\%$ азотной кислотой, разбавленной в соотношении 1:2 или 1:3. Протравленные

Рис. 1. Изображения покрытий V_2O_3 на ванадии, полученные с помощью электронного микроскопа. *а* — поверхность, *b* — поперечный срез (на изображении указаны измеренные толщины покрытия). Образец — термически окисленный ванадий ($T_{ox} = 900^{\circ}$ C, время окисления 60 min).

Рис. 2. Рентгенограммы различных образцов. a — образец V₂O₃ на ванадии со структурой покрытия в виде нанопластинок, полученный термическим окислением; b — образец V₂O₃ на медной ленте, полученный электрохимическим осаждением (пленка толщиной ~ 0.3 μ m).

образцы выглядят матовыми. Определяемый по привесу образца выход осадка по току составлял всего ~ 4%, т.е. основная часть протекшего тока расходовалась на образование водорода.

После электролиза пленки прокаливались при 600°C в восстановительной атмосфере Ar+CO. Для генерации угарного газа в процессе отжига использовалась щавелевая кислота:

$$\begin{array}{l} H_2C_2O_4 \cdot 2H_2O \rightarrow CO + CO_2 + 3H_2O,\\ CO + H_2O \leftrightarrows CO_2 + H_2. \end{array}$$

При изучении полученных электролизом пленок под электронным микроскопом видно, что они состоят из отдельных плиток с трещинами между ними, в трещинах видна медь. Площадь плиток и ширина трещин зависят от параметров электролиза. По мере роста толщины пленки растут размеры плиток, а также ширина и глубина трещин. На рис. 3 представлены снимки покрытий различной толщины, полученные с помощью электронного микроскопа. Тонкая пленка (рис. 3, a) получена при электролизе в течение 10 min при токе 0.1 A, толстая пленка (рис. 3, b) — в течение 2 h при токе 0.2 A. Оцененные толщины покрытий составляют 0.3 и 3 μ m соответственно. При этом размер фрагментов для данных пленок составляет около 3 и 30 μ m соответственно, и отношение толщины к размеру фрагмента в обоих случаях около 1:10. Ширина трещин при этом сравнима с толщиной пленки.

По дифрактограммам полученных прокаленных образцов видно, что ванадий в них присутствует в виде V_2O_3 (рис. 2, *b*). При этом линии полутораокиси ванадия существенно слабее линий меди. В связи с недостаточно прочным сцеплением полученного покрытия с медной

100 µm

100 µm

Рис. 3. Вид пленок V₂O₃ разной толщины, полученных электролизом на медных лентах, под электронным микроскопом. a — пленка толщиной ~ 0.3 μ m, b — пленка толщиной ~ 3 μ m.

подложкой измерения R(T) не проводились, и, очевидно, данный метод менее перспективен для достижения заявленной цели исследований.

В результате исследований можно сделать общий вывод, что на данный момент для достижения заявленной цели наиболее перспективным из использованных методов синтеза представляется метод окисления металлического ванадия на воздухе.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 24-22-00358 (https://rscf.ru/project/24-22-00358/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J. Pelegrin, E. Martinez, L.A. Angurel, Y.Y. Xie, V. Selvamanickam, IEEE Trans. Appl. Supercond., 21 (3), 3041 (2011). DOI: 10.1109/TASC.2010.2084982
- H.Y. Park, A.R. Kim, M. Park, I.K. Yu, B.Y. Eom, J.H. Bae, S.H. Kim, K. Sim, M.H. Sohn, IEEE Trans. Appl. Supercond., 20 (3), 2122 (2010). DOI: 10.1109/TASC.2010.2041770
- [3] S. Hahn, D.K. Park, J. Bascunan, Y. Iwasa, IEEE Trans. Appl. Supercond., 21 (3), 1592 (2011).
 DOI: 10.1109/TASC.2010.2093492
- [4] А.В. Ильинский, Е.Б. Шадрин, ФТТ, 65 (3), 460 (2023). DOI: 10.21883/FTT.2023.03.54746.536 [A.V. Ilinskiy, E.B. Shadrin, Phys. Solid State, 65 (3), 450 (2023). DOI: 10.21883/PSS.2023.03.55588.536].
- [5] А.В. Ильинский, Е.Б. Шадрин, ФТТ, 65 (12), 2068 (2023).
 DOI: 10.61011/FTT.2023.12.56724.4937k [A.V. Ilinskiy, E.B. Shadrin, Phys. Solid State, 65 (12), 1985 (2023).
 DOI: 10.61011/PSS.2023.12.57643.4937k].

- [6] T.M. Rice, D.B. McWhan, IBM J. Res. Develop., 14 (3), 251 (1970). DOI: 10.1147/rd.143.0251
- [7] I. Castillo, K.K. Mishra, R.S. Katiyar, Coatings, 12 (5), 649 (2022). DOI: 10.3390/coatings12050649
- [8] V. Mounasamy, G.K. Mani, D. Ponnusamy, K. Tsuchiya, A.K. Prasad, S. Madanagurusamy, J. Mater. Chem. A, 6 (15), 6402 (2018). DOI: 10.1039/C7TA10159G
- [9] B.H. Андреев, В.А. Климов, М.Е. Компан, ΦΤΤ, **59** (12), 2413 (2017). DOI: 10.21883/FTT.2017.12.45241.174
 [V.N. Andreev, V.A. Klimov, M.E. Kompan, Phys. Solid State, **59** (12), 2441 (2017). DOI: 10.1134/S1063783417120046].
- [10] В.Н. Андреев, В.А. Климов, ФТТ, 48 (12), 2200 (2006).
 [V.N. Andreev, V.A. Klimov, Phys. Solid State, 48 (12), 2328 (2006). DOI: 10.1134/S1063783406120146].
- M. Bonura, G. Bovone, P. Cayado, C. Senatore, IEEE Trans. Appl. Supercond., 33 (5), 8800106 (2023).
 DOI: 10.1109/TASC.2023.3251291
- [12] А.В. Ильинский, Е.И. Никулин, Е.Б. Шадрин, ФТТ,
 63 (5), 666 (2021). DOI: 10.21883/FTT.2021.05.50819.005
 [A.V. Il'inskii, E.I. Nikulin, E.B. Shadrin, Phys. Solid State, 63, 714 (2021). DOI: 10.1134/S1063783421050097].
- B. Endrödi, V. Smulders, N. Simic, M. Wildlock, G. Mul, B. Mei, A. Cornell, Appl. Catal. B, 244, 233 (2019).
 DOI: 10.1016/j.apcatb.2018.11.038