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Saturn hexagon as a form of internal Stokes waves
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Observations show a hexagon of the very regular shapes with equal corners of practically 120 degrees on the

Saturn surface. There are already several theories aimed to explain appearance of these corners. On the other

hand, such corners are inherent to Stokes waves and these waves can have the various nature. In this study a

simplified 2D problem on inner Stokes waves within a circle with two incompressible fluids of slightly diverse

densities and a vortex with the center coinciding with the center of this circle originates is considered; the steady

flows exist inside and outside the inner wave surface separating two fluids. Its shape is determined via solving the

corresponding nonlinear free-surface problems. Numerical solutions for various ratios of fluid densities and circle

radius to hexagon side size are compared with the observed hexagon.
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Introduction

A regular hexagon with well-defined angles of 120◦ is

seen in various photographic images of the surface of

Saturn. A simplified diagram of an image of this kind

is shown in Fig. 1. The corresponding atmospheric flow

has been examined multiple times in numerical studies, and

various hypotheses regarding its origin have been proposed.

Notably, polygonal figures emerge in various flows. They

may exist between rotating disks [1,2] and around rotating

multi-bladed devices [3]. These figures are not induced by
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Figure 1. Sketch of a hexagon inside a circle. The sides of the

hexagon are curved slightly, but the angles are 120◦.

turbulence, although this formation mechanism has been

suggested in certain studies. It was also noted [4] that
”
a

stable hexagonal structure can emerge . . . when dynamic

instabilities in the zonal jet nonlinearly equilibrate.“

At the same time, angles of 120◦ are characteristic of

various steady Stokes waves. Gravity-induced Stokes waves

in two-dimensional flows have been studied since [5]. A

nearly complete review of research in this field may be

found in [6]. Stokes waves may also be caused by centrifugal

forces in axisymmetric flows [7]. In addition, according

to [8], inner Stokes waves caused by a density jump inside

the flows are possible. This is the wave type examined

below.

1. Inner Stokes waves inside a circle

Let us consider a simplified scenario with two fluids of

different densities inside a circle with radius R+. According

to [9], two vortices are present inside the hexagon above

Saturn, but only one of them produces a significant

contribution to the velocities along the hexagon’s contour.

Let us assume that the inner fluid with density ρ− occupies

the core of a vortex with maximum radius R− equal to the

side length of the hexagon; introducing polar coordinates

with radius r normalized to R−, one obtains R− = 1.0.

Given the scale of the examined planetary flow, it must be

turbulent. Then, as was demonstrated in [10], the asymptotic

solution of the Reynolds equations [11] may be used to

approximate the circumferential velocity inside the vortex

core:

Uθ− = r [1− ln(r)]. (1)

Here, Uθ− is normalized to ωR−, where ω is the rotation

frequency. This formula was obtained under the assumption

of an insignificant dependence of turbulent stresses on
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Figure 2. Comparison of formula (1) with distributions of the

normalized measured azimuthal velocity along the vortex radius.

coordinates. Figure 2 demonstrates that formula (1) agrees

closely with the experimental data reported in [12,13].
The outer fluid has density ρ+ = ερ− and is also rotating.

Boundary S between the two fluids of different densities is

impermeable, and the pressure should be the same on both

sides of S. Therefore, S will be a free surface. The entire

flow is not vortex-free, but flow disturbances caused by the

dependence of S on azimuth θ may be specified using the

velocity potentials. One of the potentials is defined inside

the hexagon. It satisfies the Laplace equation and boundary

condition
∂8−

∂N
+ r [1 − ln(r)]Nr = 0. (2)

Here, Nr is the radial component of the normal to S.
Another velocity potential outside S needs to be introduced.

This potential must satisfy condition

∂8+

∂N
+ r [1− ln(r)]Nr = 0 (3)

on S and at r = R+. However, it was noted in [8] that

when inner Stokes waves with crest angles of 120◦ are

considered, it is necessary to introduce certain initially

unknown circulation (or certain vortices) in the outer flow

around the angles of 240◦ . Therefore, in addition to the

potential of monopoles with intensity Q+, 8+ includes the

potential of vortices of initially unknown intensity γ that

may be determined using the asymptotics

lims→0 U+ =
√

s , (4)

which was derived in [8] with the use of conformal

mappings. Here, abscissa s is measured from the crest

(according to [9], high-vorticity zones should actually be

located near each vertex of the hexagon). The solution of

Eqs. (2) and (3) is simplified by the fact that the velocity

distributions over all parts of the hexagon match each other.

The condition of continuity of pressure in passing

through S needs to be used to determine S. It may be

written as

U2
−

= εU2
+ (5)

along the entire S. The necessity of fulfilling Eq. (5) leads to
the deviation of sides of the hexagon from straight segments

between the vertices. The procedure for determining these

deviations h(s) is similar to the procedures discussed in [8]
in the context of other problems of free-boundary potential

theory. Such problems are nonlinear, and iterations are

needed to solve them. In each iteration, quasi-linearization

of Eqs. (2) and (3) with the use of perturbations of both

potentials with small intensities q− and q+ yields equations

q+ = 2d(hU+)/ds, q− = −2
d(hU−)

ds
. (6)

In addition, condition

U−

s
∫

0

q+ds + U+

s
∫

0

q−ds = 0 (7)

is satisfied along S.

Since the velocity perturbations are about Cauchy inte-

grals of intensity q− or q+, quasi-linearization of Eq. (5)
leads to the equation

1

π

1
∫

0

µq+ − q−

s − τ
dτ + 2h[(µ − 1)(1 − ln |r |)]2U+dµ

= 2(U− − µU+) (8)

along the top horizontal side of the hexagon. Here, µ =
√
ε.

Equation (8) may be simplified further by inverting the

Cauchy integrals, and

µq+ − q− +
F{s}
π

1
∫

0

[

(µ − 1)(1− ln |r |)
U−

(

τ
∫

0

q−dξ

)

−2U+dµ

]

dτ
(s − τ )F{τ } = 2

F{s}
π

1
∫

0

(U− − µU+)

(s − τ )F{τ }dτ

(9)
Here, F{s} =

√

s(1− s). However, as was noted in [14],
this inversion is possible only on the additional condition

that

1
∫

0

[

(1− ln |r |)
U−

(1− µ)

(

τ
∫

0

q−dξ

)

+ 2(U+dµ)

]

× dτ
F{τ } + 2

1
∫

0

(U− − µU+)

F{τ } dτ = 0, (10)

and the necessity of fulfilling Eq. (10) is related to the

definition of variation dµ of parameter µ in the entire

problem. Having solved Eqs. (7)−(10), one may find

function h(s) by integrating one of the equations from (6)
and correct S. This correction of S may be interpreted

as motion against the gradient in the auxiliary space

Technical Physics, 2024, Vol. 69, No. 10



Saturn hexagon as a form of internal Stokes waves 1525

1.2

0
–0.3 0.50.1–0.5 0.3–0.1

0.2

0.4

0.6

0.8

1.0

U

X

Figure 3. Example distribution of U+ along S.
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Figure 4. Illustration of the algorithm convergence. The solid

line designated as
”
error“ corresponds to the absolute value of

difference U− − µU+ after seven iterations.

of variables defining surface S. Although an analytical

description of this surface may exist, the general approach

is to correct it stepwise using M points distributed over the

examined part of S. Let us denote the coordinates of these

Figure 5. Comparison of the calculated hexagon shape (dotted curve at the bottom in the left panel) and the photographic image of the

hexagon above Saturn.

points as

x k+1
m = x k

m + αhk
mNk

xm, y k+1
m = y k

m + αhk
mNk

ym, (11)

where superscripts and subscripts indicate iteration and

point numbers, respectively. The definition of h(s) allows

for calculation of the components of the hk
m anti-gradient

on S, but the strong nonlinearity of the problem makes it

necessary to move in small steps along this anti-gradient.

Therefore, positive factor α ≪ 1 is introduced into Eq. (11).
An example calculated velocity distribution is shown in

Fig. 3. The X coordinate is measured from the center of

the hexagon, and the x axis is perpendicular to the y axis

shown in Fig. 1.

The iteration convergence is illustrated in Fig. 4 for

R+ = 5 and ε = 0.99. A regular hexagon was chosen to

be used as an initial approximation to unknown surface S.
The distributions of U+rigid and U−rigid along it were inserted

into Eq. (5), and the corresponding difference U− − µU+ is

compared in Fig. 4 to a similar difference along S obtained

after seven iterations.

2. Qualitative comparison
with observations

The observed [15] and calculated hexagon shapes are

compared in Fig. 5. Their sides are very similar.

The maximum deviation A of the hexagon side from

a straight segment between its two vertices is close to

the height of a classical Stokes wave, while the segment

length is similar to wavelength λ. These similarities allow

us to make certain comparisons. The A/λ ratio for two-

dimensional gravity Stokes waves decreases from 0.142 for

a flow of infinite depth to 0.098 for a flow of minimum

depth (defined according to [16] as the minimum depth at

which these steady waves are supported). Keeping in mind

the analogy between the above-mentioned depth and the

distance between the hexagon and the surrounding circle,

one may spot the same trend in Fig. 6.
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Figure 6. Influence of the circle radius on the wave steepness.

The numbers next to the curves indicate the corresponding density

ratios.
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Figure 7. Shapes of hexagon sides for {R+ = 4, ε = 0.99} and

{R+ = 9, ε = 0.985}.

More detailed images of surface S (the surface of these

inner waves) are shown in Fig. 7. At x = λ/2 dy/dx
undergoes a jump from 0 to − tan(π/6). The shapes

of shown S shown in Figs. 1 and 5 correspond to

{R+ = 4, ε = 0.99}. Notably, R+ = 4 is close to the ratio

between the diameter of Saturn and the observed [17] size

of its hexagon.

The comparison presented in Fig. 5 is qualitative. How-

ever, it is sufficiently compelling to put forward a hypothesis

that the hexagon is a type of inner Stokes waves. The

results of laboratory experiments with certain polygonal

structures in fluids (e.g., [3,18,19]) are less convincing. The

examination of asymmetric potential disturbances of one

fluid (similar to those discussed in [2], but caused by a

moon) did not yield any polygonal figure.

In quantitative analysis, the considered flow should be

three-dimensional, and gravity also needs to be taken into

account. This might be feasible in the axisymmetric

approach [20], but requires the substitution of an outer rigid

circle with an inner rigid sphere and the use of certain data

regarding the bottom of the flow. However, the method for

solving the free surface problem will be quite similar (it will

be a mere modification of the method of Ivanov).

Conclusion

The hexagon observed above Saturn has been studied by

numerous research groups, but the concepts used in their

work were not supported by sufficient evidence. Therefore,

the application of an alternative approach is reasonable,

and this hexagon was regarded in the present study as

the surface of an inner Stokes wave forming between two

fluids of different densities. The flow was assumed to

be induced by an axisymmetric vortex, and deformations

of the hexagon surface were characterized by vortex-free

flow potentials. The discussed iterative procedure for

solving the corresponding nonlinear problem was verified

by comparison with solutions of other problems on Stokes

waves with crest angles of 120◦ .

It can be said that the comparison of shapes of the calcu-

lated and observed hexagons revealed their close agreement,

since the considered model inner-wave problem allowed us

to reproduce the hexagonal structure, and the degree of

deviation of the hexagon sides from straight segments is

difficult to estimate from the available photographic images.
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